/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//
//  @author raver119@gmail.com
//

#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_log_poisson_loss)

#include <ops/declarable/CustomOperations.h>

namespace nd4j {
namespace ops {
    CUSTOM_OP_IMPL(log_poisson_loss, 3, 1, true, 0, 1) {
        auto log_predictions = INPUT_VARIABLE(0);
        auto weights = INPUT_VARIABLE(1);
        auto labels = INPUT_VARIABLE(2);

        auto output = OUTPUT_VARIABLE(0);

        int reductionMode = INT_ARG(0);			// 0 - "none"; 1 - "weighted_sum";  2 - "weighted_mean";  3 - "weighted_sum_by_nonzero_weights"

        bool computeFullLoss = false;
        if (block.numI() > 1)
            computeFullLoss = INT_ARG(1) != 0;

        // inputs validation
        REQUIRE_TRUE(labels->isSameShape(log_predictions), 0, "LOG_POISSON_LOSS OP: labels and log_predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(log_predictions).c_str());
        // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
        REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == labels->rankOf(), 0, "LOG_POISSON_LOSS OP: weights array should be scalar or have the same rank as labels array, but got %i and %i correspondingly!", weights->rankOf(), labels->rankOf());
        // check whether broadcast operation is possible for weights array
        REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *labels), 0, "LOG_POISSON_LOSS OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
        // only 4 possible reduction modes exist
        REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "LOG_POISSON_LOSS OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);

        // perform weights broadcasting/tile to labels if needed
        auto weightsBroad = weights;
        if(!weights->isScalar() && !weights->isSameShape(log_predictions))
            weightsBroad = new NDArray(weights->tileToShape(log_predictions->getShapeInfo()));


        NDArray E(labels->getShapeInfo(), block.getWorkspace());
        if (computeFullLoss)
            labels->applyPairwiseTransform(pairwise::LogPoissonLossFull, log_predictions, &E, nullptr);
        else
            labels->applyPairwiseTransform(pairwise::LogPoissonLoss, log_predictions, &E, nullptr);


        // multiply E on weights
        E *= *weightsBroad;

        switch (reductionMode) {
            case 0: {											// 0 - "none", un-reduced weighted losses with the same shape as labels.
                output->assign(E);
                break;
            }
            case 1: {											// 1 - "weighted_sum", output is scalar and equal to sum of all elements of E array
                E.reduceNumber(reduce::Sum, *output);
                break;
            }
            case 2: {											// 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array
                NDArray sum;
                if (weights->isScalar())
                    sum = *weights * E.lengthOf();
                else
                    sum = weightsBroad->reduceNumber(reduce::Sum);

                if (sum.e<double>(0) == 0.)
                    *output = 0.;
                else
                    output->assign(E.reduceNumber(reduce::Sum) / sum);
                break;
            }
            case 3: {											// 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights
                Nd4jLong numOfNonZeroWeights = 0;
                if(weights->isScalar()) {
                    if(weights->e<double>(0) != 0.)
                        numOfNonZeroWeights = E.lengthOf();
                }
                else {
                    numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);
                }

                if (numOfNonZeroWeights == 0)
                    (*output) = 0.;
                else
                    output->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
                break;
            }
        }

        if(weightsBroad != weights)
            delete weightsBroad;

        return Status::OK();
    }

    //////////////////////////////////////////////////////////////////////////
    DECLARE_TYPES(log_poisson_loss) {
        getOpDescriptor()->setAllowedInputTypes(nd4j::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
    }

    //////////////////////////////////////////////////////////////////////////
    DECLARE_SHAPE_FN(log_poisson_loss) {

        auto predictionsShapeInfo = inputShape->at(0);
        auto weightsShapeInfo 	  = inputShape->at(1);
        auto labelsShapeInfo  	  = inputShape->at(2);

