/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 23.11.2017
//

#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_huber_loss)

#include <ops/declarable/CustomOperations.h>

namespace nd4j {
namespace ops  {


//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(huber_loss, 3, 1, false, 1, 1) {
  	auto predictions = INPUT_VARIABLE(0);
    auto weights     = INPUT_VARIABLE(1);
    auto labels      = INPUT_VARIABLE(2);
    auto output      = OUTPUT_VARIABLE(0);

    int reductionMode = INT_ARG(0);			// 0 - "none"; 1 - "weighted_sum";  2 - "weighted_mean";  3 - "weighted_sum_by_nonzero_weights"
    // FIXME: double?
    double delta = T_ARG(0);

       // input validation
    REQUIRE_TRUE(labels->isSameShape(predictions), 0, "HUBER_LOSS OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(predictions).c_str());
    // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
    REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == labels->rankOf(), 0, "HUBER_LOSS OP: weights array should be scalar or have the same rank as labels array, but got %i and %i correspondingly!", weights->rankOf(), labels->rankOf());
    // check whether broadcast operation is possible for weights array
    REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *labels), 0, "HUBER_LOSS OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
    // only 4 possible reduction modes exist
    REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "HUBER_LOSS OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);
    
	// perform weights broadcasting/tile to predictions if needed
	auto weightsBroad = weights;
	if(!weights->isScalar() && !weights->isSameShape(predictions))
		weightsBroad = new NDArray(weights->tileToShape(predictions->getShapeInfo()));

	auto error = *predictions - *labels;
	error.applyTransform(transform::Abs);
	NDArray quadratic(error.getShapeInfo(), block.getWorkspace());
	error.applyScalar(scalar::MinPairwise, delta, &quadratic);
 
    NDArray E = quadratic * quadratic * 0.5f + (error - quadratic)*delta;

    // multiply E on weights
     E *= *weightsBroad;

	switch (reductionMode) {
		case 0: {											// 0 - "none", un-reduced weighted losses with the same shape as labels.
			output->assign(E);
			break;
		}
		case 1: {											// 1 - "weighted_sum", output is scalar and equal to sum of all elements of E array
			E.reduceNumber(reduce::Sum, *output);
			break;
		}
		case 2: {											// 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array
			NDArray sum;
			if (weights->isScalar())
				sum = *weights * E.lengthOf();
			else 
				sum = weightsBroad->reduceNumber(reduce::Sum);
			
			if (sum.e<double>(0) == 0.)
				*output = 0.;
			else 
				output->assign(E.reduceNumber(reduce::Sum) / sum);
			break;
		}
		case 3: {											// 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights
			Nd4jLong numOfNonZeroWeights = 0;
			if(weights->isScalar()) {
				if(weights->e<double>(0) != 0.)
					numOfNonZeroWeights = E.lengthOf();
			}
			else {
				numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
			}

			if (numOfNonZeroWeights == 0)
				(*output) = 0.;
			else
				output->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
			break;
		}
	}

    if(weightsBroad != weights)
    	delete weightsBroad;
	
    return Status::OK();
}

//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(huber_loss) {

	getOpDescriptor()->setAllowedInputTypes(nd4j::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
}

//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(huber_loss) {

	auto predictionsShapeInfo = inputShape->at(0);
	auto weightsShapeInfo 	  = inputShape->at(1);
    auto labelsShapeInfo  	  = inputShape->at(2);

     // labels and predictions must have the same shapes
    REQUIRE_TRUE(shape::shapeEquals(labelsShapeInfo, predictionsShapeInfo), 0, "HUBER_LOSS OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(predictionsShapeInfo).c_str());
    // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
    REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(labelsShapeInfo), 0, "HUBER_LOSS OP: weights array should be scalar or have the same rank as labels array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(labelsShapeInfo));
    // check whether broadcast operation is possible for weights array
    REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, labelsShapeInfo), 0, "HUBER_LOSS OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(labelsShapeInfo).c_str());

    DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(predictionsShapeInfo));
    Nd4jLong* outShapeInfo = nullptr;

    if(INT_ARG(0) != 0) 			// in this case output is scalar
    	outShapeInfo = ConstantShapeHelper::getInstance()->scalarShapeInfo(outType);
    else 							// in this case output has the same shape as labels and predictions
    	outShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(outType, shape::order(labelsShapeInfo), shape::shapeOf(labelsShapeInfo), shape::rank(labelsShapeInfo)));

    return SHAPELIST(outShapeInfo);
}

//////////////////////////////////////////////////////////////////////////
		CUSTOM_OP_IMPL(huber_loss_grad, 3, 3, false, 1, 1) {

			auto predictions  = INPUT_VARIABLE(0);
			auto weights = INPUT_VARIABLE(1);
			auto labels  = INPUT_VARIABLE(2);

			auto dLdp = OUTPUT_VARIABLE(0);		// dL/dpredictions
			auto dLdw = OUTPUT_VARIABLE(1);		// dL/dweights
			auto dLdl = OUTPUT_VARIABLE(2);		// dL/dlabels

			auto delta = T_ARG(0);

			int reductionMode = INT_ARG(0);			// 0 - "none"; 1 - "weighted_sum";  2 - "weighted_mean";  3 - "weighted_sum_by_nonzero_weights"
			// take into account Alex's proposition to treat "none" the same as "weighted_sum" mode when calculating gradients
			if(reductionMode == 0)
				reductionMode = 1;

