/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author saudet // @author raver119@gmail.com // #include #include #include #include #include "mkldnnUtils.h" #include using namespace mkldnn; namespace nd4j { namespace ops { namespace platforms { PLATFORM_IMPL(maxpool2d) { auto input = INPUT_VARIABLE(0); REQUIRE_TRUE(input->rankOf() == 4, 0, "Input should have rank of 4, but got %i instead", input->rankOf()); // 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - same mode; auto argI = *(block.getIArguments()); auto output = OUTPUT_VARIABLE(0); const auto kH = INT_ARG(0); const auto kW = INT_ARG(1); const auto sH = INT_ARG(2); const auto sW = INT_ARG(3); int pH = INT_ARG(4); int pW = INT_ARG(5); const auto dH = INT_ARG(6); const auto dW = INT_ARG(7); const auto isSameMode = static_cast(INT_ARG(8)); REQUIRE_TRUE(dH != 0 && dW != 0, 0, "AVGPOOL2D op: dilation must not be zero, but got instead {%i, %i}", dH, dW); int oH = 0; int oW = 0; int isNCHW = block.getIArguments()->size() > 10 ? !INT_ARG(10) : 1; // INT_ARG(10): 0-NCHW, 1-NHWC const int iH = static_cast(isNCHW ? input->sizeAt(2) : input->sizeAt(1)); const int iW = static_cast(isNCHW ? input->sizeAt(3) : input->sizeAt(2)); if (!isNCHW) { input = new NDArray( input->permute({0, 3, 1, 2})); // [bS, iH, iW, iC] -> [bS, iC, iH, iW] output = new NDArray( output->permute({0, 3, 1, 2})); // [bS, oH, oW, iC] -> [bS, iC, oH, oW] } ConvolutionUtils::calcOutSizePool2D(oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode); if (isSameMode) ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW); const int bS = input->sizeAt(0); const int iC = input->sizeAt(1); const int oC = output->sizeAt(1); auto poolingMode = PoolingType::MAX_POOL; int extraParam0 = 1; mkldnn_memory_desc_t empty; mkldnn::memory::desc pool_src_md(empty), pool_dst_md(empty); mkldnn::memory::desc user_src_md(empty), user_dst_md(empty); mkldnn::memory::dims pool_strides, pool_kernel, pool_padding, pool_padding_r; mkldnn::algorithm algorithm; mkldnnUtils::getMKLDNNMemoryDescPool2d(kH, kW, sH, sW, pH, pW, dH, dW, poolingMode, extraParam0, true, bS, iC, iH, iW, oC, oH, oW, input, nullptr, output, algorithm, &pool_src_md, nullptr, &pool_dst_md, &user_src_md, nullptr, &user_dst_md, pool_strides, pool_kernel, pool_padding, pool_padding_r); auto pool_desc = pooling_forward::desc(prop_kind::forward_inference, algorithm, pool_src_md, pool_dst_md, pool_strides, pool_kernel, pool_padding, pool_padding_r); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto pool_prim_desc = pooling_forward::primitive_desc(pool_desc, engine); auto user_src_memory = mkldnn::memory(user_src_md, engine, input->buffer()); auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer()); auto pool_src_memory = user_src_memory; mkldnn::stream stream(engine); if (pool_prim_desc.src_desc() != user_src_memory.get_desc()) { pool_src_memory = mkldnn::memory(pool_prim_desc.src_desc(), engine); reorder(user_src_memory, pool_src_memory).execute(stream, user_src_memory, pool_src_memory); } auto pool_dst_memory = user_dst_memory; if (pool_prim_desc.dst_desc() != user_dst_memory.get_desc()) { pool_dst_memory = mkldnn::memory(pool_prim_desc.dst_desc(), engine); } pooling_forward(pool_prim_desc).execute(stream, {{MKLDNN_ARG_SRC, pool_src_memory}, {MKLDNN_ARG_DST, pool_dst_memory}}); if (pool_prim_desc.dst_desc() != user_dst_memory.get_desc()) { reorder(pool_dst_memory, user_dst_memory).execute(stream, pool_dst_memory, user_dst_memory); } stream.wait(); if (!isNCHW) { delete input; delete output; } return Status::OK(); } PLATFORM_CHECK(maxpool2d) { // we don't want to use mkldnn if cpu doesn't support avx/avx2 if (::optimalLevel() < 2) return false; auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); return block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output}); } } } }