/******************************************************************************* * Copyright (c) 2020 Konduit, K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include #include #include "../triangular_solve.h" namespace nd4j { namespace ops { namespace helpers { /* * lower triangular process for system of linear equations * x_1 = b_1/a_1,1 * x_2 = (b_2 - a_2,1 * x_1) / a_2,2 * x_3 = (b_3 - a_3,1 * x_1 - a_3,2 * x_2) / a_3,3 * ... * x_M = (b_M - a_M,1 * x_1 - ... a_M,M-1 * x_M-1)/ a_M,M * * output == x * a == leftInput * b == rightInput * * */ template static __device__ void lowerTriangularSolve(T const* leftInput, Nd4jLong const* leftInputShape, T const* rightInput, Nd4jLong const* rightInputShape, bool const adjoint, T* output, Nd4jLong* outputShape, Nd4jLong rows) { for (auto r = 0; r < rows; r++) { Nd4jLong posY[] = {r, 0}; Nd4jLong posX[] = {r, r}; auto xIndex = shape::getOffset(leftInputShape, posX, 0); auto yIndex = shape::getOffset(rightInputShape, posY, 0); auto zIndex = shape::getOffset(outputShape, posY, 0); auto sum = rightInput[yIndex]; for (auto c = 0; c < r; c++) { Nd4jLong posZ[] = {c, 0}; Nd4jLong pos[] = {r, c}; auto xcIndex = shape::getOffset(leftInputShape, pos, 0); auto zcIndex = shape::getOffset(outputShape, posZ, 0); sum -= leftInput[xcIndex] * output[zcIndex]; } output[zIndex] = sum / leftInput[xIndex]; } } /* * upper triangular process for system of linear equations * x_M = b_M/a_M,M * x_M-1 = (b_M-1 - a_M-1,M-2 * x_M) / a_M-1,M-1 * x_M-2 = (b_M-2 - a_M-2,M-3 * x_M-2 - a_M-2,M-1 * x_M) / a_3,3 * ... * x_1 = (b_1 - a_1,2 * x_2 - ... a_1,M * x_M)/ a_1,1 * * output == x * a == leftInput * b == rightInput * * */ template static __device__ void upperTriangularSolve(T const* leftInput, Nd4jLong const* leftInputShape, T const* rightInput, Nd4jLong const* rightInputShape, bool const adjoint, T* output, Nd4jLong* outputShape, Nd4jLong rows) { for (auto r = rows; r > 0; r--) { Nd4jLong posY[] = {r - 1, 0}; Nd4jLong posX[] = {r - 1, r - 1}; auto xIndex = shape::getOffset(leftInputShape, posX, 0); auto yIndex = shape::getOffset(rightInputShape, posY, 0); auto zIndex = shape::getOffset(outputShape, posY, 0); auto sum = rightInput[yIndex]; for (auto c = r; c < rows; c++) { Nd4jLong posZ[] = {c, 0}; Nd4jLong pos[] = {r - 1, c}; auto zcIndex = shape::getOffset(outputShape, posZ, 0); auto xcIndex = shape::getOffset(leftInputShape, pos, 0); sum -= leftInput[xcIndex] * output[zcIndex]; } output[zIndex] = sum / leftInput[xIndex]; } } template static __global__ void triangularSolveKernel(T const* leftInput, Nd4jLong const* leftPartShape, T const* rightInput, Nd4jLong const* rightPartShape, bool const lower, bool const adjoint, T* output, Nd4jLong* outputShape, Nd4jLong* tadLeftShape, Nd4jLong* tadLeftOffset, Nd4jLong* tadRightShape, Nd4jLong* tadRightOffset, Nd4jLong* tadOutputShape, Nd4jLong* tadOutputOffset, Nd4jLong batchNum) { __shared__ Nd4jLong rows; if (threadIdx.x == 0) { rows = shape::sizeAt(leftPartShape, -2); } __syncthreads(); auto start = blockIdx.x * blockDim.x + threadIdx.x; auto stop = batchNum; auto increment = blockDim.x * gridDim.x; for (auto i = start; i < stop; i += increment) { auto pLeftPart = leftInput + tadLeftOffset[i]; auto pRightPart = rightInput + tadRightOffset[i]; auto pOutputPart = output + tadOutputOffset[i]; if (lower) { lowerTriangularSolve(pLeftPart, tadLeftShape, pRightPart, tadRightShape, adjoint, pOutputPart, tadOutputShape, rows); } else { upperTriangularSolve(pLeftPart, tadLeftShape, pRightPart, tadRightShape, adjoint, pOutputPart, tadOutputShape, rows); } } } template static int triangularSolveFunctor_(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) { NDArray::prepareSpecialUse({output}, {leftInput, rightInput}); auto leftTads = ConstantTadHelper::getInstance()->tadForDimensions(leftInput->getShapeInfo(), {-2, -1}); auto rightTads = ConstantTadHelper::getInstance()->tadForDimensions(rightInput->getShapeInfo(), {-2, -1}); auto outputTads = ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), {-2, -1}); auto stream = context->getCudaStream(); T const* leftBuf = reinterpret_cast(leftInput->getSpecialBuffer()); T const* rightBuf = reinterpret_cast(rightInput->getSpecialBuffer()); T* outputBuf = reinterpret_cast(output->specialBuffer()); triangularSolveKernel<<<128, 128, 256, *stream>>>(leftBuf, leftInput->getSpecialShapeInfo(), rightBuf, rightInput->getSpecialShapeInfo(), lower, adjoint, outputBuf, output->specialShapeInfo(), leftTads.specialShapeInfo(), leftTads.specialOffsets(), rightTads.specialShapeInfo(), rightTads.specialOffsets(), outputTads.specialShapeInfo(), outputTads.specialOffsets(), leftTads.numberOfTads()); NDArray::registerSpecialUse({output}, {leftInput, rightInput}); return Status::OK(); } int triangularSolveFunctor(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) { BUILD_SINGLE_SELECTOR(leftInput->dataType(), return triangularSolveFunctor_, (context, leftInput, rightInput, lower, adjoint, output), FLOAT_NATIVE); } template static __global__ void upperAdjointKernel(T const* input, T* output, Nd4jLong batchSize, Nd4jLong rows, Nd4jLong columns, Nd4jLong* inputTads, Nd4jLong* inputOffsets, Nd4jLong* outputTads, Nd4jLong* outputOffsets) { for (auto b = blockIdx.x; b < batchSize; b += gridDim.x) { auto inputPart = input + inputOffsets[b]; auto outputPart = output + outputOffsets[b]; for (auto r = threadIdx.x; r < rows; r += blockDim.x) { for (auto c = threadIdx.y; c <= r; c += blockDim.y) { Nd4jLong zPos[] = {r, c}; Nd4jLong xPos[] = {c, r}; auto zIndex = shape::getOffset(outputTads, zPos); auto xIndex = shape::getOffset(inputTads, xPos); outputPart[zIndex] = inputPart[xIndex]; } } } } template static __global__ void lowerAdjointKernel(T const* input, T* output, Nd4jLong batchSize, Nd4jLong rows, Nd4jLong columns, Nd4jLong* inputTads, Nd4jLong* inputOffsets, Nd4jLong* outputTads, Nd4jLong* outputOffsets) { for (auto b = blockIdx.x; b < batchSize; b += gridDim.x) { auto inputPart = input + inputOffsets[b]; auto outputPart = output + outputOffsets[b]; for (auto r = threadIdx.x; r < rows; r += blockDim.x) { for (auto c = r + threadIdx.y; c < columns; c += blockDim.y) { Nd4jLong zPos[] = {r, c}; Nd4jLong xPos[] = {c, r}; auto zIndex = shape::getOffset(outputTads, zPos); auto xIndex = shape::getOffset(inputTads, xPos); outputPart[zIndex] = inputPart[xIndex]; } } } } template static void adjointTriangularMatrix_(nd4j::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) { auto inputTads = ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {-2, -1}); auto outputTads = ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {-2, -1}); auto stream = context->getCudaStream(); auto inputBuf = reinterpret_cast(input->getSpecialBuffer()); auto outputBuf = reinterpret_cast(output->specialBuffer()); auto rows = input->sizeAt(-2); auto columns = input->sizeAt(-1); if (lower) { lowerAdjointKernel<<<128, 256, 256, *stream>>>(inputBuf, outputBuf, outputTads.numberOfTads(), rows, columns, inputTads.specialShapeInfo(), inputTads.specialOffsets(), outputTads.specialShapeInfo(), outputTads.specialOffsets()); } else { upperAdjointKernel<<<128, 256, 256, *stream>>>(inputBuf, outputBuf, outputTads.numberOfTads(), rows, columns, inputTads.specialShapeInfo(), inputTads.specialOffsets(), outputTads.specialShapeInfo(), outputTads.specialOffsets()); } } void adjointMatrix(nd4j::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), adjointTriangularMatrix_, (context, input, lower, output), FLOAT_NATIVE); } } } }