/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include namespace nd4j { namespace ops { namespace helpers { template static int lrnFunctor_(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta) { nd4j_debug("MKL-DNN is not used for lrn!\n", 0); const int rank = input->rankOf(); TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {rank - 1}); TadPack outTadPack; if(shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo())) outTadPack = inTadPack; else outTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {rank - 1}); const Nd4jLong numOfTads = inTadPack.numberOfTads(); const Nd4jLong tadLen = input->sizeAt(-1); const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets(); const Nd4jLong* outTadOffsets = outTadPack.primaryOffsets(); const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo()); const Nd4jLong outTadEws = shape::elementWiseStride(outTadPack.primaryShapeInfo()); const T* inBuff = reinterpret_cast(input->getBuffer()); T* outBuff = reinterpret_cast(output->getBuffer()); const T tbias = static_cast(bias); const T tbeta = static_cast(beta); const T talpha = static_cast(alpha); if(inTadEws == 1 && outTadEws == 1) { auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { const T *x = inBuff + inTadOffsets[i]; T *y = outBuff + outTadOffsets[i]; T prev = 0; // calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1] // we store each squared sum in corresponding element of y array for (Nd4jLong j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); if (j == 0) { for (uint s = begin; s < end; ++s) prev = prev + x[s] * x[s]; y[j] = prev; } else if (begin == 0 && last <= tadLen) y[j] = prev + x[end - 1] * x[end - 1]; else if (begin > 0 && last <= tadLen) y[j] = prev + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1]; else if (begin > 0 && last > tadLen) y[j] = prev - x[begin - 1] * x[begin - 1]; else y[j] = prev; if (j != 0) prev = y[j]; y[j] = x[j] / nd4j::math::nd4j_pow(tbias + alpha * prev, tbeta); } } }; samediff::Threads::parallel_tad(func, 0, numOfTads); } else { auto func = PRAGMA_THREADS_FOR { for (Nd4jLong i = 0; i < numOfTads; ++i) { const T *x = inBuff + inTadOffsets[i]; T *y = outBuff + outTadOffsets[i]; T prev = 0; // calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1] // we store each squared sum in corresponding element of y array for (Nd4jLong j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); if (j == 0) { for (uint s = begin; s < end; ++s) prev = prev + x[s * inTadEws] * x[s * inTadEws]; y[j * outTadEws] = prev; } else if (begin == 0 && last <= tadLen) y[j * outTadEws] = prev + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws]; else if (begin > 0 && last <= tadLen) y[j * outTadEws] = prev + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws] - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws]; else if (begin > 0 && last > tadLen) y[j * outTadEws] = prev - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws]; else y[j * outTadEws] = prev; if (j != 0) prev = y[j * outTadEws]; y[j * outTadEws] = x[j * inTadEws] / nd4j::math::nd4j_pow(tbias + alpha * prev, tbeta); } } }; samediff::Threads::parallel_tad(func, 0, numOfTads); } return Status::OK(); } BUILD_SINGLE_TEMPLATE(template int lrnFunctor_, (nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta), FLOAT_TYPES); int lrnFunctor(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, double bias, double alpha, double beta) { BUILD_SINGLE_SELECTOR(input->dataType(), return lrnFunctor_, (block, input, output, depth, bias, alpha, beta), FLOAT_TYPES); } ////////////////////////////////////////////////////////////////////////// template static void lrnBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) { const int rank = input.rankOf(); TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), {rank - 1}); TadPack gradITadPack; if(shape::haveSameShapeAndStrides(input.getShapeInfo(), gradI.getShapeInfo())) gradITadPack = inTadPack; else gradITadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradI.getShapeInfo(), {rank - 1}); const Nd4jLong numOfTads = inTadPack.numberOfTads(); const Nd4jLong tadLen = input.sizeAt(-1); const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets(); const Nd4jLong* gradITadOffsets = gradITadPack.primaryOffsets(); const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo()); const Nd4jLong gradITadEws = shape::elementWiseStride(gradITadPack.primaryShapeInfo()); const X* inBuff = reinterpret_cast(input.getBuffer()); Y* gradIBuff = reinterpret_cast(gradI.getBuffer()); const