			// inputs validation
			REQUIRE_TRUE(labels->isSameShape(predictions), 0, "HUBER_LOSS_GRAD OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(predictions).c_str());
			// weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
			REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == labels->rankOf(), 0, "HUBER_LOSS_GRAD OP: weights array should be scalar or have the same rank as labels array, but got %i and %i correspondingly!", weights->rankOf(), labels->rankOf());
			// check whether broadcast operation is possible for weights array
			REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *labels), 0, "HUBER_LOSS_GRAD OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
			// only 4 possible reduction modes exist
			REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "HUBER_LOSS_GRAD OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);

			// perform weights broadcasting/tile to labels if needed
			auto weightsBroad = weights;
			if(!weights->isScalar() && !weights->isSameShape(predictions))
				weightsBroad = new NDArray(weights->tileToShape(predictions->getShapeInfo()));

			NDArray diff = *predictions - *labels;
			NDArray absDiff(diff);
			absDiff.applyTransform(transform::Abs);
			NDArray quadratic(absDiff);
			absDiff.applyScalar(scalar::MinPairwise, delta, &quadratic);

			NDArray E = quadratic * quadratic * 0.5f + (absDiff - quadratic)*delta;

			NDArray lteMask(diff.getShapeInfo(), BOOL, true, block.launchContext());
			absDiff.applyScalar(scalar::LessThanOrEqual, delta, &lteMask);

            NDArray gtMask(diff.getShapeInfo(), BOOL, true, block.launchContext());
			absDiff.applyScalar(scalar::GreaterThan, delta, &gtMask);

			NDArray signDiff(diff);
			diff.applyTransform(transform::Sign, &signDiff);


			auto gtMaskFloat = *gtMask.cast(diff.dataType());
			auto lteMaskFloat = *lteMask.cast(diff.dataType());


			dLdp->assign( lteMaskFloat * diff + gtMaskFloat * delta * signDiff);
			dLdl->assign(-lteMaskFloat * diff - gtMaskFloat * delta * signDiff);

			switch (reductionMode) {

				case 1: {											// 1 - "none" and "weighted_sum", output is scalar and equal to sum of all elements of E array

					*dLdp *= *weightsBroad;
					*dLdl *= *weightsBroad;

					if(weights->isScalar())
						dLdw->assign(E.reduceNumber(reduce::Sum));
					else if(weights != weightsBroad) {
						std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
						E.reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
					}
					else
						dLdw->assign(E);
					break;
				}
				case 2: {											// 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array

					NDArray sum;
					if (weights->isScalar())
						sum = (*weights) * E.lengthOf();
					else
						sum = weightsBroad->reduceNumber(reduce::Sum);

					if (sum.e<double>(0) == 0.) {
						*dLdp = 0.;
						*dLdl = 0.;
						*dLdw = 0.;
					}
					else {

						*dLdp *= *weightsBroad / sum;
						*dLdl *= *weightsBroad / sum;

						if(weights->isScalar())
							*dLdw = 0.;
						else if(weights != weightsBroad) {
							std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
							((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum)).reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
						}
						else
							dLdw->assign((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum));
					}
					break;
				}
				case 3: {											// 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights

					Nd4jLong numOfNonZeroWeights = 0;
					if(weights->isScalar()) {
						if(weights->e<double>(0) != 0.)
							numOfNonZeroWeights = E.lengthOf();
					}
					else
						numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);

					if (numOfNonZeroWeights == 0) {
						*dLdp = 0.;
						*dLdl = 0.;
						*dLdw = 0.;
					}
					else {
						auto numOfNonZeroWeightsScalar = NDArrayFactory::create(dLdw->dataType(), numOfNonZeroWeights, block.launchContext());

						if(weights->isScalar())
							dLdw->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
						else if(weights != weightsBroad) {
							std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
							E.reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
							*dLdw /= numOfNonZeroWeightsScalar;
						}
						else
							dLdw->assign(E / numOfNonZeroWeightsScalar);

						NDArray temp = *weightsBroad / numOfNonZeroWeightsScalar;
						*dLdp *= temp;
						*dLdl *= temp;
					}
					break;
				}
			}

			if(weightsBroad != weights)
				delete weightsBroad;

			return Status::OK();
		}

		DECLARE_TYPES(huber_loss_grad) {

			getOpDescriptor()->setAllowedInputTypes(nd4j::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
		}

		DECLARE_SHAPE_FN(huber_loss_grad) {

			auto predictionsShapeInfo = inputShape->at(0);
			auto weightsShapeInfo 	  = inputShape->at(1);
			auto labelsShapeInfo  	  = inputShape->at(2);

			// labels and predictions must have the same shapes
			REQUIRE_TRUE(shape::shapeEquals(labelsShapeInfo, predictionsShapeInfo), 0, "HUBER_LOSS_GRAD OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(predictionsShapeInfo).c_str());
			// weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
			REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(labelsShapeInfo), 0, "HUBER_LOSS_GRAD OP: weights array should be scalar or have the same rank as labels array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(labelsShapeInfo));
			// check whether broadcast operation is possible for weights array
			REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, labelsShapeInfo), 0, "HUBER_LOSS_GRAD OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(labelsShapeInfo).c_str());

			DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(predictionsShapeInfo));

			Nd4jLong *dLdpShapeInfo = ShapeBuilders::copyShapeInfoAndType(predictionsShapeInfo, outType, false, block.getWorkspace());
			Nd4jLong *dLdwShapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, outType, false, block.getWorkspace());
			Nd4jLong *dLdlShapeInfo = ShapeBuilders::copyShapeInfoAndType(labelsShapeInfo, outType, false, block.getWorkspace());

			return SHAPELIST(dLdpShapeInfo, dLdwShapeInfo, dLdlShapeInfo);
		}


}
}

#endif