/* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author Yurii Shyrma, created on 05.02.2018 // #include #if NOT_EXCLUDED(OP_conv3dnew) #include #include #include #include namespace sd { namespace ops { CUSTOM_OP_IMPL(conv3dnew, 2, 1, false, 0, 13) { auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC] auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW) REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM CONV3D OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM CONV3D OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf()); int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) depth int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) height int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast(weights->sizeAt(2));// filter(kernel) width int sD = INT_ARG(3); // strides depth int sH = INT_ARG(4); // strides height int sW = INT_ARG(5); // strides width int pD = INT_ARG(6); // paddings depth int pH = INT_ARG(7); // paddings height int pW = INT_ARG(8); // paddings width int dD = INT_ARG(9); // dilations depth int dH = INT_ARG(10); // dilations height int dW = INT_ARG(11); // dilations width int paddingMode = INT_ARG(12); // 0-SAME, 1-VALID int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW int wFormat = block.getIArguments()->size() > 14 ? INT_ARG(14) : 0; // 0-[kD, kH, kW, iC, oC], 1-[oC, iC, kD, kH, kW], 2-[oC, kD, kH, kW, iC] int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width; int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, wFormat, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD); REQUIRE_TRUE(paddingMode < 2, 0, "CUSTOM CONV3D OP: causal padding mode (paddingMode = 2) is not allowed for this operation !"); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kD, kH, kW, iC, oC); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM CONV3D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); if (bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV3D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW, paddingMode); nd4j_debug("MKL-DNN is not used for conv3dnew!\n", 0); std::vector permutForOutput; if (isNCDHW) permutForOutput = {0,2,3,4,1}; // [bS, oC, oD, oH, oW] -> [bS, oD, oH, oW, oC] else input = new NDArray(input->permute({0,4,1,2,3})); std::vector wAxes; if(0 == wFormat) wAxes = {3,0,1,2}; else if(1 == wFormat) wAxes = {1,2,3,4}; else wAxes = {4,1,2,3}; NDArray columns(input->ordering(), {bS, iC, kD, kH, kW, oD, oH, oW}, input->dataType(), block.launchContext()); ConvolutionUtils::vol2col(block, *input, columns, sD, sH, sW, pD, pH, pW, dD, dH, dW); // [bS, iC, iD, iH, iW] is convoluted to [bS, iC, kD, kH, kW, oD, oH, oW] // [bS, iC, kD, kH, kW, oD, oH, oW] x [kD, kH, kW, iC, oC] = [bS, oD, oH, oW, oC] // [bS, iC, kD, kH, kW, oD, oH, oW] x [oC, iC, kD, kH, kW] = [bS, oD, oH, oW, oC] // [bS, iC, kD, kH, kW, oD, oH, oW] x [oC, kD, kH, kW, iC] = [bS, oD, oH, oW, oC] MmulHelper::tensorDot(&columns, weights, output, {1,2,3,4}, wAxes, permutForOutput); if(bias) // output->applyBroadcast(broadcast::Add, {indIOioC}, bias); helpers::addBias(block, *output, *bias, *output, isNCDHW); if(!isNCDHW) delete input; return Status::OK(); } DECLARE_TYPES(conv3dnew) { getOpDescriptor() ->setAllowedInputTypes(0, sd::DataType::ANY) ->setAllowedInputTypes(1, {ALL_FLOATS}) ->setAllowedInputTypes(2, {ALL_FLOATS}) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(conv3dnew) { auto inputShapeInfo = inputShape->at(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW) auto weightsShapeInfo = inputShape->at(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC] auto biasShapeInfo = block.width() > 2 ? inputShape->at(2) : nullptr; // [oC] int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) depth int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) height int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast(shape::sizeAt(weightsShapeInfo, 2));// filter(kernel) width int sD = INT_ARG(3); // strides depth int sH = INT_ARG(4); // strides height int sW = INT_ARG(5); // strides width int pD = INT_ARG(6); // paddings depth int pH = INT_ARG(7); // paddings height int pW = INT_ARG(8); // paddings width int dD = INT_ARG(9); // dilations depth int dH = INT_ARG(10); // dilations height int dW = INT_ARG(11); // dilations width int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID; int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW int wFormat = block.getIArguments()->size() > 14 ? INT_ARG(14) : 0; // 0-[kD, kH, kW, iC, oC], 1-[oC, iC, kD, kH, kW], 2-[oC, kD, kH, kW, iC] const int rank = 5; REQUIRE_TRUE(paddingMode < 2, 0, "CUSTOM CONV3D OP: causal padding mode (paddingMode = 2) is not allowed for this operation !"); REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM CONV3D OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo); REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM CONV3D OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo); int indIOioC, indIiD, indWoC(0 == wFormat ? 