/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma // #include #if NOT_EXCLUDED(OP_deconv2d) #include #include namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(deconv2d_tf, 3, 1, false, 0, 9) { auto gradO = INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, oC], [oC, iC, kH, kW], [oC, kH, kW, iC] auto gradIShape = INPUT_VARIABLE(0); // [4] - shape of input of conv2d (that is shape of gradI) auto gradI = OUTPUT_NULLIFIED(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) height int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, oC], 1 - [oC, iC, kH, kW], 2 - [oC, kH, kW, iC] const int rank = gradO->rankOf(); REQUIRE_TRUE(weights->rankOf() == rank, 0, "CUSTOM DECONV2D_TF OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf()); REQUIRE_TRUE(gradIShape->rankOf() == 1, 0, "CUSTOM DECONV2D_TF OP: rank of array with output shape must be equal to 1, but got %i instead !", gradIShape->rankOf()); REQUIRE_TRUE(gradIShape->lengthOf() == rank, 0, "CUSTOM DECONV2D_TF OP: length of array with output shape must be equal to 4, but got %i instead !", gradIShape->lengthOf()); // create empty conv2d input array NDArray input(gradO->ordering(), gradIShape->asVectorT(), gradO->dataType(), block.launchContext()); int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH); int trueoH, trueoW; // true output height, width ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, isSameMode); std::vector expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indOoH,indOoH+1}); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, oC); REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM DECONV2D_TF OP: wrong shape of input array, basing on array with output shape expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str()); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DECONV2D_TF OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); ConvolutionUtils::conv2dBP(block, &input, weights, nullptr, gradO, gradI, nullptr, nullptr, kH,kW,sH,sW,pH,pW,dH,dW,isSameMode,isNCHW,wFormat); return Status::OK(); } DECLARE_TYPES(deconv2d_tf) { getOpDescriptor() ->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(deconv2d_tf) { auto gradOShapeInfo = inputShape->at(2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next auto weightsShapeInfo = inputShape->at(1); // [kH, kW, iC, oC], [oC, iC, kH, kW], [oC, kH, kW, iC] auto gradIShapeShapeInfo = inputShape->at(0); // [4] const int rank = 4; REQUIRE_TRUE(shape::rank(weightsShapeInfo) == rank, 0, "CUSTOM DECONV2D_TF OP: rank of weights array must be equal to %i, but got %i instead !", rank, shape::rank(weightsShapeInfo)); REQUIRE_TRUE(shape::rank(gradOShapeInfo) == rank, 0, "CUSTOM DECONV2D_TF OP: rank of input array must be equal to %i, but got %i instead !", rank, shape::rank(gradOShapeInfo)); REQUIRE_TRUE(shape::rank(gradIShapeShapeInfo) == 1, 0, "CUSTOM DECONV2D_TF OP: rank of array with output shape must be equal to %i, but got %i instead !", 1, shape::rank(gradIShapeShapeInfo)); const int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) height const int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) width const int sH = INT_ARG(2); // strides height const int sW = INT_ARG(3); // strides width const int pH = INT_ARG(4); // paddings height const int pW = INT_ARG(5); // paddings width const int dH = INT_ARG(6); // dilations height const int dW = INT_ARG(7); // dilations width const int isSameMode = INT_ARG(8); // 0-VALID, 1-SAME const int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW const int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, oC], 1 - [oC, iC, kH, kW], 2 - [oC, kH, kW, iC] int indIOioC, indIiH, indWoC(0 == wFormat ? 3 : 0), indOoH; if(!isNCHW) { indIOioC = 3; indIiH = 1; indOoH = 1; } else { indIOioC = 1; indIiH = 2; indOoH = 2; } std::vector gradIShape = INPUT_VARIABLE(0)->template asVectorT(); const int bS = gradIShape[0]; // batch size const int iH = gradIShape[indIiH]; // input height const int iW = gradIShape[indIiH+1]; // input width const int iC = gradIShape[indIOioC]; // input channels const int oC = weightsShapeInfo[indWoC+1]; // output channels const int oH = gradOShapeInfo[indOoH+1]; // input height const int oW = gradOShapeInfo[indOoH+2]; // input width int trueiH, trueiW; // output height, width ConvolutionUtils::calcOutSizeDeconv2D(trueiH, trueiW, kH, kW, sH, sW, pH, pW, dH, dW, oH, oW, isSameMode); std::vector expectedGradIShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,trueiH,trueiW, 0,indIOioC,indIiH,indIiH+1}); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, oC); REQUIRE_TRUE(expectedGradIShape == gradIShape, 0, "CUSTOM DECONV2D_TF OP: wrong shape of array with output shape, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradIShape).c_str(), ShapeUtils::shapeAsString(gradIShape).c_str()); REQUIRE_TRUE(shape::shapeEquals(4, expectedWeightsShape.data(), shape::rank(weightsShapeInfo), shape::shapeOf(weightsShapeInfo)), 0, "CUSTOM DECONV2D_TF OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str()); Nd4jLong shape[4]; shape[0] = bS; if (isNCHW) { shape[1] = iC; shape[2] = iH; shape[3] = iW; } else { shape[1] = iH; shape[2] = iW; shape[3] = iC; } return SHAPELIST(ConstantShapeHelper::getInstance().createShapeInfo(ArrayOptions::dataType(weightsShapeInfo), shape::order(gradOShapeInfo), 4, shape)); } } } #endif