/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #if NOT_EXCLUDED(OP_unstack) #include #include namespace nd4j { namespace ops { CUSTOM_OP_IMPL(unstack, 1, -1, false, 0, 1) { auto input = INPUT_VARIABLE(0); auto dim = INT_ARG(0); if (dim < 0) dim += input->rankOf(); REQUIRE_TRUE(dim < input->rankOf(), 0, "Unstack dimension should be lower then rank of input %i, but got dimension=%i !", input->rankOf(), dim); REQUIRE_TRUE(dim >= 0, 0, "Unstack dimension should be non-negative value, but got %i !", dim); std::vector dims; for (int e = 0; e < input->rankOf(); e++) if (e != dim) dims.emplace_back(e); if (dims.size() == 0 && input->rankOf() == 1) { // split vector into lenthOf scalars for (Nd4jLong e = 0; e < input->lengthOf(); e++) { auto outE = OUTPUT_VARIABLE(e); outE->assign(input->e(e)); } } auto tads = input->allTensorsAlongDimension(dims); //nd4j_printf("Tad size: %d\n",tads->size()); for (int e = 0; e < tads->size(); e++) { //nd4j_printf("Calling assign at index %d\n",e); auto outE = OUTPUT_VARIABLE(e); auto tadAtE = tads->at(e); outE->assign(tadAtE); this->storeResult(block, e, *outE); } delete tads; return Status::OK(); } DECLARE_SYN(unpack, unstack); DECLARE_SHAPE_FN(unstack) { auto inShape = inputShape->at(0); auto dim = INT_ARG(0); if (dim < 0) dim += shape::rank(inShape); REQUIRE_TRUE(dim < inShape[0], 0, "UNSTACK op: dimension should be lower then rank of input %i, but got dimension=%i !", inShape[0], dim); REQUIRE_TRUE(dim >= 0, 0, "UNSTACK op: dimension should be non-negative value, but got %i !", dim); std::vector dims; for (int e = 0; e < shape::rank(inShape); e++) if (e != dim) dims.emplace_back(e); if (dims.size() == 0 && shape::rank(inShape) == 1) { // split vector into lenthOf scalars // auto result = SHAPELIST(); for (Nd4jLong e = 0; e < shape::length(inShape); e++) result->push_back(ConstantShapeHelper::getInstance()->scalarShapeInfo(ArrayOptions::dataType(inShape))); return result; } auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(inShape, dims); auto numTads = tadPack.numberOfTads(); std::vector shape(shape::rank(tadPack.primaryShapeInfo())); for (int e = 0; e < shape::rank(tadPack.primaryShapeInfo()); e++) shape[e] = shape::shapeOf(tadPack.primaryShapeInfo())[e]; // remove leading and trailing 1 if (inShape[0] == 2 && shape.size() == 2) { if (shape[0] == 1) { shape.erase(shape.begin()); } else if (shape[1] == 1) { shape.erase(shape.end()); } } auto result = SHAPELIST(); for (int e = 0; e < numTads; e++) { auto newShape = ConstantShapeHelper::getInstance()->createShapeInfo(ArrayOptions::dataType(inShape), shape::order(inShape), shape); result->push_back(newShape); } return result; } DECLARE_TYPES(unstack) { getOpDescriptor() ->setAllowedInputTypes({ALL_FLOATS, ALL_INTS}) ->setSameMode(true); } } } #endif