/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma #include #if NOT_EXCLUDED(OP_conv1d) #include #include #include namespace sd { namespace ops { CUSTOM_OP_IMPL(conv1d, 2, 1, false, 0, 5) { auto input = INPUT_VARIABLE(0); // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW) auto weights = INPUT_VARIABLE(1); // [kW, iC, oC], [oC, iC, kW], [oC, kW, iC] auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto output = OUTPUT_NULLIFIED(0); // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW) int kW = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) width int sW = INT_ARG(1); // strides width int pW = INT_ARG(2); // paddings width int dW = INT_ARG(3); // dilations width int paddingMode = INT_ARG(4); // 0-VALID, 1-SAME, 2-CAUSAL int isNCW = block.getIArguments()->size() > 5 ? !INT_ARG(5) : 1; // INT_ARG(4): 0-NCW, 1-NWC int wFormat = block.getIArguments()->size() > 6 ? INT_ARG(6) : 0; // 0 - [kW, iC, oC], 1 - [oC, iC, kW], 2 - [oC, kW, iC] const int rank = 3; REQUIRE_TRUE(input->rankOf() == rank, 0, "CUSTOM CONV1D OP: rank of input array must be equal to %i, but got %i instead !", rank, input->rankOf()); REQUIRE_TRUE(weights->rankOf() == rank, 0, "CUSTOM CONV1D OP: rank of weights array must be equal to %i, but got %i instead !", rank, weights->rankOf()); int indIOioC, indIiW, indWoC(0 == wFormat ? 2 : 0); if(!isNCW) { indIOioC = 2; indIiW = 1; } else { indIOioC = 1; indIiW = 2; } int bS = input->sizeAt(0); // batch size int iW = input->sizeAt(indIiW); // input width int iC = input->sizeAt(indIOioC); // input channels int oC = weights->sizeAt(indWoC); // output channels std::vector expectedWeightsShape = 0 == wFormat ? std::vector({kW, iC, oC}) : (1 == wFormat ? std::vector({oC, iC, kW}) : std::vector({oC, kW, iC})); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM CONV1D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); if (bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV1D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); std::vector reshapeForInput, reshapeForOutput; if(!isNCW) { reshapeForInput = {input->sizeAt(0), 1, input->sizeAt(1), input->sizeAt(2)}; // [bS, iW, iC] -> [bS, 1, iW, iC] reshapeForOutput = {output->sizeAt(0), 1, output->sizeAt(1), output->sizeAt(2)}; // [bS, oW, oC] -> [bS, 1, oW, oC] } else { reshapeForInput = {input->sizeAt(0), input->sizeAt(1), 1, input->sizeAt(2)}; // [bS, iC, iW] -> [bS, iC, 1, iW] reshapeForOutput = {output->sizeAt(0), output->sizeAt(1), 1, output->sizeAt(2)}; // [bS, oC, oW] -> [bS, oC, 1, oW] } auto inputReshaped = input ->reshape(input->ordering(), reshapeForInput); auto outputReshaped = output ->reshape(output->ordering(), reshapeForOutput, false); auto weightsReshaped = weights->reshape(weights->ordering(), {1, weights->sizeAt(0), weights->sizeAt(1), weights->sizeAt(2)}); // [kW, iC, oC] -> [1, kW, iC, oC] sd::ops::conv2d conv2d; const Nd4jStatus status = conv2d.execute({&inputReshaped, &weightsReshaped, bias}, {&outputReshaped}, {}, {1,kW, 1,sW, 0,pW, 1,dW, paddingMode, !isNCW, wFormat}, {}); if (status != ND4J_STATUS_OK) return status; // ConvolutionUtils::conv2d(block, &inputReshaped, &weightsReshaped, bias, &outputReshaped, 1,kW, 1,sW, 0,pW, 1,dW, paddingMode, isNCW, wFormat); return Status::OK(); } DECLARE_SHAPE_FN(conv1d) { auto inputShapeInfo = inputShape->at(0); auto weightsShapeInfo = inputShape->at(1); Nd4jLong const* biasShapeInfo = block.width() > 2 ? inputShape->at(2) : nullptr; int kW = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(shape::sizeAt(weightsShapeInfo, 0)); // filter(kernel) width int sW = INT_ARG(1); // strides width int pW = INT_ARG(2); // paddings width int dW = INT_ARG(3); // dilations width int paddingMode = INT_ARG(4); // 0-VALID, 1-SAME int isNCW = block.getIArguments()->size() > 5 ? !INT_ARG(5) : 1; // INT_ARG(4): 1-NWC, 0-NCW int wFormat = block.getIArguments()->size() > 6 ? INT_ARG(6) : 0; // 0 - [kW, iC, oC], 1 - [oC, iC, kW], 2 - [oC, kW, iC] int indIOioC, indIiW, indWoC(0 == wFormat ? 