/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * Copyright (c) 2019-2020 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author AbdelRauf #include #include #include namespace sd { ////////////////////////////////////////////////////////////////////////// // equal to operator bool ShapeDescriptor::operator==(const ShapeDescriptor &other) const { if (_extraProperties != other._extraProperties) return false; if (_rank != other._rank) return false; if (_order != other._order) return false; if (_dataType != other._dataType) return false; if (_ews != other._ews) return false; if (_shape != other._shape) return false; if (_strides != other._strides) return false; return true; } ////////////////////////////////////////////////////////////////////////// // less than operator bool ShapeDescriptor::operator<(const ShapeDescriptor &other) const { return std::tie(_extraProperties, _rank, _dataType, _ews, _order, _shape, _strides) < std::tie(other._extraProperties, other._rank, other._dataType, other._ews, other._order, other._shape, other._strides); } Nd4jLong *ShapeDescriptor::toShapeInfo() const { //for empy array use original if (isEmpty()) { if (_rank == 0) return ShapeBuilders::emptyShapeInfo(_dataType); else { return ShapeBuilders::emptyShapeInfo(_dataType, _order, _shape); } } Nd4jLong * shapeInfo; switch (_rank) { case 0: { shapeInfo = ShapeBuilders::createScalarShapeInfo(_dataType); shapeInfo[2] = _ews; } break; case 1: { shapeInfo = ShapeBuilders::createVectorShapeInfo(_dataType, _shape[0]); shapeInfo[2 + _rank * 2] = _ews; shapeInfo[2] = _strides[0]; shapeInfo[2 + _rank * 2 + 1] = _order; } break; default: { shapeInfo = ShapeBuilders::createShapeInfo(_dataType, _order, _shape); for (int e = 0; e < _rank; e++) shapeInfo[e + 1 + _rank] = _strides[e]; shapeInfo[2 + _rank * 2] = _ews; } } ArrayOptions::setPropertyBit(shapeInfo, _extraProperties); return shapeInfo; } ShapeDescriptor::ShapeDescriptor(const DataType type, const char order, const Nd4jLong *shape, const int rank) : _dataType(type), _order(order), _rank(rank), _ews(1) { _shape.resize(rank); _strides.resize(rank); for (int e = 0; e < rank; e++) _shape[e] = shape[e]; if (order == 'c') shape::calcStrides(_shape.data(), _shape.size(), _strides.data()); else shape::calcStridesFortran(_shape.data(), _shape.size(), _strides.data()); for (auto v:_shape) { if (v == 0) { _extraProperties = ARRAY_EMPTY; break; } } } ShapeDescriptor::ShapeDescriptor(const DataType type, const char order, const Nd4jLong *shape, const Nd4jLong *strides, const int rank, Nd4jLong ews, Nd4jLong extras) { _shape.resize(rank); _strides.resize(rank); _dataType = type; _order = order; _rank = rank; _extraProperties = extras; _ews = ews; for (int e = 0; e < rank; e++) _shape[e] = shape[e]; for (int e = 0; e < rank; e++) _strides[e] = strides[e]; for (auto v:_shape) { if (v == 0) { _extraProperties |= ARRAY_EMPTY; break; } } } ////////////////////////////////////////////////////////////////////////// ShapeDescriptor::ShapeDescriptor(const DataType type, const char order, const std::vector &shape) : _dataType(type), _order(order), _shape(shape) { _rank = shape.size(); _ews = 1; if (_rank > 0) { _strides.resize(_rank); for (auto v:_shape) { if (v == 0) { _extraProperties |= ARRAY_EMPTY; break; } } // no point calculating strides for empty arrays if (!isEmpty()) { if (order == 'c') shape::calcStrides(_shape.data(), shape.size(), _strides.data()); else shape::calcStridesFortran(_shape.data(), shape.size(), _strides.data()); } else { // all strides set to 0 memset(_strides.data(), 0, sizeof(Nd4jLong) * shape.size()); } } } ////////////////////////////////////////////////////////////////////////// ShapeDescriptor::ShapeDescriptor(const DataType type, const char order, const std::initializer_list &shape) : _dataType(type), _order(order), _shape(shape) { _rank = shape.size(); _ews = 1; _strides.resize(shape.size()); if (order == 'c') shape::calcStrides(_shape.data(), shape.size(), _strides.data()); else shape::calcStridesFortran(_shape.data(), shape.size(), _strides.data()); for (auto v:_shape) { if (v == 0) { _extraProperties |= ARRAY_EMPTY; break; } } } ////////////////////////////////////////////////////////////////////////// ShapeDescriptor::ShapeDescriptor(const DataType type, const char order, const std::vector &shape, const std::vector &strides, const Nd4jLong ews) : ShapeDescriptor(type, order, shape, strides) { _ews = ews; } ShapeDescriptor::ShapeDescriptor(const DataType type, const Nd4jLong length) : _dataType(type), _ews(1), _order('c'), _rank(1), _extraProperties(0) { _shape = {length}; _strides = {1}; } ShapeDescriptor::ShapeDescriptor(const Nd4jLong *shapeInfo, bool inheritDtype) { _order = shape::order(shapeInfo); _ews = shape::elementWiseStride(shapeInfo); _rank = shape::rank(shapeInfo); _extraProperties = ArrayOptions::propertyWithoutDataType(shapeInfo); if (inheritDtype) _dataType = ArrayOptions::dataType(shapeInfo); for (int e = 0; e < _rank; e++) { _shape.emplace_back(shapeInfo[e + 1]); if (shapeInfo[e + 1] == 0) _extraProperties |= ARRAY_EMPTY; } for (int e = 0; e < _rank; e++) _strides.emplace_back(shapeInfo[e + 1 + _rank]); } ShapeDescriptor::ShapeDescriptor(const Nd4jLong *shapeInfo, const sd::DataType dtypeOverride) : ShapeDescriptor::ShapeDescriptor(shapeInfo, false) { _dataType = dtypeOverride; } ShapeDescriptor::ShapeDescriptor(const Nd4jLong *shapeInfo, const Nd4jLong *dtypeOverride) : ShapeDescriptor::ShapeDescriptor(shapeInfo, ArrayOptions::dataType(dtypeOverride)) { // } ShapeDescriptor::ShapeDescriptor(const Nd4jLong *shapeInfo, const Nd4jLong *dtypeOverride, const Nd4jLong *orderOverride) : ShapeDescriptor::ShapeDescriptor(shapeInfo, ArrayOptions::dataType( dtypeOverride)) { _order = shape::order(orderOverride); } int ShapeDescriptor::rank() const { return _rank; } Nd4jLong ShapeDescriptor::ews() const { return _ews; } Nd4jLong ShapeDescriptor::arrLength() const { //when _ews == 1 allocation length is also array length Nd4jLong len = 1; for (const auto& dim : _shape) len *= dim; return len; } Nd4jLong ShapeDescriptor::allocLength() const { if (_paddedAllocSize > 0) return _paddedAllocSize; Nd4jLong len = 1; if (_ews == 1 && _rank>1) { //calculate using max stride int ind = _order == 'c' ? 0: _rank - 1; return _shape[ind] * _strides[ind]; } for (int i = 0; i < _rank; i++) { len += (_shape[i] - 1) * _strides[i]; } return len; } Nd4jLong ShapeDescriptor::validate() const { auto status = SHAPE_DESC_OK; bool is_continous = true; if (_rank != _shape.size() || _rank > MAX_RANK) status |= SHAPE_DESC_INCORRECT_RANK; bool ranks_match = (_strides.size() == _shape.size()); if (!ranks_match) status = status | SHAPE_DESC_INCORRECT_STRIDES; if (_rank > 0 && ranks_match) { if (_order == 'c') { for (int j = _rank - 2; j >= 0; j--) { Nd4jLong currentStride = _strides[j]; Nd4jLong allowedStride = _strides[j + 1] * _shape[j + 1]; if (currentStride < allowedStride) { status = status | SHAPE_DESC_INCORRECT_STRIDES; break; } is_continous = is_continous & (currentStride == allowedStride); } } else { for (int j = 1; j < _rank; j++) { Nd4jLong currentStride = _strides[j]; Nd4jLong allowedStride = _strides[j - 1] * _shape[j - 1]; if (currentStride < allowedStride) { status = status | SHAPE_DESC_INCORRECT_STRIDES; break; } is_continous = is_continous & (currentStride == allowedStride); } } int index = (_order == 'c') ? _rank - 1 : 0; auto correctEws = is_continous ? _strides[index] : 0; if (correctEws != _ews) status = status | SHAPE_DESC_INCORRECT_EWS; } return status; } char ShapeDescriptor::order() const { return _order; } DataType ShapeDescriptor::dataType() const { return _dataType; } bool ShapeDescriptor::isEmpty() const { return _extraProperties & ARRAY_EMPTY; } std::vector &ShapeDescriptor::shape() { return _shape; } std::vector &ShapeDescriptor::strides() { return _strides; } ShapeDescriptor::ShapeDescriptor(const ShapeDescriptor &other) { _rank = other._rank; _ews = other._ews; _extraProperties = other._extraProperties; _dataType = other._dataType; _order = other._order; _shape = other._shape; _strides = other._strides; _paddedAllocSize = other._paddedAllocSize; } ////////////////////////////////////////////////////////////////////////// ShapeDescriptor::ShapeDescriptor(const DataType type, const char