/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com, created on 29/10/17. // @author Yurii Shyrma (iuriish@yahoo.com) // #include #if NOT_EXCLUDED(OP_batchnorm) #include #include namespace nd4j { namespace ops { #ifdef HAVE_MKLDNN using namespace mkldnn; static void getMKLDNNMemoryDescBatchNorm(const NDArray* src, const NDArray* diff_src, const NDArray* dst, mkldnn::memory::desc* batchnorm_src_md, mkldnn::memory::desc* batchnorm_diff_src_md, mkldnn::memory::desc* batchnorm_dst_md, mkldnn::memory::desc* user_src_md, mkldnn::memory::desc* user_diff_src_md, mkldnn::memory::desc* user_dst_md, int axis) { const Nd4jLong* shape = src->getShapeInfo(); Nd4jLong rank = shape[0]; Nd4jLong dim1 = axis; // MKL-DNN supports only 1 axis, which has to be the "channel" one Nd4jLong dim2 = axis >= 2 ? 1 : 2; Nd4jLong dim3 = axis >= 3 ? 2 : 3; mkldnn::memory::dims batchnorm_src_tz = { (int)shape[1], (int)shape[dim1 + 1], rank > 2 ? (int)shape[dim2 + 1] : 1, rank > 3 ? (int)shape[dim3 + 1] : 1}; auto type = mkldnn::memory::data_type::f32; auto format = mkldnn::memory::format::nchw; auto supposed_to_be_any_format = mkldnn::memory::format::nChw8c; // doesn't work with "any" if (src != nullptr && src->getBuffer() != nullptr && batchnorm_src_md != nullptr) { *batchnorm_src_md = mkldnn::memory::desc({ batchnorm_src_tz }, type, supposed_to_be_any_format); *user_src_md = mkldnn::memory::desc({ batchnorm_src_tz }, type, format); user_src_md->data.format = mkldnn_blocked; // overrides format user_src_md->data.layout_desc.blocking.strides[0][0] = src->stridesOf()[0]; user_src_md->data.layout_desc.blocking.strides[0][1] = src->stridesOf()[dim1]; user_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? src->stridesOf()[dim2] : 1; user_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? src->stridesOf()[dim3] : 1; } if (diff_src != nullptr && diff_src->getBuffer() != nullptr && batchnorm_diff_src_md != nullptr) { *batchnorm_diff_src_md = mkldnn::memory::desc({ batchnorm_src_tz }, type, supposed_to_be_any_format); *user_diff_src_md = mkldnn::memory::desc({ batchnorm_src_tz }, type, format); user_diff_src_md->data.format = mkldnn_blocked; // overrides format user_diff_src_md->data.layout_desc.blocking.strides[0][0] = diff_src->stridesOf()[0]; user_diff_src_md->data.layout_desc.blocking.strides[0][1] = diff_src->stridesOf()[dim1]; user_diff_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? diff_src->stridesOf()[dim2] : 1; user_diff_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? diff_src->stridesOf()[dim3] : 1; } if (dst != nullptr && dst->getBuffer() != nullptr && batchnorm_dst_md != nullptr) { *batchnorm_dst_md = mkldnn::memory::desc({ batchnorm_src_tz }, type, supposed_to_be_any_format); *user_dst_md = mkldnn::memory::desc({ batchnorm_src_tz }, type, format); user_dst_md->data.format = mkldnn_blocked; // overrides format user_dst_md->data.layout_desc.blocking.strides[0][0] = dst->stridesOf()[0]; user_dst_md->data.layout_desc.blocking.strides[0][1] = dst->stridesOf()[dim1]; user_dst_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? dst->stridesOf()[dim2] : 