2 : 0); if(!isNCW) { indIOioC = 2; indIiW = 1; } else { indIOioC = 1; indIiW = 2; } const int rank = 3; REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM CONV1D OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo); REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM CONV1D OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo); int bS = inputShapeInfo[1]; // batch size int iW = inputShapeInfo[indIiW+1]; // input width int iC = inputShapeInfo[indIOioC+1]; // input channels int oC = weightsShapeInfo[indWoC+1]; // output channels std::vector expectedWeightsShape = 0 == wFormat ? std::vector({kW, iC, oC}) : (1 == wFormat ? std::vector({oC, iC, kW}) : std::vector({oC, kW, iC})); //REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsShapeInfo, expectedWeightsShape), 0, "CUSTOM CONV1D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str()); if (biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM CONV1D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo)); int oH, oW; // output height, width ConvolutionUtils::calcOutSizePool2D(oH,oW, 1,kW, 1,sW, 0,pW, 1,dW, 1,iW, paddingMode); Nd4jLong* outputShapeInfo = nullptr; ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(rank), Nd4jLong); outputShapeInfo[0] = 3; outputShapeInfo[1] = bS; if (isNCW) { outputShapeInfo[2] = oC; outputShapeInfo[3] = oW; } else { outputShapeInfo[2] = oW; outputShapeInfo[3] = oC; } ShapeUtils::updateStridesAndType(outputShapeInfo, weightsShapeInfo, shape::order(weightsShapeInfo)); return SHAPELIST(CONSTANT(outputShapeInfo)); } DECLARE_TYPES(conv1d) { getOpDescriptor() ->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS, DataType::QINT8, DataType::QINT16}) ->setAllowedInputTypes(1, {ALL_FLOATS}) ->setAllowedInputTypes(2, {ALL_FLOATS}) ->setAllowedOutputTypes(0, {ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(conv1d_bp, 3, 2, false, 0, 5) { auto input = INPUT_VARIABLE(0); // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW) auto weights = INPUT_VARIABLE(1); // [kW, iC, oC], [oC, iC, kW], [oC, kW, iC] auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW), epsilon_next auto gradI = OUTPUT_NULLIFIED(0); // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW), epsilon auto gradW = OUTPUT_NULLIFIED(1); // [kW, iC, oC], [oC, iC, kW], [oC, kW, iC] auto gradB = block.width() > 3 ? OUTPUT_NULLIFIED(2) : nullptr; // [oC] int kW = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) width int sW = INT_ARG(1); // strides width int pW = INT_ARG(2); // paddings width int dW = INT_ARG(3); // dilations width int paddingMode = INT_ARG(4); // 0-VALID, 1-SAME, 2-CAUSAL int isNCW = block.getIArguments()->size() > 5 ? !INT_ARG(5) : 1; // INT_ARG(4): 1-NWC, 0-NCW int wFormat = block.getIArguments()->size() > 6 ? INT_ARG(6) : 0; // 0 - [kW, iC, oC], 1 - [oC, iC, kW], 2 - [oC, kW, iC] const int rank = 3; REQUIRE_TRUE(input->rankOf() == rank, 0, "CUSTOM CONV1D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, input->rankOf()); REQUIRE_TRUE(weights->rankOf() == rank, 0, "CUSTOM CONV1D_BP OP: rank of weights array must be equal to %i, but got %i instead !", rank, weights->rankOf()); REQUIRE_TRUE(gradO->rankOf() == rank, 0, "CUSTOM CONV1D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, gradO->rankOf()); int indIOioC, indIiW, indWoC(0 == wFormat ? 2 : 0); if(!isNCW) { indIOioC = 2; indIiW = 1; } else { indIOioC = 1; indIiW = 2; } const int bS = input->sizeAt(0); // batch size const int iW = input->sizeAt(indIiW); // input width const int iC = input->sizeAt(indIOioC); // input channels const int oC = weights->sizeAt(indWoC); // output channels int trueoH, trueoW; // true output height, width ConvolutionUtils::calcOutSizePool2D(trueoH,trueoW, 1,kW, 1,sW, 0,pW, 1,dW, 1,iW, paddingMode); std::vector expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoW, 0,indIOioC,indIiW}); std::vector expectedWeightsShape = 0 == wFormat ? std::vector({kW, iC, oC}) : (1 == wFormat ? std::vector({oC, iC, kW}) : std::vector({oC, kW, iC})); REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM CONV1D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str()); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM CONV1D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); if(bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV1D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); std::vector reshapeForInput, reshapeForGradO; if(!isNCW) { reshapeForInput = {input->sizeAt(0), 1, input->sizeAt(1), input->sizeAt(2)}; // [bS, iW, iC] -> [bS, 1, iW, iC] reshapeForGradO = {gradO->sizeAt(0), 1, gradO->sizeAt(1), gradO->sizeAt(2)}; // [bS, oW, oC] -> [bS, 1, oW, oC] } else { reshapeForInput = {input->sizeAt(0), input->sizeAt(1), 1, input->sizeAt(2)}; // [bS, iC, iW] -> [bS, iC, 1, iW] reshapeForGradO = {gradO->sizeAt(0), gradO->sizeAt(1), 