/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #include #include namespace nd4j { namespace ops { namespace helpers { void scatter(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) { const int outRank = output.rankOf(); const int indRank = indices.rankOf(); const int updRank = updates.rankOf(); const Nd4jLong indLen = indices.lengthOf(); if(outRank == 1) { // #pragma omp parallel for if(indLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided) #pragma omp parallel for if(!lock) schedule(guided) for(Nd4jLong i = 0; i < indLen; ++i) { Nd4jLong idx = indices.e(i); NDArray out = output({idx, idx+1}); out.applyPairwiseTransform(op, updates.e(i), nullptr); } } else { // outRank > 1 int sizeOfDims = indRank; if(outRank == updRank && indices.isVector()) sizeOfDims = 1; std::vector dimsToExcludeUpd(sizeOfDims); std::iota(dimsToExcludeUpd.begin(), dimsToExcludeUpd.end(), 0); // #pragma omp parallel for if(indLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided) // causes known openMP asan bug ! #pragma omp parallel for if(!lock) schedule(guided) for(Nd4jLong i = 0; i < indLen; ++i) { NDArray outSubArr = output(indices.e(i), std::vector({0})); NDArray updSubArr = updates(i, dimsToExcludeUpd); outSubArr.applyPairwiseTransform(op, updSubArr, nullptr); } } } /////////////////////////////////////////////////////////////////// void scatterND(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) { const Nd4jLong indLen = indices.lengthOf(); const int outRank = output.rankOf(); const int indRank = indices.rankOf(); const Nd4jLong indLastDim = indices.sizeAt(-1); if(outRank == 1) { // #pragma omp parallel for if(indLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided) #pragma omp parallel for if(!lock) schedule(guided) for(Nd4jLong i = 0; i < indLen; ++i) { Nd4jLong idx = indices.e(i); NDArray out = output({idx, idx+1}); out.applyPairwiseTransform(op, updates.e(i), nullptr); } } else { std::vector dimsToExcludeInd = ShapeUtils::evalDimsToExclude(indRank, {indRank-1}); std::vector dimsToExcludeUpd(indRank - 1); std::iota(dimsToExcludeUpd.begin(), dimsToExcludeUpd.end(), 0); std::vector idxRangeOut(2*outRank, 0); // #pragma omp parallel for if(indLen/indLastDim > Environment::getInstance()->elementwiseThreshold()) schedule(guided) firstprivate(idxRangeOut) #pragma omp parallel for if(!lock) schedule(guided) firstprivate(idxRangeOut) for(Nd4jLong i = 0; i < indLen/indLastDim; ++i) { NDArray indSubArr = indices(i, dimsToExcludeInd); for(Nd4jLong j = 0; j < indLastDim; ++j) { idxRangeOut[2*j] = indSubArr.e(j); idxRangeOut[2*j + 1] = idxRangeOut[2*j] + 1; } NDArray outSubArr = output(idxRangeOut); NDArray updSubArr = updates(i, dimsToExcludeUpd); outSubArr.applyPairwiseTransform(op, updSubArr, nullptr); } } } void scatterForLoss(nd4j::LaunchContext *context, const NDArray& indices, const NDArray& updates, NDArray& output, const bool calcGrad) { // requirements for arrays // shapes of updates and output must be the same // shape of indices should be the same as updates shape with last dimension excluded // for example if updates is {a,b,c} then indices should be {a,b} const Nd4jLong indicesLen = indices.lengthOf(); std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(updates.rankOf(), {-1}); if(!calcGrad) { #pragma omp parallel for schedule(guided) for(Nd4jLong i = 0; i < indicesLen; ++i) { auto subArr = updates(i, dimsToExclude); output.p(i, subArr.e(indices.e(i))); } } else { #pragma omp parallel for schedule(guided) for(Nd4jLong i = 0; i < indicesLen; ++i) { auto subArr = updates(i, dimsToExclude); auto ind = indices.e(i); subArr.p(ind, subArr.e(ind) - 1.); } } } } } }