Y tbias = static_cast(bias); const Y tbeta = static_cast(beta); const Y talpha = static_cast(alpha); const Y coeff = talpha * tbeta; if(inTadEws == 1 && gradITadEws == 1) { auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { const X *x = inBuff + inTadOffsets[i]; Y *y = gradIBuff + gradITadOffsets[i]; // this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1] // we store each squared sum in corresponding element of y array for (Nd4jLong j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); if (j == 0) { y[0] = 0; for (uint s = begin; s < end; ++s) y[0] = y[0] + x[s] * x[s]; } else if (begin == 0 && last <= tadLen) y[j] = y[j - 1] + x[end - 1] * x[end - 1]; else if (begin > 0 && last <= tadLen) y[j] = y[j - 1] + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1]; else if (begin > 0 && last > tadLen) y[j] = y[j - 1] - x[begin - 1] * x[begin - 1]; else y[j] = y[j - 1]; } Y *factor = new Y[tadLen]; Y prev = 0; // second loop calculates derivatives using information gained in first loop above for (Nd4jLong j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); Y init = tbias + talpha * y[j]; if (j == 0) { for (uint s = begin; s < end; ++s) { factor[s] = nd4j::math::nd4j_pow(tbias + talpha * y[s], -tbeta - 1); prev = prev + x[s] * factor[s]; } y[0] = prev; } else if (begin == 0 && last <= tadLen) { factor[end - 1] = nd4j::math::nd4j_pow(tbias + talpha * y[end - 1], -tbeta - 1); y[j] = prev + x[end - 1] * factor[end - 1]; } else if (begin > 0 && last <= tadLen) { factor[end - 1] = nd4j::math::nd4j_pow(tbias + talpha * y[end - 1], -tbeta - 1); y[j] = prev + x[end - 1] * factor[end - 1] - x[begin - 1] * factor[begin - 1]; } else if (begin > 0 && last > tadLen) y[j] = prev - x[begin - 1] * factor[begin - 1]; else y[j] = prev; if (j != 0) prev = y[j]; y[j] = factor[j] * init - 2 * x[j] * coeff * prev; } delete[]factor; } }; samediff::Threads::parallel_tad(func, 0, numOfTads); } else { auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { const X *x = inBuff + inTadOffsets[i]; Y *y = gradIBuff + gradITadOffsets[i]; // this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1] // we store each squared sum in corresponding element of y array for (Nd4jLong j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); if (j == 0) { y[0] = 0; for (uint s = begin; s < end; ++s) y[0] = y[0] + x[s * inTadEws] * x[s * inTadEws]; } else if (begin == 0 && last <= tadLen) y[j * gradITadEws] = y[(j - 1) * gradITadEws] + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws]; else if (begin > 0 && last <= tadLen) y[j * gradITadEws] = y[(j - 1) * gradITadEws] + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws] - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws]; else if (begin > 0 && last > tadLen) y[j * gradITadEws] = y[(j - 1) * gradITadEws] - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws]; else y[j * gradITadEws] = y[(j - 1) * gradITadEws]; } Y *factor = new Y[tadLen]; Y prev = 0; // second loop calculates derivatives using information gained in first loop above for (Nd4jLong j = 0; j < tadLen; ++j) { const uint begin = nd4j::math::nd4j_max(0, j - depth); const uint last = depth + j + 1; const uint end = nd4j::math::nd4j_min(last, tadLen); Y init = tbias + talpha * y[j * gradITadEws]; if (j == 0) { for (uint s = begin; s < end; ++s) { factor[s] = nd4j::math::nd4j_pow(tbias + talpha * y[s * gradITadEws], -tbeta - 1); prev = prev + x[s * inTadEws] * factor[s]; } y[0] = prev; } else if (begin == 0 && last <= tadLen) { factor[end - 1] = nd4j::math::nd4j_pow(tbias + talpha * y[(end - 1) * gradITadEws], -tbeta - 1); y[j * gradITadEws] = prev + x[(end - 1) * inTadEws] * factor[end - 1]; } else if (begin > 0 && last <= tadLen) { factor[end - 1] = nd4j::math::nd4j_pow(tbias + talpha * y[(end - 1) * gradITadEws], -tbeta - 1); y[j * gradITadEws] = prev + x[(end - 1) * inTadEws] * factor[end - 1] - x[(begin - 1) * inTadEws] * factor[begin - 1]; } else if (begin > 0 && last > tadLen) y[j * gradITadEws] = prev - x[(begin - 1) * inTadEws] * factor[begin - 1]; else y[j * gradITadEws] = prev; if (j != 0) prev = y[j * gradITadEws]; y[j * gradITadEws] = factor[j] * init - 2 * x[j * inTadEws] * coeff * prev; } delete[]factor; } }; samediff::Threads::parallel_tad(func, 0, numOfTads); } gradI *= gradO; } void lrnBP(nd4j::graph::Context& block, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) { BUILD_DOUBLE_SELECTOR(input.dataType(), gradO.dataType(), lrnBP_, (input, gradO, gradI, depth, bias, alpha, beta), FLOAT_TYPES, FLOAT_TYPES); } } } }