1, gradO->sizeAt(2)}; // [bS, oC, oW] -> [bS, oC, 1, oW] } auto inputReshaped = input ->reshape(input->ordering(), reshapeForInput); auto gradIReshaped = gradI ->reshape(gradI->ordering(), reshapeForInput, false); auto gradOReshaped = gradO ->reshape(gradO->ordering(), reshapeForGradO); auto weightsReshaped = weights->reshape(weights->ordering(),{1, weights->sizeAt(0), weights->sizeAt(1), weights->sizeAt(2)}); // [kW, iC, oC] -> [1, kW, iC, oC] auto gradWReshaped = gradW ->reshape(gradW->ordering(), {1, weights->sizeAt(0), weights->sizeAt(1), weights->sizeAt(2)}, false);// [kW, iC, oC] -> [1, kW, iC, oC] sd::ops::conv2d_bp conv2dBP; auto status = conv2dBP.execute({&inputReshaped, &weightsReshaped, bias, &gradOReshaped}, {&gradIReshaped, &gradWReshaped, gradB}, {}, {1,kW, 1,sW, 0,pW, 1,dW, paddingMode, !isNCW, wFormat}, {}); if (status != ND4J_STATUS_OK) return status; // ConvolutionUtils::conv2dBP(block, &inputReshaped, &weightsReshaped, bias, &gradOReshaped, &gradIReshaped, &gradWReshaped, gradB, 1,kW, 1,sW, 0,pW, 1,dW, paddingMode, isNCW, wFormat); return Status::OK(); } DECLARE_SHAPE_FN(conv1d_bp) { auto inputShapeInfo = inputShape->at(0); // [bS, iW, iC] (NWC) or [bS, iC, iW] (NCW) auto weightsShapeInfo = inputShape->at(1); // [kW, iC, oC], [oC, iC, kW], [oC, kW, iC] Nd4jLong const* biasShapeInfo = block.width() > 3 ? inputShape->at(2) : nullptr; // [oC] Nd4jLong const* gradOShapeInfo = block.width() > 3 ? inputShape->at(3) : inputShape->at(2); // [bS, oW, oC] (NWC) or [bS, oC, oW] (NCW), epsilon_next const int rank = 3; REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM CONV1D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo[0]); REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM CONV1D_BP OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo[0]); REQUIRE_TRUE(gradOShapeInfo[0] == rank, 0, "CUSTOM CONV1D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, gradOShapeInfo[0]); int kW = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) width int sW = INT_ARG(1); // strides width int pW = INT_ARG(2); // paddings width int dW = INT_ARG(3); // dilations width int paddingMode = INT_ARG(4); // 0-VALID, 1-SAME int isNCW = block.getIArguments()->size() > 5 ? !INT_ARG(5) : 1; // INT_ARG(4): 1-NWC, 0-NCW int wFormat = block.getIArguments()->size() > 6 ? INT_ARG(6) : 0; // 0 - [kW, iC, oC], 1 - [oC, iC, kW], 2 - [oC, kW, iC] int indIOioC, indIiW, indWoC(0 == wFormat ? 2 : 0); if(!isNCW) { indIOioC = 2; indIiW = 1; } else { indIOioC = 1; indIiW = 2; } const int bS = inputShapeInfo[1]; // batch size const int iW = inputShapeInfo[indIiW+1]; // input width const int iC = inputShapeInfo[indIOioC+1]; // input channels const int oC = weightsShapeInfo[indWoC+1]; // output channels int trueoH, trueoW; // true output height, width ConvolutionUtils::calcOutSizePool2D(trueoH,trueoW, 1,kW, 1,sW, 0,pW, 1,dW, 1,iW, paddingMode); std::vector expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoW, 0,indIOioC,indIiW}); std::vector expectedWeightsShape = 0 == wFormat ? std::vector({kW, iC, oC}) : (1 == wFormat ? std::vector({oC, iC, kW}) : std::vector({oC, kW, iC})); REQUIRE_TRUE(ShapeUtils::areShapesEqual(gradOShapeInfo, expectedGradOShape), 0, "CUSTOM CONV1D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradOShapeInfo).c_str()); REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsShapeInfo, expectedWeightsShape), 0, "CUSTOM CONV1D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str()); if(biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM CONV1D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo)); auto gradIshapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, gradOShapeInfo, false, block.getWorkspace()); auto gradWshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, gradOShapeInfo, false, block.getWorkspace()); if(biasShapeInfo) { auto gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace()); return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo), CONSTANT(gradBshapeInfo)); } return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo)); } DECLARE_TYPES(conv1d_bp) { getOpDescriptor() ->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS, DataType::QINT8, DataType::QINT16}) ->setAllowedInputTypes(1, {ALL_FLOATS}) ->setAllowedInputTypes(2, {ALL_FLOATS}) ->setAllowedInputTypes(3, {ALL_FLOATS}) ->setAllowedOutputTypes(0, {ALL_FLOATS}) ->setAllowedOutputTypes(1, {ALL_FLOATS}); } } } #endif