/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by GS on 3/21/2018. // #include "ResultSet.h" #include #include #include #include #include #include #include namespace nd4j { namespace ops { namespace helpers { template static __global__ void matrixDiagPartKernel(void const* inputBuffer, void* outputBuffer, Nd4jLong numTads, Nd4jLong inputLength, Nd4jLong* tadOnlyInputShapeInfo, Nd4jLong *tadInputOffsets, Nd4jLong* tadOnlyOutputShapeInfo, Nd4jLong *tadOutputOffsets) { int totalThreads = blockDim.x; for (Nd4jLong i = blockIdx.x; i < numTads; i += gridDim.x) { auto yOffset = tadInputOffsets[i]; auto xOffset = tadOutputOffsets[i]; for (Nd4jLong j = threadIdx.x; j < inputLength; j += totalThreads) { Nd4jLong coords[2] = {j, j}; Nd4jLong tadOffset = shape::getOffset(tadOnlyInputShapeInfo, coords); //shape::getIndexOffset(j, tadOnlyOutputShapeInfo) *(reinterpret_cast(outputBuffer) + xOffset + shape::getIndexOffset(j, tadOnlyOutputShapeInfo)) = *(reinterpret_cast(inputBuffer) + yOffset + tadOffset); } } } ////////////////////////////////////////////////////////////////////////// // Returns a batched matrix tensor with new batched diagonal values. // for detailed explanations please take a look on web page: https://www.tensorflow.org/api_docs/python/tf/matrix_set_diag template int _matrixDiagPart(nd4j::LaunchContext * context, const NDArray* input, NDArray* output) { auto stream = context->getCudaStream(); auto listOut = output->allTensorsAlongDimension({output->rankOf() - 1}); auto listDiag = input->allTensorsAlongDimension({input->rankOf() - 2, input->rankOf() - 1}); if (listOut->size() != listDiag->size()) { nd4j_printf("matrix_diag_part: Input matrix has wrong shape.", ""); return ND4J_STATUS_VALIDATION; } Nd4jLong lastDimension = nd4j::math::nd4j_min(input->sizeAt(-2), input->sizeAt(-1)); std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(output->rankOf(), {output->rankOf() - 1}); const Nd4jLong numTads = ShapeUtils::getNumOfSubArrs(input->getShapeInfo(), dimsToExclude); //this->tensorsAlongDimension({dimension}); //printf("Repeat delta %lld, numTads %lld\n", repeatDelta, numTads); //tadOnlyInputShapeInfo, tadInputOffsets, tadOnlyOutputShapeInfo, tadOutputOffsets; std::vector outputDims({output->rankOf() - 1}); std::vector inputDims({input->rankOf() - 2, input->rankOf() - 1}); auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), inputDims); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), outputDims); if (!output->isActualOnDeviceSide()) input->syncToDevice(); if (!input->isActualOnDeviceSide()) input->syncToDevice(); dim3 launchDims(256, 512, 8192); matrixDiagPartKernel<<>>(input->getSpecialBuffer(), output->getSpecialBuffer(), numTads, lastDimension, packX.specialShapeInfo(), packX.specialOffsets(), packZ.specialShapeInfo(), packZ.specialOffsets()); return Status::OK(); } int matrixDiagPart(nd4j::LaunchContext * context, const NDArray* input, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), return _matrixDiagPart, (context, input, output), LIBND4J_TYPES); } BUILD_SINGLE_TEMPLATE(template int _matrixDiagPart, (nd4j::LaunchContext * context, const NDArray* input, NDArray* output), LIBND4J_TYPES); } } }