order, const std::vector &shape, const std::vector &strides) : _dataType(type), _order(order), _shape(shape) { _rank = shape.size(); if (strides.empty() && !shape.empty()) { _strides.resize(shape.size()); if (order == 'c') shape::calcStrides(_shape.data(), shape.size(), _strides.data()); else shape::calcStridesFortran(_shape.data(), shape.size(), _strides.data()); } else { _strides = strides; } for (auto v:_shape) { if (v == 0) { _extraProperties |= ARRAY_EMPTY; break; } } } ShapeDescriptor ShapeDescriptor::emptyDescriptor(const DataType type) { ShapeDescriptor descriptor; descriptor._dataType = type; descriptor._extraProperties = ARRAY_EMPTY; descriptor._rank = 0; descriptor._order = 'c'; descriptor._ews = 1; return descriptor; } ShapeDescriptor ShapeDescriptor::scalarDescriptor(const DataType type) { ShapeDescriptor descriptor; descriptor._dataType = type; descriptor._extraProperties = 0; descriptor._rank = 0; descriptor._order = 'c'; descriptor._ews = 1; return descriptor; } ShapeDescriptor ShapeDescriptor::vectorDescriptor(const Nd4jLong length, const DataType type) { ShapeDescriptor descriptor; descriptor._dataType = type; descriptor._shape.emplace_back(length); if (length > 0) descriptor._strides.emplace_back(1); else { descriptor._strides.emplace_back(0); descriptor._extraProperties = ARRAY_EMPTY; } descriptor._order = 'c'; descriptor._ews = 1; descriptor._rank = 1; return descriptor; } ShapeDescriptor ShapeDescriptor::paddedBufferDescriptor(const DataType type, const char order, const std::vector& shape, const std::vector& paddings) { ShapeDescriptor descriptor; descriptor._dataType = type; descriptor._order = order; descriptor._shape = shape; descriptor._rank = shape.size(); descriptor._strides.resize(shape.size()); descriptor._extraProperties = 0; if (descriptor._rank < 1) { descriptor._ews = 1; return descriptor; } //calculate strides with paddings int min_rank = descriptor._rank > paddings.size() ? paddings.size() : descriptor._rank; bool is_continous = true; if (order == 'c') { descriptor._strides[descriptor._rank - 1] = 1L; for (int j = descriptor._rank - 2; j >= 0; j--) { Nd4jLong pad = (j + 1 < min_rank) ? paddings[j + 1] : 0; descriptor._strides[j] = descriptor._strides[j + 1] * (descriptor._shape[j + 1] + pad); descriptor._extraProperties = descriptor._extraProperties | (descriptor._shape[j + 1] == 0); if (pad != 0) is_continous = false; } if (!is_continous && descriptor._rank > 0) { Nd4jLong size_pad = paddings.size()>0 ? paddings[0] : 0; //alloc size should be supplied manually as we dont have place to store it descriptor._paddedAllocSize = descriptor._strides[0] * (descriptor._shape[0] + size_pad); } } else { descriptor._strides[0] = 1L; for (int j = 1; j < descriptor._rank; j++) { Nd4jLong pad = (j - 1 < min_rank) ? paddings[j - 1] : 0; descriptor._strides[j] = descriptor._strides[j - 1] * (descriptor._shape[j - 1] + pad); descriptor._extraProperties = descriptor._extraProperties | (descriptor._shape[j - 1] == 0); if (pad != 0) is_continous = false; } if (!is_continous && descriptor._rank > 0) { Nd4jLong size_pad = paddings.size()>=descriptor._rank ? paddings[descriptor._rank-1] : 0; //alloc size should be supplied manually as we dont have place to store it descriptor._paddedAllocSize = descriptor._strides[descriptor._rank-1] * (descriptor._shape[descriptor._rank-1] + size_pad); } } descriptor._ews = is_continous ? 1 : 0; if(!is_continous) descriptor._extraProperties |= ARRAY_HAS_PADDED_BUFFER; return descriptor; } } namespace std { size_t hash::operator()(const sd::ShapeDescriptor &k) const { auto res = std::hash()(k.arrLength()); res ^= std::hash()(k.order()) + 0x9e3779b9 + (res << 6) + (res >> 2); res ^= k.dataType() + 0x9e3779b9 + (res << 6) + (res >> 2); res ^= std::hash()(k.rank()) + 0x9e3779b9 + (res << 6) + (res >> 2); res ^= std::hash()(k.ews()) + 0x9e3779b9 + (res << 6) + (res >> 2); auto shapes = const_cast(k).shape(); auto strides = const_cast(k).strides(); for (auto s: shapes) { res ^= std::hash()(s) + 0x9e3779b9 + (res << 6) + (res >> 2); } for (auto s: strides) { res ^= std::hash()(s) + 0x9e3779b9 + (res << 6) + (res >> 2); } return res; } }