1; user_dst_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? dst->stridesOf()[dim3] : 1; } } #endif CUSTOM_OP_IMPL(batchnorm, 3, 1, false, 1, 2) { auto input = INPUT_VARIABLE(0); auto mean = INPUT_VARIABLE(1); auto variance = INPUT_VARIABLE(2); NDArray *gamma = nullptr; NDArray *beta = nullptr; auto output = OUTPUT_VARIABLE(0); const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); // FIXME: double? const double epsilon = T_ARG(0); if(applyScale) gamma = INPUT_VARIABLE(3); if(applyOffset) beta = INPUT_VARIABLE(3 + static_cast(applyScale)); std::vector inArrs(block.width()); for(int i = 0; i < block.width(); ++i) inArrs[i] = INPUT_VARIABLE(i); // check whether all input shapes are mutually broadcastable Nd4jLong* outShapeInfo = nullptr; const bool areShapesOk = ShapeUtils::evalCommonBroadcastShapeInfo(inArrs, outShapeInfo, block.getWorkspace()); REQUIRE_TRUE(areShapesOk, 0, "BATCHNORM op: the shapes of input arrays are not mutually broadcastable !"); // normalized output = gamma * ((input - mean) / sqrt(variance + epsilon)) + beta auto sigmaInvGam = (*variance + epsilon).transform(transform::RSqrt); if(applyScale) sigmaInvGam *= *gamma; NDArray inputMinusMean; if(!input->isSameShape(output) && !mean->isSameShape(output)) { auto inputTiled = NDArray(output, false, block.launchContext()); input->tile(inputTiled); inputMinusMean = inputTiled - *mean; } else inputMinusMean = *input - *mean; if (applyOffset) output->assign(inputMinusMean * sigmaInvGam + *beta); else output->assign(inputMinusMean * sigmaInvGam); return Status::OK(); } DECLARE_TYPES(batchnorm) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(batchnorm) { std::vector inArrs(block.width()); auto in = inputShape->at(0); for(int i = 0; i < block.width(); ++i) inArrs[i] = INPUT_VARIABLE(i); // check whether all input shapes are mutually broadcastable Nd4jLong* outShapeInfo = nullptr; const bool areShapesOk = ShapeUtils::evalCommonBroadcastShapeInfo(inArrs, outShapeInfo, block.getWorkspace()); REQUIRE_TRUE(areShapesOk, 0, "BATCHNORM op: the shapes of input arrays are not mutually broadcastable !"); auto result = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(outShapeInfo, DataTypeUtils::pickFloatingType(ArrayOptions::dataType(in)))); return SHAPELIST(result); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(batchnorm_new, 3, 1, false, 1, 2) { auto input = INPUT_VARIABLE(0); auto mean = INPUT_VARIABLE(1); auto variance = INPUT_VARIABLE(2); NDArray* gamma = nullptr; NDArray* beta = nullptr; auto output = OUTPUT_VARIABLE(0); const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const double epsilon = T_ARG(0); if(applyScale) gamma = INPUT_VARIABLE(3); if(applyOffset) beta = INPUT_VARIABLE(3 + static_cast(applyScale)); const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const int numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes <= inRank, 0, "BATCHNORM_NEW op: too big number of input axes to normalize over, expected number should be less or equal to rank of input array, but got %i and %i correspondingly !", numOfAxes, inRank); // get, for example, something like {1, inDim1, 1, inDim3, 1} if axes = {1, 3} std::vector