/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//
// @author saudet
// @author raver119@gmail.com
//

#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <platform_boilerplate.h>

#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>

using namespace mkldnn;

namespace nd4j {
    namespace ops {
        namespace platforms {
            static void conv2d_mkldnn(nd4j::graph::Context &block, const NDArray *input, const NDArray *weights,
                                      const NDArray *bias, NDArray *output, const int kH, const int kW, const int sH,
                                      const int sW, int pH, int pW, const int dH, const int dW, const int isSameMode,
                                      const int isNCHW) {

                int bS, iC, iH, iW, oC, oH, oW;                             // batch size, input channels, input height/width, output channels, output height/width;
                int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH;       // corresponding indexes
                ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW,
                                                           indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);

                if(isSameMode)                       // SAME
                    ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);

                mkldnn_memory_desc_t empty;
                mkldnn::memory::desc conv_src_md(empty), conv_weights_md(empty), conv_bias_md(empty), conv_dst_md(
                        empty);
                mkldnn::memory::desc user_src_md(empty), user_weights_md(empty), user_bias_md(empty), user_dst_md(
                        empty);
                mkldnn::memory::dims conv_strides, conv_padding, conv_padding_r;
                mkldnnUtils::getMKLDNNMemoryDescConv2d(kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW,
                                                       bS, iC, iH, iW, oC, oH, oW, input, nullptr, weights, nullptr,
                                                       bias, output,
                                                       &conv_src_md, nullptr, &conv_weights_md, nullptr,
                                                       &conv_bias_md, &conv_dst_md,
                                                       &user_src_md, nullptr, &user_weights_md, nullptr,
                                                       &user_bias_md, &user_dst_md,
                                                       conv_strides, conv_padding, conv_padding_r);
                auto conv_desc = bias != nullptr
                                 ? convolution_forward::desc(prop_kind::forward,
                                                             algorithm::convolution_auto, conv_src_md,
                                                             conv_weights_md, conv_bias_md,
                                                             conv_dst_md, conv_strides, conv_padding,
                                                             conv_padding_r)
                                 : convolution_forward::desc(prop_kind::forward,
                                                             algorithm::convolution_auto, conv_src_md,
                                                             conv_weights_md,
                                                             conv_dst_md, conv_strides, conv_padding,
                                                             conv_padding_r);
                auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
                mkldnn::stream stream(engine);
                auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, engine);
                auto user_src_memory = mkldnn::memory(user_src_md, engine, const_cast<NDArray *>(input)->buffer());
                auto user_weights_memory = mkldnn::memory(user_weights_md, engine,
                                                          const_cast<NDArray *>(weights)->buffer());
                auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer());
                auto conv_src_memory = user_src_memory;
                if (conv_prim_desc.src_desc() != user_src_memory.get_desc()) {
                    conv_src_memory = mkldnn::memory(conv_prim_desc.src_desc(), engine);
                    reorder(user_src_memory, conv_src_memory).execute(stream, user_src_memory, conv_src_memory);
                }
                auto conv_weights_memory = user_weights_memory;
                if (conv_prim_desc.weights_desc() != user_weights_memory.get_desc()) {
                    conv_weights_memory = mkldnn::memory(conv_prim_desc.weights_desc(), engine);
                    reorder(user_weights_memory, conv_weights_memory).execute(stream, user_weights_memory,
                                                                              conv_weights_memory);
                }
                auto conv_dst_memory = user_dst_memory;
                if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
                    conv_dst_memory = mkldnn::memory(conv_prim_desc.dst_desc(), engine);
                }
                if (bias != nullptr) {
                    auto conv_bias_memory = mkldnn::memory(conv_prim_desc.bias_desc(), engine,
                                                           const_cast<NDArray *>(bias)->buffer());
                    convolution_forward(conv_prim_desc).execute(stream, {{MKLDNN_ARG_SRC,     conv_src_memory},
                                                                         {MKLDNN_ARG_WEIGHTS, conv_weights_memory},
                                                                         {MKLDNN_ARG_BIAS,    conv_bias_memory},
                                                                         {MKLDNN_ARG_DST,     conv_dst_memory}});
                } else {
                    convolution_forward(conv_prim_desc).execute(stream, {{MKLDNN_ARG_SRC,     conv_src_memory},
                                                                         {MKLDNN_ARG_WEIGHTS, conv_weights_memory},
                                                                         {MKLDNN_ARG_DST,     conv_dst_memory}});
                }
                if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
                    reorder(conv_dst_memory, user_dst_memory).execute(stream, conv_dst_memory, user_dst_memory);
                }
                stream.wait();
            }

            PLATFORM_IMPL(conv2d) {
                auto input = INPUT_VARIABLE(
                        0);                                    // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
                auto weights = INPUT_VARIABLE(1);                                    // [kH, kW, iC, oC] always
                auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr;      // [oC]

                auto output = OUTPUT_VARIABLE(
                        0);                                   // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW)

                int sH = INT_ARG(2);                                                        // strides height
                int sW = INT_ARG(3);                                                        // strides width
                int pH = INT_ARG(4);                                                        // paddings height
                int pW = INT_ARG(5);                                                        // paddings width
                int dH = INT_ARG(6);                                                        // dilations height
                int dW = INT_ARG(7);                                                        // dilations width
                int isSameMode = INT_ARG(8);                                                // 0-VALID, 1-SAME
                bool isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1;       // INT_ARG(9): 0-NCHW,  1-NHWC

                int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0)); // filter(kernel) height
                int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1)); // filter(kernel) width

                conv2d_mkldnn(block, input, weights, bias, output, kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW);

                return Status::OK();
            }

            PLATFORM_CHECK(conv2d) {
                // we don't want to use mkldnn if cpu doesn't support avx/avx2
                if (::optimalLevel() < 2)
                    return false;

                auto input = INPUT_VARIABLE(0);
                auto weights = INPUT_VARIABLE(1);

                // conv2d is only available for float32 dtype
                return block.isUseMKLDNN() && input->dataType() == nd4j::DataType::FLOAT32 &&
                       weights->dataType() == nd4j::DataType::FLOAT32;
            }
        }
    }
}