/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 07.03.2019 // #include #include namespace nd4j { namespace ops { namespace helpers { //////////////////////////////////////////////////////////////////////// void gather(nd4j::LaunchContext * context, const NDArray* input, const NDArray* indices, NDArray* output, const std::vector& intArgs) { int axis = intArgs.size() > 0 ? intArgs[0] : 0; const int inputRank = input->rankOf(); if(axis < 0) axis += inputRank; const int numOfIntArgs = intArgs.size(); if (indices != nullptr) { // first case: indices consist of only one scalar if(indices->isScalar()) { if(input->rankOf() <= 1){ //For scalar indices, rank 0 or 1 input: can't do tensor along dimension 0 as this is whole array... instead, we want to get a scalar auto idx = indices->e(0); auto scalarNDArray = input->e(idx); output->assign(scalarNDArray); } else { NDArray inSubArr = (*input)(indices->e(0), {axis}); output->assign(inSubArr); } } else { std::vector dimsOut(indices->rankOf()); std::iota(dimsOut.begin(), dimsOut.end(), axis); // fill with axis, axis+1, ... axis+indices->rankOf()-1 const Nd4jLong numOfSubArrs = indices->lengthOf(); #pragma omp parallel for if(numOfSubArrs > Environment::getInstance()->elementwiseThreshold()) schedule(guided) for(int i = 0; i < numOfSubArrs; ++i) { NDArray subArrOut = (*output)(i, dimsOut); NDArray subArrIn = (*input)(indices->e(i), {axis}); subArrOut.assign(subArrIn); } } } else { // we only allow scalar/vector case here if (numOfIntArgs == 2) { // scalar case output->assign((*input)(intArgs[1], {axis})); } else { // vector case const Nd4jLong numOfSubArrs = intArgs.size() - 1; #pragma omp parallel for if(numOfSubArrs > Environment::getInstance()->elementwiseThreshold()) schedule(guided) for(int i = 0; i < numOfSubArrs; ++i) { NDArray subArrOut = (*output)(i, {axis}); NDArray subArrIn = (*input)(intArgs[i+1], {axis}); subArrOut.assign(subArrIn); } } } } } } }