/******************************************************************************* * Copyright (c) 2019 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Oleh Semeniv (oleg.semeniv@gmail.com) // @author AbdelRauf (rauf@konduit.ai) // #include #include #include #include namespace sd { namespace ops { namespace helpers { template static void rgbToGrs_(const NDArray& input, NDArray& output, const int dimC) { const T* x = input.bufferAsT(); T* z = output.bufferAsT(); const int rank = input.rankOf(); if(dimC == rank - 1 && 'c' == input.ordering() && 1 == input.ews() && 'c' == output.ordering() && 1 == output.ews()){ auto func = PRAGMA_THREADS_FOR{ for (auto i = start; i < stop; i++) { const auto xStep = i*3; z[i] = 0.2989f*x[xStep] + 0.5870f*x[xStep + 1] + 0.1140f*x[xStep + 2]; } }; samediff::Threads::parallel_for(func, 0, output.lengthOf(), 1); return; } auto func = PRAGMA_THREADS_FOR{ int coords[MAX_RANK]; for (auto i = start; i < stop; i++) { shape::index2coordsCPU(start, i, output.shapeInfo(), coords); const auto zOffset = shape::getOffset(output.shapeInfo(), coords); const auto xOffset0 = shape::getOffset(input.shapeInfo(), coords); const auto xOffset1 = xOffset0 + input.strideAt(dimC); const auto xOffset2 = xOffset1 + input.strideAt(dimC); z[zOffset] = 0.2989f*x[xOffset0] + 0.5870f*x[xOffset1] + 0.1140f*x[xOffset2]; } }; samediff::Threads::parallel_for(func, 0, output.lengthOf(), 1); return; } void transformRgbGrs(sd::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) { BUILD_SINGLE_SELECTOR(input.dataType(), rgbToGrs_, (input, output, dimC), NUMERIC_TYPES); } template FORCEINLINE static void rgbToFromYuv_(const NDArray& input, NDArray& output, const int dimC, Op op) { const T* x = input.bufferAsT(); T* z = output.bufferAsT(); const int rank = input.rankOf(); bool bSimple = (dimC == rank - 1 && 'c' == input.ordering() && 1 == input.ews() && 'c' == output.ordering() && 1 == output.ews()); if (bSimple) { auto func = PRAGMA_THREADS_FOR{ for (auto i = start; i < stop; i += increment) { op(x[i], x[i + 1], x[i + 2], z[i], z[i + 1], z[i + 2]); } }; samediff::Threads::parallel_for(func, 0, input.lengthOf(), 3); return; } auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input.shapeInfo(), dimC); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output.shapeInfo(), dimC); const Nd4jLong numOfTads = packX.numberOfTads(); const Nd4jLong xDimCstride = input.stridesOf()[dimC]; const Nd4jLong zDimCstride = output.stridesOf()[dimC]; auto func = PRAGMA_THREADS_FOR{ for (auto i = start; i < stop; i++) { const T* xTad = x + packX.platformOffsets()[i]; T* zTad = z + packZ.platformOffsets()[i]; op(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]); } }; samediff::Threads::parallel_tad(func, 0, numOfTads); return; } template FORCEINLINE static void rgbYuv_(const NDArray& input, NDArray& output, const int dimC) { auto op = sd::ops::helpers::rgbYuv; return rgbToFromYuv_(input, output, dimC, op); } void transformRgbYuv(sd::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) { BUILD_SINGLE_SELECTOR(input.dataType(), rgbYuv_, (input, output, dimC), FLOAT_TYPES); } template FORCEINLINE static void yuvRgb_(const NDArray& input, NDArray& output, const int dimC) { auto op = sd::ops::helpers::yuvRgb; return rgbToFromYuv_(input, output, dimC, op); } void transformYuvRgb(sd::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) { BUILD_SINGLE_SELECTOR(input.dataType(), yuvRgb_, (input, output, dimC), FLOAT_TYPES); } template FORCEINLINE static void tripleTransformer(const NDArray* input, NDArray* output, const int dimC, Op op) { const int rank = input->rankOf(); const T* x = input->bufferAsT(); T* z = output->bufferAsT(); if (dimC == rank - 1 && input->ews() == 1 && output->ews() == 1 && input->ordering() == 'c' && output->ordering() == 'c') { auto func = PRAGMA_THREADS_FOR{ for (auto i = start; i < stop; i += increment) { op(x[i], x[i + 1], x[i + 2], z[i], z[i + 1], z[i + 2]); } }; samediff::Threads::parallel_for(func, 0, input->lengthOf(), 3); } else { auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimC); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimC); const Nd4jLong numOfTads = packX.numberOfTads(); const Nd4jLong xDimCstride = input->stridesOf()[dimC]; const Nd4jLong zDimCstride = output->stridesOf()[dimC]; auto func = PRAGMA_THREADS_FOR{ for (auto i = start; i < stop; i++) { const T* xTad = x + packX.platformOffsets()[i]; T* zTad = z + packZ.platformOffsets()[i]; op(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]); } }; samediff::Threads::parallel_tad(func, 0, numOfTads); } } template FORCEINLINE static void tripleTransformer(const NDArray* input, NDArray* output, const int dimC , T (&tr)[3][3] ) { const int rank = input->rankOf(); const T* x = input->bufferAsT(); T* z = output->bufferAsT(); // TODO: Use tensordot or other optimizied helpers to see if we can get better performance. if (dimC == rank - 1 && input->ews() == 1 && output->ews() == 1 && input->ordering() == 'c' && output->ordering() == 'c') { auto func = PRAGMA_THREADS_FOR{ for (auto i = start; i < stop; i += increment) { //simple M*v //tr.T*v.T // v * tr //rule: (AB)' =B'A' // v.shape (1,3) row vector T x0, x1, x2; x0 = x[i]; //just additional hint x1 = x[i + 1]; x2 = x[i + 2]; z[i] = x0 * tr[0][0] + x1 * tr[1][0] + x2 * tr[2][0]; z[i+1] = x0 * tr[0][1] + x1 * tr[1][1] + x2 * tr[2][1]; z[i+2] = x0 * tr[0][2] + x1 * tr[1][2] + x2 * tr[2][2]; } }; samediff::Threads::parallel_for(func, 0, input->lengthOf(), 3); } else { auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimC); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimC); const Nd4jLong numOfTads = packX.numberOfTads(); const Nd4jLong xDimCstride = input->stridesOf()[dimC]; const Nd4jLong zDimCstride = output->stridesOf()[dimC]; auto func = PRAGMA_THREADS_FOR{ for (auto i = start; i < stop; i++) { const T* xTad = x + packX.platformOffsets()[i]; T* zTad = z + packZ.platformOffsets()[i]; //simple M*v //tr.T*v T x0, x1, x2; x0 = xTad[0]; x1 = xTad[xDimCstride]; x2 = xTad[2 * xDimCstride]; zTad[0] = x0 * tr[0][0] + x1 * tr[1][0] + x2 * tr[2][0]; zTad[zDimCstride] = x0 * tr[0][1] + x1 * tr[1][1] + x2 * tr[2][1]; zTad[2 * zDimCstride] = x0 * tr[0][2] + x1 * tr[1][2] + x2 * tr[2][2]; } }; samediff::Threads::parallel_tad(func, 0, numOfTads); } } template FORCEINLINE static void hsvRgb(const NDArray* input, NDArray* output, const int dimC) { auto op = sd::ops::helpers::hsvToRgb; return tripleTransformer(input, output, dimC, op); } template FORCEINLINE static void rgbHsv(const NDArray* input, NDArray* output, const int dimC) { auto op = sd::ops::helpers::rgbToHsv; return tripleTransformer(input, output, dimC, op); } template FORCEINLINE static void rgbYiq(const NDArray* input, NDArray* output, const int dimC) { T arr[3][3] = { { (T)0.299, (T)0.59590059, (T)0.2115 }, { (T)0.587, (T)-0.27455667, (T)-0.52273617 }, { (T)0.114, (T)-0.32134392, (T)0.31119955 } }; return tripleTransformer(input, output, dimC, arr); } template FORCEINLINE static void yiqRgb(const NDArray* input, NDArray* output, const int dimC) { //TODO: this operation does not use the clamp operation, so there is a possibility being out of range. //Justify that it will not be out of range for images data T arr[3][3] = { { (T)1, (T)1, (T)1 }, { (T)0.95598634, (T)-0.27201283, (T)-1.10674021 }, { (T)0.6208248, (T)-0.64720424, (T)1.70423049 } }; return tripleTransformer(input, output, dimC, arr); } void transformHsvRgb(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) { BUILD_SINGLE_SELECTOR(input->dataType(), hsvRgb, (input, output, dimC), FLOAT_TYPES); } void transformRgbHsv(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) { BUILD_SINGLE_SELECTOR(input->dataType(), rgbHsv, (input, output, dimC), FLOAT_TYPES); } void transformYiqRgb(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) { BUILD_SINGLE_SELECTOR(input->dataType(), yiqRgb, (input, output, dimC), FLOAT_TYPES); } void transformRgbYiq(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) { BUILD_SINGLE_SELECTOR(input->dataType(), rgbYiq, (input, output, dimC), FLOAT_TYPES); } } } }