4 : 0); if(!isNCDHW) { indIOioC = 4; indIiD = 1; } else { indIOioC = 1; indIiD = 2; } int bS = inputShapeInfo[1]; // batch size int iD = inputShapeInfo[indIiD+1]; // input depth int iH = inputShapeInfo[indIiD+2]; // input height int iW = inputShapeInfo[indIiD+3]; // input width int iC = inputShapeInfo[indIOioC+1]; // input channels int oC = weightsShapeInfo[indWoC+1]; // output channels std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kD, kH, kW, iC, oC); REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsShapeInfo, expectedWeightsShape), 0, "CUSTOM CONV3D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str()); if (biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM CONV3D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo)); int oD, oH, oW; // output depth, height, width ConvolutionUtils::calcOutSizePool3D(oD, oH, oW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, paddingMode); Nd4jLong* outputShapeInfo = nullptr; ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo), Nd4jLong); outputShapeInfo[0] = rank; outputShapeInfo[1] = bS; if (isNCDHW) { outputShapeInfo[2] = oC; outputShapeInfo[3] = oD; outputShapeInfo[4] = oH; outputShapeInfo[5] = oW; } else { outputShapeInfo[2] = oD; outputShapeInfo[3] = oH; outputShapeInfo[4] = oW; outputShapeInfo[5] = oC; } ShapeUtils::updateStridesAndType(outputShapeInfo, weightsShapeInfo, shape::order(inputShapeInfo)); return SHAPELIST(CONSTANT(outputShapeInfo)); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(conv3dnew_bp, 3, 2, false, 0, 13) { auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC] auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon auto gradW = OUTPUT_VARIABLE(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC] auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC] REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM CONV3D_BP OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM CONV3D_BP OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf()); REQUIRE_TRUE(gradO->rankOf() == 5, 0, "CUSTOM CONV3D_BP OP: rank of output gradients (next epsilon) array must be equal to 5, but got %i instead !", gradO->rankOf()); int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) depth int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) height int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast(weights->sizeAt(2));// filter(kernel) width int sD = INT_ARG(3); // strides depth int sH = INT_ARG(4); // strides height int sW = INT_ARG(5); // strides width int pD = INT_ARG(6); // paddings depth int pH = INT_ARG(7); // paddings height int pW = INT_ARG(8); // paddings width int dD = INT_ARG(9); // dilations depth int dH = INT_ARG(10); // dilations height int dW = INT_ARG(11); // dilations width int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW int wFormat = block.getIArguments()->size() > 14 ? INT_ARG(14) : 0; // 0-[kD, kH, kW, iC, oC], 1-[oC, iC, kD, kH, kW], 2-[oC, kD, kH, kW, iC] int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width; int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, wFormat, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD); int trueoD, trueoH, trueoW; // true output depth/height/width ConvolutionUtils::calcOutSizePool3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, paddingMode); REQUIRE_TRUE(paddingMode < 2, 0, "CUSTOM CONV3D_BP OP: causal padding mode (paddingMode = 2) is not allowed for this operation !"); std::vector expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoD,trueoH,trueoW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2}); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kD, kH, kW, iC, oC); REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM CONV3D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str()); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM CONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); if(bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW, paddingMode); nd4j_debug("MKL-DNN is not used for conv3dnew_bp!\n", 0); std::vector gradOaxesForDot; if(!isNCDHW) { gradOaxesForDot = {0,1,2,3}; // bS, oD, oH, oW input = new NDArray(input->permute({0,4,1,2,3})); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW] gradI = new NDArray(gradI->permute({0,4,1,2,3})); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW] } else { gradOaxesForDot = {0,2,3,4}; // bS, oD, oH, oW } std::vector wPermut, colPermut; if(0 == wFormat) { wPermut = {3,0,1,2,4}; colPermut = {2,3,4,1,0,5,6,7}; } else if(1 == wFormat) { wPermut = {1,2,3,4,0}; colPermut = {1,2,3,4,0,5,6,7}; } else { wPermut = {4,1,2,3,0}; colPermut = {2,3,4,1,0,5,6,7}; } // ----- calculation of gradW and gradB ----- // NDArray columns(input->ordering(), {bS, iC, kD, kH, kW, oD, oH, oW}, input->dataType(), block.launchContext()); ConvolutionUtils::vol2col(block, *input, columns, sD, sH, sW, pD, pH, pW, dD, dH, dW); // [bS, iC, iD, iH, iW] is