/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma, created on 21.09.2018 // @author raver119@gmail.com // #include #include #include #include #include #include #include namespace nd4j { namespace ops { namespace helpers { template static void ismax_(nd4j::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector& dimensions) { auto stream = context->getCudaStream(); auto xRank = input->rankOf(); auto zRank = output->rankOf(); auto xType = input->dataType(); auto zType = output->dataType(); input->syncToDevice(); Nd4jLong* special = nullptr; PointersManager manager(context, "IsMaxHelper"); if (dimensions.size() == 0) { /** * In case of vector-input for IsMax, it just turns into IndexReduce call + subsequent filler call */ auto indexMax = input->applyIndexReduce(indexreduce::IndexMax, dimensions); auto targetIdx = indexMax->e(0); dim3 launchDims(128, 512, 1024); BUILD_SINGLE_SELECTOR(zType, fillIsMaxGeneric, (launchDims, stream, output->specialBuffer(), output->specialShapeInfo(), output->lengthOf(), targetIdx), LIBND4J_TYPES); manager.synchronize(); delete indexMax; } else { Nd4jLong* hostYShapeInfo = nullptr; Nd4jLong* hostTShapeInfo = nullptr; int* dimension = nullptr; int dimensionLength = dimensions.size(); std::vector copy(dimensions); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), copy.data(), copy.size()); auto indexMaxArr = input->applyIndexReduce(indexreduce::IndexMax, dimensions); dim3 launchDims(256, 256, 16384); dimension = (int *) manager.replicatePointer(dimensions.data(), dimensions.size() * sizeof(int)); // at this point, all IMax indexes are gathered, and we execute filler BUILD_SINGLE_SELECTOR(zType, fillDimensionalIsMaxGeneric, (launchDims, stream, indexMaxArr->specialBuffer(), output->specialBuffer(), output->specialShapeInfo(), packZ.specialShapeInfo(), dimension, dimensionLength, packZ.specialOffsets()), LIBND4J_TYPES); manager.synchronize(); delete indexMaxArr; } } void ismax(nd4j::LaunchContext * context, const NDArray *input, NDArray *output, const std::vector& dimensions) { NDArray::prepareSpecialUse({output}, {input}); BUILD_SINGLE_SELECTOR(input->dataType(), ismax_, (context, input, output, dimensions), LIBND4J_TYPES); NDArray::registerSpecialUse({output}, {input}); } BUILD_SINGLE_TEMPLATE(template void ismax_, (nd4j::LaunchContext * context, const NDArray *input, NDArray *output, const std::vector& dimensions), LIBND4J_TYPES); } } }