/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // // #include #include namespace sd { namespace ops { namespace helpers { template static void __depthToSpace(const NDArray &input, NDArray *output, int block_size, bool isNHWC) { T const*input_ptr = reinterpret_cast(input.buffer()); T *output_ptr = reinterpret_cast(output->buffer()); const int batch_size = input.sizeAt(0); const int input_depth = isNHWC ? input.sizeAt(3) : input.sizeAt(1); const int input_height = isNHWC ? input.sizeAt(1) : input.sizeAt(2); const int input_width = isNHWC ? input.sizeAt(2) : input.sizeAt(3); const int output_depth = isNHWC ? output->sizeAt(3) : output->sizeAt(1); const int output_height = isNHWC ? output->sizeAt(1) : output->sizeAt(2); const int output_width = isNHWC ? output->sizeAt(2) : output->sizeAt(3); const int input_area = input_width * input_height; const int input_depth_by_input_area = input_depth * input_area; const int output_depth_by_input_height = output_depth * input_height; if (isNHWC) { const int total_count = batch_size * output_height * output_width * output_depth; auto func = PRAGMA_THREADS_FOR { for (auto out_idx = start; out_idx < stop; out_idx++) { const int d = out_idx % output_depth; const int out_idx2 = out_idx / output_depth; const int w = out_idx2 % output_width; const int out_idx3 = out_idx2 / output_width; const int h = out_idx3 % output_height; const int b = out_idx3 / output_height; const int in_h = h / block_size; const int offset_h = h % block_size; const int in_w = w / block_size; const int offset_w = w % block_size; const int offset_d = (offset_h * block_size + offset_w) * output_depth; const int in_d = d + offset_d; const int inp_idx = in_d + input_depth * (in_w + input_width * (in_h + input_height * b)); (output_ptr + out_idx)[0] = (input_ptr + inp_idx)[0]; } }; samediff::Threads::parallel_for(func, 0, total_count); } else { const int total_count = batch_size * input_depth_by_input_area; auto func = PRAGMA_THREADS_FOR { for (int input_idx = start; input_idx < stop; input_idx++) { const int n_bY_bX_oC_iY = input_idx / input_width; const int iX = input_idx - n_bY_bX_oC_iY * input_width; const int n_bY_bX = n_bY_bX_oC_iY / output_depth_by_input_height; const int oC_iY = n_bY_bX_oC_iY - n_bY_bX * output_depth_by_input_height; const int n_bY = n_bY_bX / block_size; const int bX = n_bY_bX - n_bY * block_size; const int n = n_bY / block_size; const int bY = n_bY - n * block_size; const int output_idx = bX + block_size * (iX + input_width * (bY + block_size * (oC_iY + n * output_depth_by_input_height))); (output_ptr + output_idx)[0] = (input_ptr + input_idx)[0]; } }; samediff::Threads::parallel_for(func, 0, total_count); } } void _depthToSpace(sd::LaunchContext * context, const NDArray &input, NDArray *output, int block_size, bool isNHWC) { auto xType = input.dataType(); BUILD_SINGLE_SELECTOR(xType, __depthToSpace, (input, output, block_size, isNHWC), LIBND4J_TYPES); } BUILD_SINGLE_TEMPLATE(template void __depthToSpace, (const NDArray &input, NDArray *output, int block_size, bool isNHWC);, LIBND4J_TYPES); } } }