convoluted to [bS, iC, kD, kH, kW, oD, oH, oW] MmulHelper::tensorDot(&columns, gradO, gradW, {0,5,6,7}, gradOaxesForDot, wPermut); // [bS, iC, kD, kH, kW, oD, oH, oW] x [bS, oD, oH, oW, oC]/[bS, oC, oD, oH, oW] = [iC, kD, kH, kW, oC] //----- calculation of gradO -----// if(gradB) { if(gradB->rankOf() == 2) gradB = new NDArray(gradB->reshape(gradB->ordering(), {(int)gradB->lengthOf()}, false)); gradO->reduceAlongDimension(reduce::Sum, *gradB, gradOaxesForDot); // sum over bS oD oH oW if(gradB != OUTPUT_VARIABLE(2)) delete gradB; } //----- calculation of gradI -----// // [kD, kH, kW, iC, oC] x [bS, oD, oH, oW, oC]/[bS, oC, oD, oH, oW] = [kD, kH, kW, iC, bS, oD, oH, oW] // [oC, iC, kD, kH, kW] x [bS, oD, oH, oW, oC]/[bS, oC, oD, oH, oW] = [kD, kH, kW, iC, bS, oD, oH, oW] // [oC, kD, kH, kW, iC] x [bS, oD, oH, oW, oC]/[bS, oC, oD, oH, oW] = [kD, kH, kW, iC, bS, oD, oH, oW] MmulHelper::tensorDot(weights, gradO, &columns, {indWoC}, {indIOioC}, colPermut); ConvolutionUtils::col2vol(block, columns, *gradI, sD, sH, sW, pD, pH, pW, dD, dH, dW); // columns [bS, iC, kD, kH, kW, oD, oH, oW] is de-convoluted to [bS, iC, iD, iH, iW] if(!isNCDHW) { delete input; delete gradI; } return Status::OK(); } DECLARE_TYPES(conv3dnew_bp) { getOpDescriptor() ->setAllowedInputTypes(0, sd::DataType::ANY) ->setAllowedInputTypes(1, {ALL_FLOATS}) ->setAllowedInputTypes(2, {ALL_FLOATS}) ->setAllowedInputTypes(3, {ALL_FLOATS}) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(conv3dnew_bp) { auto inputShapeInfo = inputShape->at(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW) auto weightsShapeInfo = inputShape->at(1); // [kD, kH, kW, iC, oC], [oC, iC, kD, kH, kW], [oC, kD, kH, kW, iC] Nd4jLong const* biasShapeInfo = block.width() > 3 ? inputShape->at(2) : nullptr; // [oC] Nd4jLong const* gradOShapeInfo = block.width() > 3 ? inputShape->at(3) : inputShape->at(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) depth int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) height int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast(shape::sizeAt(weightsShapeInfo, 2));// filter(kernel) width int sD = INT_ARG(3); // strides depth int sH = INT_ARG(4); // strides height int sW = INT_ARG(5); // strides width int pD = INT_ARG(6); // paddings depth int pH = INT_ARG(7); // paddings height int pW = INT_ARG(8); // paddings width int dD = INT_ARG(9); // dilations depth int dH = INT_ARG(10); // dilations height int dW = INT_ARG(11); // dilations width int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW int wFormat = block.getIArguments()->size() > 14 ? INT_ARG(14) : 0; // 0-[kD, kH, kW, iC, oC], 1-[oC, iC, kD, kH, kW], 2-[oC, kD, kH, kW, iC] const int rank = 5; REQUIRE_TRUE(paddingMode < 2, 0, "CUSTOM CONV3D OP: causal padding mode (paddingMode = 2) is not allowed for this operation !"); REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM CONV3D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo); REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM CONV3D_BP OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo); REQUIRE_TRUE(gradOShapeInfo[0] == rank, 0, "CUSTOM CONV3D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, gradOShapeInfo); int indIOioC, indIiD, indWoC(0 == wFormat ? 4 : 0); if(!isNCDHW) { indIOioC = 4; indIiD = 1; } else { indIOioC = 1; indIiD = 2; } int bS = inputShapeInfo[1]; // batch size int iD = inputShapeInfo[indIiD+1]; // input depth int iH = inputShapeInfo[indIiD+2]; // input height int iW = inputShapeInfo[indIiD+3]; // input width int iC = inputShapeInfo[indIOioC+1]; // input channels int oC = weightsShapeInfo[indWoC+1]; // output channels int trueoD, trueoH, trueoW; // true output depth/height/width ConvolutionUtils::calcOutSizePool3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, paddingMode); std::vector expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoD,trueoH,trueoW, 0,indIOioC,indIiD,indIiD+1,indIiD+2}); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kD, kH, kW, iC, oC); REQUIRE_TRUE(ShapeUtils::areShapesEqual(gradOShapeInfo, expectedGradOShape), 0, "CUSTOM CONV3D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradOShapeInfo).c_str()); REQUIRE_TRUE(ShapeUtils::areShapesEqual(weightsShapeInfo, expectedWeightsShape), 0, "CUSTOM CONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str()); if(biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM CONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo)); auto gradIshapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, gradOShapeInfo, false, block.getWorkspace()); auto gradWshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, gradOShapeInfo, false, block.getWorkspace()); if(biasShapeInfo) { auto gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace()); return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo), CONSTANT(gradBshapeInfo)); } return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo)); } } } #endif