expShapeWithUnities(inRank, 1); for(int i = 0; i < numOfAxes; ++i) expShapeWithUnities[axes[i]] = input->sizeAt(axes[i]); // evaluate expected shape for mean, variance and gamma. These 3 arrays should have identical shapes // for example if input shape is {2,3,4,5,6} and axes = {1,3}, then expected shape would be {1,3,1,5,1}, and if axes = {3}, then expected shape would be {5} std::vector expShape = numOfAxes == 1 ? std::vector(1, input->sizeAt(axes[0])) : expShapeWithUnities; std::string expShapeStr = ShapeUtils::shapeAsString(expShape); REQUIRE_TRUE(ShapeUtils::shapeAsString(mean) == expShapeStr, 0, "BATCHNORM_NEW op: wrong shape of mean array, expected is %s, but got %s instead !", expShapeStr.c_str(), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(ShapeUtils::shapeAsString(variance) == expShapeStr, 0, "BATCHNORM_NEW op: wrong shape of variance array, expected is %s, but got %s instead !", expShapeStr.c_str(), ShapeUtils::shapeAsString(variance).c_str()); if(gamma) REQUIRE_TRUE(ShapeUtils::shapeAsString(gamma) == expShapeStr, 0, "BATCHNORM_NEW op: wrong shape of gamma array, expected is %s, but got %s instead !", expShapeStr.c_str(), ShapeUtils::shapeAsString(gamma).c_str()); if(beta) REQUIRE_TRUE(ShapeUtils::shapeAsString(beta) == expShapeStr, 0, "BATCHNORM_NEW op: wrong shape of beta array, expected is %s, but got %s instead !", expShapeStr.c_str(), ShapeUtils::shapeAsString(beta).c_str()); // types of all input arrays should be the same for(int i = 1; i < block.width(); ++i) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_NEW op: types of all input arrays should be the same !"); #ifdef HAVE_MKLDNN if (block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) && numOfAxes == 1) { std::vector& streams = block.getMKLDNNStreams(); if (streams.empty()) { streams.push_back(MKLDNNStream("batchnorm_new")); } std::vector shape({2, mean->lengthOf()}); NDArray weights = NDArrayFactory::create('c', shape, block.getWorkspace()); weights({0, 1, 0, 0}).assign(1.0f); weights({1, 2, 0, 0}).assign(0.0f); if (streams[0].checkAndReset({input, mean, variance, gamma, beta}, {output}, {(float)epsilon}, axes)) { mkldnn_memory_desc_t empty; mkldnn::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(empty), user_dst_md(empty); getMKLDNNMemoryDescBatchNorm(input, nullptr, output, &batchnorm_src_md, nullptr, &batchnorm_dst_md, &user_src_md, nullptr, &user_dst_md, axes[0]); auto batchnorm_desc = batch_normalization_forward::desc(prop_kind::forward_inference, batchnorm_src_md, epsilon, use_global_stats | (applyScale || applyOffset ? use_scale_shift : 0)); auto engine = streams[0].getEngine(); auto batchnorm_prim_desc = batch_normalization_forward::primitive_desc(batchnorm_desc, engine); auto user_src_memory = mkldnn::memory({user_src_md, engine}, input->buffer()); auto user_dst_memory = mkldnn::memory({user_dst_md, engine}, output->buffer()); auto batchnorm_mean_memory = mkldnn::memory(batchnorm_prim_desc.mean_primitive_desc(), mean->buffer()); auto batchnorm_variance_memory = mkldnn::memory(batchnorm_prim_desc.variance_primitive_desc(), variance->buffer()); auto batchnorm_src_memory = user_src_memory; streams[0].addMemory(user_src_memory); if (mkldnn::memory::primitive_desc({batchnorm_src_md, engine}) != user_src_memory.get_primitive_desc()) { batchnorm_src_memory = mkldnn::memory({batchnorm_src_md, engine}); streams[0].addMemory(batchnorm_src_memory); streams[0].addOperation(reorder(user_src_memory, batchnorm_src_memory)); } auto batchnorm_dst_memory = user_dst_memory; streams[0].addMemory(user_dst_memory); if (mkldnn::memory::primitive_desc(batchnorm_prim_desc.dst_primitive_desc()) != user_dst_memory.get_primitive_desc()) { batchnorm_dst_memory = mkldnn::memory(batchnorm_prim_desc.dst_primitive_desc()); streams[0].addMemory(batchnorm_dst_memory); } streams[0].addMemory(batchnorm_mean_memory); streams[0].addMemory(batchnorm_variance_memory); if (applyScale || applyOffset) { auto batchnorm_weights_memory = mkldnn::memory(batchnorm_prim_desc.weights_primitive_desc(), weights.buffer()); streams[0].addMemory(batchnorm_weights_memory); streams[0].addOperation(batch_normalization_forward(batchnorm_prim_desc, (mkldnn::primitive::at)batchnorm_src_memory, (mkldnn::primitive::at)batchnorm_mean_memory, (mkldnn::primitive::at)batchnorm_variance_memory, (mkldnn::primitive::at)batchnorm_weights_memory, batchnorm_dst_memory)); } else { streams[0].addOperation(batch_normalization_forward(batchnorm_prim_desc, (mkldnn::primitive::at)batchnorm_src_memory, (mkldnn::primitive::at)batchnorm_mean_memory, (mkldnn::primitive::at)batchnorm_variance_memory, batchnorm_dst_memory)); } if (mkldnn::memory::primitive_desc(batchnorm_prim_desc.dst_primitive_desc()) != user_dst_memory.get_primitive_desc()) { streams[0].addOperation(reorder(batchnorm_dst_memory, user_dst_memory)); } } if (applyScale || applyOffset) { if (gamma != nullptr) { weights({0, 1, 0, 0}).assign(gamma); } if (beta != nullptr) { weights({1, 2, 0, 0}).assign(beta); } } streams[0].submitAndWait(); return Status::OK(); } #endif nd4j_debug("MKL-DNN is not used for batchnorm_new!\n", 0); // formula: output = gamma * ((input - mean) / sqrt(variance + epsilon)) + beta helpers::batchnorm(input, mean, variance, gamma, beta, output, axes, epsilon); return Status::OK(); } DECLARE_TYPES(batchnorm_new) { getOpDescriptor()->setAllowedInputTypes({ALL_FLOATS})->setSameMode(true); } DECLARE_SHAPE_FN(batchnorm_new) { auto inShapeInfo = inputShape->at(0); DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(inShapeInfo)); auto outShapeInfo = ShapeBuilders::copyShapeInfoAndType(inShapeInfo, outType, false, block.getWorkspace()); // output shape is identical to input shape return SHAPELIST(CONSTANT(outShapeInfo)); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(batchnorm_bp, 4, 3, false, 1, 2) { auto input = INPUT_VARIABLE(0); auto mean = INPUT_VARIABLE(1); auto variance = INPUT_VARIABLE(2); NDArray *gamma = nullptr; NDArray *beta = nullptr; NDArray *dLdO = nullptr; // next epsilon auto dLdI = OUTPUT_VARIABLE(0); auto dLdM = OUTPUT_VARIABLE(1); auto dLdV = OUTPUT_VARIABLE(2); NDArray *dLdG = nullptr; NDArray *dLdB = nullptr; const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); // FIXME: double? const double epsilon = T_ARG(0); const int dLdONum = static_cast(applyScale) + static_cast(applyOffset); if(applyScale) { gamma = INPUT_VARIABLE(3); dLdG = OUTPUT_VARIABLE(3); } if(applyOffset) { beta = INPUT_VARIABLE(3 + static_cast(applyScale)); dLdB = OUTPUT_VARIABLE(3 + static_cast(applyScale)); } dLdO = INPUT_VARIABLE(3 + dLdONum); std::vector inArrs(block.width()); for(int i = 0; i < 4 + dLdONum; ++i) inArrs[i] = INPUT_VARIABLE(i); // check whether all input shapes are mutually broadcastable Nd4jLong* outShapeInfo = nullptr; const bool areShapesOk = ShapeUtils::evalCommonBroadcastShapeInfo(inArrs, outShapeInfo, block.getWorkspace()); REQUIRE_TRUE(areShapesOk, 0, "BATCHNORM_BP op: the shapes of input arrays are not mutually broadcastable !"); // ***** calculations ***** // auto sigmaInv = (*variance + epsilon).transform(transform::RSqrt); NDArray sigmaInvGamdLdO = -sigmaInv * *dLdO; if(applyScale) sigmaInvGamdLdO *= *gamma; NDArray inputMinusMean; if(!input->isSameShape(dLdO) && !mean->isSameShape(dLdO)) { auto inputTiled = NDArray(dLdO, false, block.launchContext()); input->tile(inputTiled); inputMinusMean = inputTiled - *mean; } else inputMinusMean = *input - *mean; // dLdI if(!dLdI->isSameShape(dLdO)) dLdI->assign( (-sigmaInvGamdLdO).reduceAlongDims(reduce::Sum, ShapeUtils::evalBroadcastBackwardAxis(dLdI->getShapeInfo(), dLdO->getShapeInfo())) ); else dLdI->assign(-sigmaInvGamdLdO); // dLdM if(!dLdM->isSameShape(dLdO)) dLdM->assign( sigmaInvGamdLdO.reduceAlongDims(reduce::Sum, ShapeUtils::evalBroadcastBackwardAxis(dLdM->getShapeInfo(), dLdO->getShapeInfo())) ); else dLdM->assign(sigmaInvGamdLdO); // dLdV if(!dLdV->isSameShape(dLdO)) { dLdV->assign( (sigmaInv * sigmaInv * sigmaInvGamdLdO * inputMinusMean * 0.5f).reduceAlongDims(reduce::Sum, ShapeUtils::evalBroadcastBackwardAxis(dLdV->getShapeInfo(), dLdO->getShapeInfo())) ); } else dLdV->assign(sigmaInv * sigmaInv * sigmaInvGamdLdO * inputMinusMean * 0.5f); // dLdG if(applyScale) { if(!dLdG->isSameShape(dLdO)) dLdG->assign( (sigmaInv * inputMinusMean * *dLdO).reduceAlongDims(reduce::Sum, ShapeUtils::evalBroadcastBackwardAxis(dLdG->getShapeInfo(), dLdO->getShapeInfo())) ); else dLdG->assign(sigmaInv * inputMinusMean * *dLdO); } // dLdB if(applyOffset) { if(!dLdB->isSameShape(dLdO)) dLdB->assign(dLdO->reduceAlongDims(reduce::Sum, ShapeUtils::evalBroadcastBackwardAxis(dLdB->getShapeInfo(), dLdO->getShapeInfo())) ); else dLdB->assign(dLdO); } return Status::OK(); } DECLARE_TYPES(batchnorm_bp) { getOpDescriptor() ->setAllowedInputTypes(0, nd4j::DataType::ANY) ->setAllowedInputTypes(1, nd4j::DataType::ANY) ->setAllowedInputTypes(2, nd4j::DataType::ANY) ->setAllowedInputTypes(3, nd4j::DataType::ANY) ->setAllowedInputTypes(4, nd4j::DataType::ANY) ->setAllowedInputTypes(5, {ALL_FLOATS}) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(batchnorm_bp) { const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const int dLdONum = static_cast(applyScale) + static_cast(applyOffset); std::vector inArrs(block.width()); for(int i = 0; i < 4 + dLdONum; ++i) inArrs[i] = INPUT_VARIABLE(i); // check whether all input shapes are mutually broadcastable Nd4jLong* outShapeInfo = nullptr; const bool areShapesOk = ShapeUtils::evalCommonBroadcastShapeInfo(inArrs, outShapeInfo, block.getWorkspace()); REQUIRE_TRUE(areShapesOk, 0, "BATCHNORM_BP op: the shapes of input arrays are not mutually broadcastable !"); Nd4jLong* dLdIShapeInfo(nullptr), *dLdMShapeInfo(nullptr), *dLdVShapeInfo(nullptr), *dLdGShapeInfo(nullptr), *dLdBShapeInfo(nullptr); COPY_SHAPE(inputShape->at(0), dLdIShapeInfo); COPY_SHAPE(inputShape->at(1), dLdMShapeInfo); COPY_SHAPE(inputShape->at(2), dLdVShapeInfo); if(applyScale) { COPY_SHAPE(inputShape->at(3), dLdGShapeInfo); } if(applyOffset){ COPY_SHAPE(inputShape->at(3 + static_cast(applyScale)), dLdBShapeInfo); } if(!applyScale && !applyOffset) return SHAPELIST(CONSTANT(dLdIShapeInfo), CONSTANT(dLdMShapeInfo), CONSTANT(dLdVShapeInfo)); if(applyScale && !applyOffset) return SHAPELIST(CONSTANT(dLdIShapeInfo), CONSTANT(dLdMShapeInfo), CONSTANT(dLdVShapeInfo), CONSTANT(dLdGShapeInfo)); if(!applyScale && applyOffset) return SHAPELIST(CONSTANT(dLdIShapeInfo), CONSTANT(dLdMShapeInfo), CONSTANT(dLdVShapeInfo), CONSTANT(dLdBShapeInfo)); return SHAPELIST(CONSTANT(dLdIShapeInfo), CONSTANT(dLdMShapeInfo), CONSTANT(dLdVShapeInfo), CONSTANT(dLdGShapeInfo), CONSTANT(dLdBShapeInfo)); } // ////////////////////////////////////////////////////////////////////////// // CONFIGURABLE_OP_IMPL(batchnorm_bp, 5, 1, true, 0, 1) { // NDArray* input = INPUT_VARIABLE(0); // NDArray* epsilon = INPUT_VARIABLE(1); // NDArray* gamma = INPUT_VARIABLE(2); // NDArray* dGlobalMeanView = INPUT_VARIABLE(3); // NDArray* dGlobalVarView = INPUT_VARIABLE(4); // NDArray* outEpsilon = this->getZ(block); // std::vector argI = *(block.getIArguments()); // const int bS = epsilon->sizeAt(0); // bool isLockGammaBeta = (bool)argI[0]; // const int* epsilonShape = epsilon->getShapeInfo() + 1; // const T eps = (T)1e-5; // int rank = epsilon->rankOf(); // std::initializer_list dimensions; // int effectiveBatchSize; // if (rank == 2) { // dimensions = {0}; // effectiveBatchSize = bS; // } // else if (rank == 4) { // dimensions = {0, 2, 3}; // effectiveBatchSize = input->sizeAt(0)*input->sizeAt(2)*input->sizeAt(3); // } // else // throw "Graph operation batchnorm_bp: the epsilon rank must be equal to 2 or 4 !"; // NDArray *mean(nullptr), *var(nullptr), *dBeta(nullptr), *dGamma(nullptr), *dLdVar(nullptr), *dxmu1(nullptr), *dxmu2(nullptr); // mean = input->template reduceAlongDimension>(dimensions); // var = input->template varianceAlongDimension>(false, dimensions); // var->template applyScalar>(eps, nullptr); // auto std = new NDArray(var->getShapeInfo(), block.getWorkspace()); // var->template applyTransform>(std, nullptr); // auto xMu = new NDArray(input->getShapeInfo(), block.getWorkspace()); // auto xHat = new NDArray(input->getShapeInfo(), block.getWorkspace()); // auto temp1 = new NDArray(epsilon->getShapeInfo(), block.getWorkspace()); // auto temp2 = new NDArray(std->getShapeInfo(), block.getWorkspace()); // auto dGammaView = new NDArray('c', {1, epsilonShape[1]}, block.getWorkspace()); // auto dBetaView = new NDArray('c', {1, epsilonShape[1]}, block.getWorkspace()); // auto dxhat = new NDArray(epsilon->getShapeInfo(), block.getWorkspace()); // if (rank == 2) { // input->subRowVector(mean, xMu); // xMu->divRowVector(std, xHat); // } // else { // input->template applyBroadcast>({1}, mean, xMu, nullptr); // xMu->template applyBroadcast>({1}, std, xHat, nullptr); // } // dBeta = epsilon->sum(dimensions); // dL/dBeta = sum_examples dL/dOut // epsilon->template applyPairwiseTransform>(xHat, temp1, nullptr); //dL/dGamma = sum_examples dL/dOut .