        // labels and predictions must have the same shapes
        REQUIRE_TRUE(shape::shapeEquals(labelsShapeInfo, predictionsShapeInfo), 0, "LOG_POISSON_LOSS OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(predictionsShapeInfo).c_str());
        // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
        REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(labelsShapeInfo), 0, "LOG_POISSON_LOSS OP: weights array should be scalar or have the same rank as labels array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(labelsShapeInfo));
        // check whether broadcast operation is possible for weights array
        REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, labelsShapeInfo), 0, "LOG_POISSON_LOSS OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(labelsShapeInfo).c_str());

        DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(predictionsShapeInfo));
        Nd4jLong* outShapeInfo = nullptr;

        if(INT_ARG(0) != 0) 			// in this case output is scalar
            outShapeInfo = ConstantShapeHelper::getInstance()->scalarShapeInfo(outType);
        else 							// in this case output has the same shape as labels and predictions
            outShapeInfo = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(labelsShapeInfo, outType));

        return SHAPELIST(outShapeInfo);
    }

    //////////////////////////////////////////////////////////////////////////
    CUSTOM_OP_IMPL(log_poisson_loss_grad, 3, 3, false, 0, 1) {

        auto log_predictions  = INPUT_VARIABLE(0);
        auto weights = INPUT_VARIABLE(1);
        auto labels  = INPUT_VARIABLE(2);

        auto dLdp = OUTPUT_VARIABLE(0);		// dL/dpredictions
        auto dLdw = OUTPUT_VARIABLE(1);		// dL/dweights
        auto dLdl = OUTPUT_VARIABLE(2);		// dL/dlabels

        int reductionMode = INT_ARG(0);			// 0 - "none"; 1 - "weighted_sum";  2 - "weighted_mean";  3 - "weighted_sum_by_nonzero_weights"
        // take into account Alex's proposition to treat "none" the same as "weighted_sum" mode when calculating gradients
        if(reductionMode == 0)
            reductionMode = 1;

        bool computeFullLoss = false;
        if (block.numI() > 1)
            computeFullLoss = INT_ARG(1) != 0;

        // inputs validation
        REQUIRE_TRUE(labels->isSameShape(log_predictions), 0, "LOG_POISSON_LOSS_GRAD OP: labels and log_predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(log_predictions).c_str());
        // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
        REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == labels->rankOf(), 0, "LOG_POISSON_LOSS_GRAD OP: weights array should be scalar or have the same rank as labels array, but got %i and %i correspondingly!", weights->rankOf(), labels->rankOf());
        // check whether broadcast operation is possible for weights array
        REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *labels), 0, "LOG_POISSON_LOSS_GRAD OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str());
        // only 4 possible reduction modes exist
        REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "LOG_POISSON_LOSS_GRAD OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode);

        // perform weights broadcasting/tile to labels if needed
        auto weightsBroad = weights;
        if(!weights->isScalar() && !weights->isSameShape(log_predictions))
            weightsBroad = new NDArray(weights->tileToShape(log_predictions->getShapeInfo()));


        NDArray E(labels->getShapeInfo(), block.getWorkspace());
        if (computeFullLoss) {
            labels->applyPairwiseTransform(pairwise::LogPoissonLossFull, log_predictions, &E, nullptr);

            NDArray rDiv(labels->getShapeInfo(), block.getWorkspace());
            labels->applyScalar(scalar::ReverseDivide, 0.5f, &rDiv);
            dLdl->assign(rDiv  + labels->transform(transform::Log) + -(*log_predictions));
        } else {
            labels->applyPairwiseTransform(pairwise::LogPoissonLoss, log_predictions, &E, nullptr);

            dLdl->assign(-(*log_predictions));
        }

        dLdp->assign(log_predictions->transform(transform::Exp) - (*labels));
        
        switch (reductionMode) {

            case 1: {											// 1 - "none" and "weighted_sum", output is scalar and equal to sum of all elements of E array

                *dLdp *= *weightsBroad;
                *dLdl *= *weightsBroad;

                if(weights->isScalar())
                    dLdw->assign(E.reduceNumber(reduce::Sum));
                else if(weights != weightsBroad) {
                    std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
                    E.reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
                }
                else
                    dLdw->assign(E);
                break;
            }
            case 2: {											// 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array

