/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018 // implementation is based on following article: // "MergeShuffle: A Very Fast, Parallel Random Permutation Algorithm", https://arxiv.org/abs/1508.03167 #include #include #include #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// // Fisher-Yates shuffle template static void fisherYates(sd::graph::RandomGenerator& rng, T* buff, const Nd4jLong& len, const Nd4jLong& ews, Nd4jLong ind) { for(Nd4jLong i = len-1; i > 0; --i) { const Nd4jLong j = rng.relativeLong(ind++) % (i + 1); if(i != j) math::nd4j_swap(buff[i*ews], buff[j*ews]); } } ////////////////////////////////////////////////////////////////////////// // mutual shuffle of two adjacent already shuffled ranges with length len1 and (totLen - len1) correspondingly template static void mergeShuffle(sd::graph::RandomGenerator& rng, T* buff, const Nd4jLong& len1, const Nd4jLong& totLen, const Nd4jLong& ews, Nd4jLong ind) { Nd4jLong beg = 0; // beginning Nd4jLong mid = len1; // middle while (true) { if(rng.relativeLong(ind++) % 2) { if(mid == totLen) break; math::nd4j_swap(buff[ews * beg], buff[ews * mid++]); } else { if(beg == mid) break; } ++beg; } // fisherYates while (beg < totLen) { const Nd4jLong j = rng.relativeLong(ind++) % (beg + 1); if(beg != j) math::nd4j_swap(buff[ews * beg], buff[ews * j]); ++beg; } } ////////////////////////////////////////////////////////////////////////// template static void randomShuffle_(NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace) { const int firstDim = input.sizeAt(0); int temp; if(input.lengthOf() == 1 || firstDim == 1) { if(!isInplace) output.assign(input); } else if (shape::isCommonVector(input.shapeInfo(), temp)) { NDArray* arr = &input; if (!isInplace) { output.assign(input); arr = &output; } const Nd4jLong ews = arr->ews(); const Nd4jLong len = arr->lengthOf(); const Nd4jLong threshold = 1<<22; // this number was deduced from diagram in article int power = 0; while ((len >> power) > threshold) ++power; const Nd4jLong numChunks = 1 << power; auto funcFisherYates = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; ++i) { Nd4jLong offset = (len * i) >> power; Nd4jLong currLen = ((len * (i + 1)) >> power) - offset; fisherYates(rng, arr->bufferAsT() + offset*ews, currLen, ews, offset); } }; auto funcMerge = PRAGMA_THREADS_FOR { for (int64_t i = start, k = 1; i < stop; i += increment, ++k) { Nd4jLong offset = len * i >> power; Nd4jLong len1 = (len * (i + increment/2) >> power) - offset; Nd4jLong totLen = (len * (i + increment) >> power) - offset; mergeShuffle(rng, arr->bufferAsT() + offset*ews, len1, totLen, ews, len * k + offset); } }; samediff::Threads::parallel_for(funcFisherYates, 0, numChunks); for (int j = 1; j < numChunks; j += j) samediff::Threads::parallel_for(funcMerge, 0, numChunks, 2*j); // #pragma omp parallel for // for (uint i = 0; i < numChunks; ++i) { // Nd4jLong offset = (len * i) >> power; // Nd4jLong currLen = ((len * (i + 1)) >> power) - offset; // fisherYates(rng, arr->bufferAsT() + offset*ews, currLen, ews, offset); // } // for (uint j = 1; j < numChunks; j += j) { // #pragma omp parallel for // for (auto i = 0; i < numChunks; i += 2*j) { // Nd4jLong offset = len * i >> power; // Nd4jLong len1 = (len * (i + j) >> power) - offset; // Nd4jLong totLen = (len * (i + 2*j) >> power) - offset; // mergeShuffle(rng, arr->bufferAsT() + offset*ews, len1, totLen, ews, len * j + offset); // } // } rng.rewindH((len + 1) * power); } else { auto dimsToExclude = ShapeUtils::evalDimsToExclude(input.rankOf(), {0}); if(isInplace) { auto subArrsList = input.allTensorsAlongDimension(dimsToExclude); // Fisher-Yates shuffle for(int i = firstDim - 1; i > 0; --i) { const int j = rng.relativeInt(i) % (i + 1); if(i != j) subArrsList.at(i)->swapUnsafe(*subArrsList.at(j)); } } else { auto subArrsListIn = input.allTensorsAlongDimension(dimsToExclude); auto subArrsListOut = output.allTensorsAlongDimension(dimsToExclude); std::vector indices(firstDim); std::iota(indices.begin(), indices.end(), 0); // 0,1,2,3, ... firstDim-1 // shuffle indices fisherYates(rng, indices.data(), firstDim, 1, 0); auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; ++i) subArrsListOut.at(i)->assign(subArrsListIn.at(indices[i])); }; samediff::Threads::parallel_for(func, 0, firstDim); } rng.rewindH(firstDim-1); } } void randomShuffle(sd::LaunchContext * context, NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace) { BUILD_SINGLE_SELECTOR(input.dataType(), randomShuffle_, (input, output, rng, isInplace), LIBND4J_TYPES); } } } }