* xHat // dGamma = temp1->sum(dimensions); //dL/dGamma = sum_examples dL/dOut .* xHat // if (isLockGammaBeta) // epsilon->template applyPairwiseTransform>(gamma, dxhat, nullptr); // else {// Standard case // if(rank == 2) // epsilon->mulRowVector(gamma, dxhat); //dL/dxHat = dL/dOut . gamma Shape: [minibatchSize, nOut] // else // epsilon->template applyBroadcast>({1}, gamma, dxhat, nullptr); // } // // dLdVar - dL/dVariance, shape: [1, miniBatch] // dxhat->template applyPairwiseTransform>(xMu, temp1, nullptr); // dLdVar = temp1->sum(dimensions); // dLdVar->template applyScalar>((T)-0.5, nullptr); // T powParams[] = {(T)(-3.)}; // std->template applyTransform>(temp2, powParams); // dLdVar->template applyPairwiseTransform>(temp2, nullptr); // //dL/dmu // dxmu1 = dxhat->sum(dimensions); // dxmu1->template applyPairwiseTransform>(std, nullptr); // dxmu1->template applyTransform>(); // dxmu2 = xMu->sum(dimensions); // dxmu2->template applyScalar>((T)(-2.)/effectiveBatchSize); // dxmu2->template applyPairwiseTransform>(dLdVar, nullptr); // dxmu1->template applyPairwiseTransform>(dxmu2, nullptr); // NDArray* dLdmu = dxmu1; // = dL/dmu Shape: [1, nOut] // //Note the array reuse here: dxhat, xMu, dLdVar, dLdmu - all are invalid after this line (but aren't used later anyway) // NDArray* dLdx = dxhat; // dLdVar->template applyScalar>((T)(2.)/effectiveBatchSize); // dLdmu->template applyScalar>((T)(1.)/effectiveBatchSize); // if(rank == 2) { // dLdx->divRowVector(std, dLdx); // xMu->mulRowVector(dLdVar, xMu); // } // else { // dLdx->template applyBroadcast>({1}, std, dLdx, nullptr); // xMu->template applyBroadcast>({1}, dLdVar, xMu, nullptr); // } // dLdx->template applyPairwiseTransform>(xMu, nullptr); // if(rank == 2) // dLdx->addRowVector(dLdmu, dLdx); // else // dLdx->template applyBroadcast>({1}, dLdmu, dLdx, nullptr); // *outEpsilon = *dLdx; // //TODO rework this to avoid the assign here // // dGammaView->assign(dGamma); // // dBetaView->assign(dBeta); // // dGlobalMeanView->assign((T)0.); // // dGlobalVarView->assign((T)0.); // // retGradient.setGradientFor(BatchNormalizationParamInitializer.GAMMA, dGammaView); // // retGradient.setGradientFor(BatchNormalizationParamInitializer.BETA, dBetaView); // // retGradient.setGradientFor(BatchNormalizationParamInitializer.GLOBAL_MEAN, dGlobalMeanView); // // retGradient.setGradientFor(BatchNormalizationParamInitializer.GLOBAL_VAR, dGlobalVarView); // delete std; // delete xMu; // delete xHat; // delete mean; // delete var; // delete dBeta; // delete dGamma; // delete dLdVar; // delete dxmu1; // delete dxmu2; // delete temp1; // delete temp2; // delete dxhat; // delete dGammaView; // delete dBetaView; // return ND4J_STATUS_OK; // } } } #endif