/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author sgazeos@gmail.com // #include #include #include #include #include namespace sd { namespace ops { namespace helpers { //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // needToSuppressWithThreshold - predicate for suppression // boxes - boxes tensor buffer // boxesShape boxes tensor shape // previousIndex - index for current pos value // nextIndex - index for neighbor pos value // threshold - threashold value to suppress // // return value: true, if threshold is overcome, false otherwise // template static __device__ bool needToSuppressWithThreshold(T* boxes, Nd4jLong const* boxesShape, int previousIndex, int nextIndex, T threshold) { Nd4jLong previous0[] = {previousIndex, 0}; Nd4jLong previous1[] = {previousIndex, 1}; Nd4jLong previous2[] = {previousIndex, 2}; Nd4jLong previous3[] = {previousIndex, 3}; Nd4jLong next0[] = {nextIndex, 0}; Nd4jLong next1[] = {nextIndex, 1}; Nd4jLong next2[] = {nextIndex, 2}; Nd4jLong next3[] = {nextIndex, 3}; // we have rectangle with given max values. Compute vexes of rectangle first T minYPrev = sd::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]); T minXPrev = sd::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]); T maxYPrev = sd::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]); T maxXPrev = sd::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]); T minYNext = sd::math::nd4j_min(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]); T minXNext = sd::math::nd4j_min(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]); T maxYNext = sd::math::nd4j_max(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]); T maxXNext = sd::math::nd4j_max(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]); // compute areas for comparation T areaPrev = (maxYPrev - minYPrev) * (maxXPrev - minXPrev); T areaNext = (maxYNext - minYNext) * (maxXNext - minXNext); // of course, areas should be positive if (areaNext <= T(0.f) || areaPrev <= T(0.f)) return false; // compute intersection of rectangles T minIntersectionY = sd::math::nd4j_max(minYPrev, minYNext); T minIntersectionX = sd::math::nd4j_max(minXPrev, minXNext); T maxIntersectionY = sd::math::nd4j_min(maxYPrev, maxYNext); T maxIntersectionX = sd::math::nd4j_min(maxXPrev, maxXNext); T intersectionArea = sd::math::nd4j_max(T(maxIntersectionY - minIntersectionY), T(0.0f)) * sd::math::nd4j_max(T(maxIntersectionX - minIntersectionX), T(0.0f)); T intersectionValue = intersectionArea / (areaPrev + areaNext - intersectionArea); // final check return intersectionValue > threshold; } template static __device__ T similirityV3(T* boxes, Nd4jLong const* boxesShape, int previousIndex, int nextIndex) { Nd4jLong previous0[] = {previousIndex, 0}; Nd4jLong previous1[] = {previousIndex, 1}; Nd4jLong previous2[] = {previousIndex, 2}; Nd4jLong previous3[] = {previousIndex, 3}; Nd4jLong next0[] = {nextIndex, 0}; Nd4jLong next1[] = {nextIndex, 1}; Nd4jLong next2[] = {nextIndex, 2}; Nd4jLong next3[] = {nextIndex, 3}; // we have rectangle with given max values. Compute vexes of rectangle first T minYPrev = sd::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]); T minXPrev = sd::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]); T maxYPrev = sd::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]); T maxXPrev = sd::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]); T minYNext = sd::math::nd4j_min(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]); T minXNext = sd::math::nd4j_min(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]); T maxYNext = sd::math::nd4j_max(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]); T maxXNext = sd::math::nd4j_max(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]); // compute areas for comparation T areaPrev = (maxYPrev - minYPrev) * (maxXPrev - minXPrev); T areaNext = (maxYNext - minYNext) * (maxXNext - minXNext); // of course, areas should be positive if (areaNext <= T(0.f) || areaPrev <= T(0.f)) return false; // compute intersection of rectangles T minIntersectionY = sd::math::nd4j_max(minYPrev, minYNext); T minIntersectionX = sd::math::nd4j_max(minXPrev, minXNext); T maxIntersectionY = sd::math::nd4j_min(maxYPrev, maxYNext); T maxIntersectionX = sd::math::nd4j_min(maxXPrev, maxXNext); T intersectionArea = sd::math::nd4j_max(T(maxIntersectionY - minIntersectionY), T(0.0f)) * sd::math::nd4j_max(T(maxIntersectionX - minIntersectionX), T(0.0f)); T intersectionValue = intersectionArea / (areaPrev + areaNext - intersectionArea); // final check return intersectionValue; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // shouldSelectKernel - compute status for all selected rectangles (boxes) // // we compute boolean flag as shared uint32 and return it on final only for the first thread // template static __global__ void shouldSelectKernel(T* boxesBuf, Nd4jLong const* boxesShape, I* indexBuf, I* selectedIndicesData, double threshold, int numSelected, int i, bool* shouldSelect) { auto tid = blockIdx.x * blockDim.x + threadIdx.x; auto step = gridDim.x * blockDim.x; __shared__ unsigned int shouldSelectShared; if (threadIdx.x == 0) { shouldSelectShared = (unsigned int)shouldSelect[0]; } __syncthreads(); for (int j = numSelected - 1 - tid; j >= 0; j -= step) { if (shouldSelectShared) { if (needToSuppressWithThreshold(boxesBuf, boxesShape, indexBuf[i], indexBuf[selectedIndicesData[j]], T(threshold))) atomicCAS(&shouldSelectShared, 1, 0); // exchange only when need to suppress } } __syncthreads(); // final move: collect result if (threadIdx.x == 0) { *shouldSelect = shouldSelectShared > 0; } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // indices - type depended, indicesLong - type defined (only 64bit integers) // template static __global__ void copyIndices(void* indices, void* indicesLong, Nd4jLong len) { I* indexBuf = reinterpret_cast(indices); Nd4jLong* srcBuf = reinterpret_cast(indicesLong);; auto tid = threadIdx.x + blockIdx.x * blockDim.x; auto step = blockDim.x * gridDim.x; for (auto i = tid; i < len; i += step) indexBuf[i] = (I)srcBuf[i]; } template static __global__ void suppressScores(T* scores, I* indices, Nd4jLong length, T scoreThreshold) { auto start = blockIdx.x * blockDim.x; auto step = gridDim.x * blockDim.x; for (auto e = start + threadIdx.x; e < (int)length; e += step) { if (scores[e] < scoreThreshold) { scores[e] = scoreThreshold; indices[e] = -1; } else { indices[e] = I(e); } } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // nonMaxSuppressionV2 algorithm - given from TF NonMaxSuppressionV2 implementation // template static void nonMaxSuppressionV2_(sd::LaunchContext* context, NDArray* boxes, NDArray* scales, int maxSize, double threshold, double scoreThreshold, NDArray* output) { auto stream = context->getCudaStream(); NDArray::prepareSpecialUse({output}, {boxes, scales}); std::unique_ptr indices(NDArrayFactory::create_('c', {scales->lengthOf()}, context)); // - 1, scales->lengthOf()); //, scales->getContext()); NDArray scores(*scales); Nd4jPointer extras[2] = {nullptr, stream}; auto indexBuf = indices->dataBuffer()->specialAsT();///reinterpret_cast(indices->specialBuffer()); auto scoreBuf = scores.dataBuffer()->specialAsT(); suppressScores<<<128, 128, 128, *stream>>>(scoreBuf, indexBuf, scores.lengthOf(), T(scoreThreshold)); indices->tickWriteDevice(); sortByValue(extras, indices->buffer(), indices->shapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), scores.buffer(), scores.shapeInfo(), scores.specialBuffer(), scores.specialShapeInfo(), true); indices->tickWriteDevice(); NDArray selectedIndices = NDArrayFactory::create('c', {output->lengthOf()}, context); int numSelected = 0; int numBoxes = boxes->sizeAt(0); auto boxesBuf = reinterpret_cast(boxes->specialBuffer()); auto selectedIndicesData = reinterpret_cast(selectedIndices.specialBuffer()); auto outputBuf = reinterpret_cast(output->specialBuffer()); bool* shouldSelectD; auto err = cudaMalloc(&shouldSelectD, sizeof(bool)); if (err) { throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot allocate memory for bool flag", err); } for (I i = 0; i < boxes->sizeAt(0); ++i) { bool