                NDArray sum;
                if (weights->isScalar())
                    sum = (*weights) * E.lengthOf();
                else
                    sum = weightsBroad->reduceNumber(reduce::Sum);

                if (sum.e<double>(0) == 0.) {
                    *dLdp = 0.;
                    *dLdl = 0.;
                    *dLdw = 0.;
                }
                else {

                    *dLdp *= *weightsBroad / sum;
                    *dLdl *= *weightsBroad / sum;

                    if(weights->isScalar())
                        *dLdw = 0.;
                    else if(weights != weightsBroad) {
                        std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
                        ((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum)).reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
                    }
                    else
                        dLdw->assign((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum));
                }
                break;
            }
            case 3: {											// 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights

                Nd4jLong numOfNonZeroWeights = 0;
                if(weights->isScalar()) {
                    if(weights->e<double>(0) != 0.)
                        numOfNonZeroWeights = E.lengthOf();
                }
                else
                    numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e<Nd4jLong>(0);

                if (numOfNonZeroWeights == 0) {
                    *dLdp = 0.;
                    *dLdl = 0.;
                    *dLdw = 0.;
                }
                else {
                    auto numOfNonZeroWeightsScalar = NDArrayFactory::create(dLdw->dataType(), numOfNonZeroWeights, block.launchContext());

                    if(weights->isScalar())
                        dLdw->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights));
                    else if(weights != weightsBroad) {
                        std::vector<int> axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->getShapeInfo(), weightsBroad->getShapeInfo());
                        E.reduceAlongDimension(reduce::Sum, dLdw, axesToReduceAlong, true, false, false);
                        *dLdw /= numOfNonZeroWeightsScalar;
                    }
                    else
                        dLdw->assign(E / numOfNonZeroWeightsScalar);

                    NDArray temp = *weightsBroad / numOfNonZeroWeightsScalar;
                    *dLdp *= temp;
                    *dLdl *= temp;
                }
                break;
            }
        }

        if(weightsBroad != weights)
            delete weightsBroad;

        return Status::OK();
    }

    DECLARE_TYPES(log_poisson_loss_grad) {

        getOpDescriptor()->setAllowedInputTypes(nd4j::DataType::ANY)->setAllowedOutputTypes({ALL_FLOATS});
    }

    DECLARE_SHAPE_FN(log_poisson_loss_grad) {

        auto predictionsShapeInfo = inputShape->at(0);
        auto weightsShapeInfo 	  = inputShape->at(1);
        auto labelsShapeInfo  	  = inputShape->at(2);

        // labels and predictions must have the same shapes
        REQUIRE_TRUE(shape::shapeEquals(labelsShapeInfo, predictionsShapeInfo), 0, "LOG_POISSON_LOSS_GRAD OP: labels and predictions arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(predictionsShapeInfo).c_str());
        // weights array can be single scalar or has the same rank as labels, and must be broadcastable to labels
        REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(labelsShapeInfo), 0, "LOG_POISSON_LOSS_GRAD OP: weights array should be scalar or have the same rank as labels array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(labelsShapeInfo));
        // check whether broadcast operation is possible for weights array
        REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, labelsShapeInfo), 0, "LOG_POISSON_LOSS_GRAD OP: shapes of weights and labels arrays should be broadcastable, but got weights = %s and labels = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(labelsShapeInfo).c_str());

        DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(predictionsShapeInfo));

        Nd4jLong *dLdpShapeInfo = ShapeBuilders::copyShapeInfoAndType(predictionsShapeInfo, outType, false, block.getWorkspace());
        Nd4jLong *dLdwShapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, outType, false, block.getWorkspace());
        Nd4jLong *dLdlShapeInfo = ShapeBuilders::copyShapeInfoAndType(labelsShapeInfo, outType, false, block.getWorkspace());

        return SHAPELIST(dLdpShapeInfo, dLdwShapeInfo, dLdlShapeInfo);
    }
}
}

#endif