/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS (sgazeos@gmail.com), created on 10/1/2018 // #include #include #include namespace nd4j { namespace ops { namespace helpers { void crossBatched(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) { auto _a = a->reshape(a->ordering(), {-1, 3}); auto _b = b->reshape(b->ordering(), {-1, 3}); auto _o = o->reshape(o->ordering(), {-1, 3}, false); auto tadsA = _a.allTensorsAlongDimension({1}); auto tadsB = _b.allTensorsAlongDimension({1}); auto tadsO = _o.allTensorsAlongDimension({1}); int tads = tadsA.size(); auto func = PRAGMA_THREADS_FOR { for (auto e = start; e < stop; e += increment) { auto a_ = tadsA.at(e); auto b_ = tadsB.at(e); auto o_ = tadsO.at(e); helpers::cross(context, a_, b_, o_); } }; samediff::Threads::parallel_tad(func, 0, tads); } } } }