shouldSelect = numSelected < output->lengthOf(); if (shouldSelect) { err = cudaMemcpy(shouldSelectD, &shouldSelect, sizeof(bool), cudaMemcpyHostToDevice); if (err) { throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot set up bool flag to device", err); } shouldSelectKernel<<<128, 256, 1024, *stream>>>(boxesBuf, boxes->specialShapeInfo(), indexBuf, selectedIndicesData, threshold, numSelected, i, shouldSelectD); err = cudaMemcpy(&shouldSelect, shouldSelectD, sizeof(bool), cudaMemcpyDeviceToHost); if (err) { throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot set up bool flag to host", err); } } if (shouldSelect) { cudaMemcpy(reinterpret_cast(output->specialBuffer()) + numSelected, indexBuf + i, sizeof(I), cudaMemcpyDeviceToDevice); cudaMemcpy(selectedIndicesData + numSelected, &i, sizeof(I), cudaMemcpyHostToDevice); numSelected++; } } err = cudaFree(shouldSelectD); if (err) { throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot deallocate memory for bool flag", err); } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template static __device__ bool checkOverlapBoxes(T* boxes, Nd4jLong const* shape, T* scores, I* indices, I* selectedIndices, I* startIndices, I selectedSize, I nextCandidateIndex, T overlapThreshold, T scoreThreshold, bool simple) { bool shouldHardSuppress = false; T& nextCandidateScore = scores[nextCandidateIndex]; I selectedIndex = indices[nextCandidateIndex]; I finish = startIndices[nextCandidateIndex]; for (int j = selectedSize; j > finish; --j) { T boxVal; if (simple) { Nd4jLong xPos[] = {selectedIndex, selectedIndices[j - 1]}; auto xShift = shape::getOffset(shape, xPos, 0); boxVal = boxes[xShift]; } else { boxVal = similirityV3(boxes, shape, selectedIndex, selectedIndices[j - 1]); } if (boxVal > static_cast(overlapThreshold)) nextCandidateScore = static_cast(0.f); // First decide whether to perform hard suppression if (boxVal >= overlapThreshold) { shouldHardSuppress = true; break; } // If nextCandidate survives hard suppression, apply soft suppression if (nextCandidateScore <= static_cast(scoreThreshold)) break; } return shouldHardSuppress; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template static __global__ void suppressNonMaxOverlapKernel(T* boxes, Nd4jLong const* boxesShape, T* scoresData, I* indices, I* startIndices, Nd4jLong length, I maxOutputLen, T overlapThreshold, T scoreThreshold, I* output, Nd4jLong const* outputShape, I* outputLength, bool simple) { __shared__ I selectedSize; __shared__ I* tempOutput; if (threadIdx.x == 0) { selectedSize = outputLength?*outputLength:maxOutputLen; extern __shared__ unsigned char shmem[]; tempOutput = (I*)shmem; } __syncthreads(); auto start = blockIdx.x * blockDim.x; auto step = blockDim.x * gridDim.x; for (I nextCandidateIndex = start + threadIdx.x; selectedSize < maxOutputLen && nextCandidateIndex < (I)length; ) { auto originalScore = scoresData[nextCandidateIndex];//nextCandidate._score; I nextCandidateBoxIndex = indices[nextCandidateIndex]; auto selectedSizeMark = selectedSize; // skip for cases when index is less than 0 (under score threshold) if (nextCandidateBoxIndex < 0) { nextCandidateIndex += step; continue; } // check for overlaps bool shouldHardSuppress = checkOverlapBoxes(boxes, boxesShape, scoresData, indices, tempOutput, startIndices, selectedSize, nextCandidateIndex, overlapThreshold, scoreThreshold, simple);//false; T nextCandidateScore = scoresData[nextCandidateIndex]; startIndices[nextCandidateIndex] = selectedSize; if (!shouldHardSuppress) { if (nextCandidateScore == originalScore) { // Suppression has not occurred, so select nextCandidate if (output) output[selectedSize] = nextCandidateBoxIndex; tempOutput[selectedSize] = nextCandidateBoxIndex; math::atomics::nd4j_atomicAdd(&selectedSize, (I)1); } if (nextCandidateScore > scoreThreshold) { // Soft suppression has occurred and current score is still greater than // scoreThreshold; add nextCandidate back onto priority queue. continue; // in some cases, this index not 0 } } nextCandidateIndex += step; } if (threadIdx.x == 0) { if (outputLength) *outputLength = selectedSize; } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template static Nd4jLong nonMaxSuppressionGeneric_(sd::LaunchContext* context, NDArray* boxes, NDArray* scores, int outputSize, double overlapThreshold, double scoreThreshold, NDArray* output, bool simple) { auto stream = context->getCudaStream(); if (output) NDArray::prepareSpecialUse({output}, {boxes, scores}); else { if (!boxes->isActualOnDeviceSide()) boxes->syncToDevice(); if (!scores->isActualOnDeviceSide()) scores->syncToDevice(); } NDArray indices = NDArrayFactory::create('c', {scores->lengthOf()}, context); // - 1, scales->lengthOf()); //, scales->getContext()); NDArray startPositions = NDArrayFactory::create('c', {scores->lengthOf()}, context); NDArray selectedScores(*scores); Nd4jPointer extras[2] = {nullptr, stream}; auto indexBuf = indices.dataBuffer()->specialAsT();///reinterpret_cast(indices->specialBuffer()); suppressScores<<<128, 128, 128, *stream>>>(selectedScores.dataBuffer()->specialAsT(), indexBuf, selectedScores.lengthOf(), T(scoreThreshold)); sortByValue(extras, indices.buffer(), indices.shapeInfo(), indices.specialBuffer(), indices.specialShapeInfo(), selectedScores.buffer(), selectedScores.shapeInfo(), selectedScores.specialBuffer(), selectedScores.specialShapeInfo(), true); indices.tickWriteDevice(); selectedScores.tickWriteDevice(); auto scoresData = selectedScores.dataBuffer()->specialAsT();//, numBoxes, scoresData.begin()); auto startIndices = startPositions.dataBuffer()->specialAsT(); I selectedSize = 0; Nd4jLong res = 0; if (output) { // this part used when output shape already calculated to fill up values on output DataBuffer selectedSizeBuf(&selectedSize, sizeof(I), DataTypeUtils::fromT()); suppressNonMaxOverlapKernel<<<1, 1, 1024, *stream >>> (boxes->dataBuffer()->specialAsT(), boxes->specialShapeInfo(), scoresData, indexBuf, startIndices, scores->lengthOf(), (I) outputSize, T(overlapThreshold), T(scoreThreshold), output->dataBuffer()->specialAsT(), output->specialShapeInfo(), selectedSizeBuf.specialAsT(), simple); } else { // this case used on calculation of output shape. Output and output shape shoulde be nullptr. DataBuffer selectedSizeBuf(&selectedSize, sizeof(I), DataTypeUtils::fromT()); suppressNonMaxOverlapKernel<<<1, 1, 1024, *stream >>> (boxes->dataBuffer()->specialAsT(), boxes->specialShapeInfo(), scoresData, indexBuf, startIndices, scores->lengthOf(), (I)outputSize, T(overlapThreshold), T(scoreThreshold), (I*)nullptr, (Nd4jLong*) nullptr, selectedSizeBuf.specialAsT(), simple); selectedSizeBuf.syncToPrimary(context, true); res = *selectedSizeBuf.primaryAsT(); } if (output) NDArray::registerSpecialUse({output}, {boxes, scores}); return res; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void nonMaxSuppression(sd::LaunchContext * context, NDArray* boxes, NDArray* scales, int maxSize, double threshold, double scoreThreshold, NDArray* output) { BUILD_DOUBLE_SELECTOR(boxes->dataType(), output->dataType(), nonMaxSuppressionV2_, (context, boxes, scales, maxSize, threshold, scoreThreshold, output), FLOAT_TYPES, INDEXING_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// Nd4jLong nonMaxSuppressionGeneric(sd::LaunchContext * context, NDArray* boxes, NDArray* scales, int maxSize, double threshold, double scoreThreshold, NDArray* output) { BUILD_DOUBLE_SELECTOR(boxes->dataType(), output ? output->dataType():DataType::INT32, return nonMaxSuppressionGeneric_, (context, boxes, scales, maxSize, threshold, scoreThreshold, output, true), FLOAT_TYPES, INDEXING_TYPES); return boxes->sizeAt(0); } Nd4jLong nonMaxSuppressionV3(sd::LaunchContext* context, NDArray* boxes, NDArray* scores, int maxSize, double overlapThreshold, double scoreThreshold, NDArray* output) { BUILD_DOUBLE_SELECTOR(boxes->dataType(), output ? output->dataType():DataType::INT32, return nonMaxSuppressionGeneric_, (context, boxes, scores, maxSize, overlapThreshold, scoreThreshold, output, false), FLOAT_TYPES, INDEXING_TYPES); return boxes->sizeAt(0); } } } }