/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 04.05.2018 // #include #if NOT_EXCLUDED(OP_upsampling3d) #include #include namespace nd4j { namespace ops { ////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(upsampling3d, 1, 1, false, 0, 3) { auto input = INPUT_VARIABLE(0); // [bS, iC, iD, iH, iW] (NCDHW) or [bS, iD, iH, iW, iC] (NDHWC) auto output = OUTPUT_VARIABLE(0); // [bS, iC, factorD*iD, factorH*iH, factorW*iW ] (NCDHW) or [bS, factorD*iD, factorH*iH, factorW*iW, iC] (NDHWC) const int factorD = INT_ARG(0); const int factorH = INT_ARG(1); const int factorW = INT_ARG(2); const int isNCDHW = block.getIArguments()->size() > 3 ? INT_ARG(3) : 0; // INT_ARG(3): 0-NCDHW, 1-NDHWC REQUIRE_TRUE(input->rankOf() == 5, 0, "UPSAMPLING3D op: input should be 5D, but got %i instead!", input->rankOf()); REQUIRE_TRUE(output->rankOf() == 5, 0, "UPSAMPLING3D op: output should be 5D, but got %i instead!", output->rankOf()); ConvolutionUtils::upsampling3d(*block.launchContext(), *input, *output, factorD, factorH, factorW, (bool)isNCDHW); return Status::OK(); } DECLARE_TYPES(upsampling3d) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(upsampling3d) { auto inputShapeInfo = inputShape->at(0); REQUIRE_TRUE(inputShapeInfo[0] == 5, 0, "UPSAMPLING2D op: input should be 5D, but got %i instead!", inputShapeInfo[0]); const int factorD = INT_ARG(0); const int factorH = INT_ARG(1); const int factorW = INT_ARG(2); const int isNCDHW = block.getIArguments()->size() > 3 ? INT_ARG(3) : 0; // INT_ARG(3): 0-NCHW, 1-NHWC Nd4jLong *outputShapeInfo = nullptr; ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo[0]), Nd4jLong); outputShapeInfo[0] = inputShapeInfo[0]; outputShapeInfo[1] = inputShapeInfo[1]; if(isNCDHW) { outputShapeInfo[2] = inputShapeInfo[2]; outputShapeInfo[3] = inputShapeInfo[3] * factorD; outputShapeInfo[4] = inputShapeInfo[4] * factorH; outputShapeInfo[5] = inputShapeInfo[5] * factorW; } else { outputShapeInfo[2] = inputShapeInfo[2] * factorD; outputShapeInfo[3] = inputShapeInfo[3] * factorH; outputShapeInfo[4] = inputShapeInfo[4] * factorW; outputShapeInfo[5] = inputShapeInfo[5]; } ShapeUtils::updateStridesAndType(outputShapeInfo, inputShapeInfo, shape::order(inputShapeInfo)); return SHAPELIST(CONSTANT(outputShapeInfo)); } DECLARE_TYPES(upsampling3d_bp) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(upsampling3d_bp, 2, 1, false, 0, 0) { // NDArray* input = INPUT_VARIABLE(0); // [bS, iC, iD, iH, iW] (NCDHW) or [bS, iD, iH, iW, iC] (NDHWC) auto gradO = INPUT_VARIABLE(1); // [bS, iC, factorD*iD, factorH*iH, factorW*iW ] (NCDHW) or [bS, factorD*iD, factorH*iH, factorW*iW, iC] (NDHWC) auto gradI = OUTPUT_VARIABLE(0); // [bS, iC, iD, iH, iW] (NCDHW) or [bS, iD, iH, iW, iC] (NDHWC) const int isNCDHW = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0; // INT_ARG(0): 0-NCHW, 1-NHWC // REQUIRE_TRUE(input->rankOf() == 5, 0, "UPSAMPLING3D_BP op: input array must be 4D, but got %i instead!", input->rankOf()); REQUIRE_TRUE(gradO->rankOf() == 5, 0, "UPSAMPLING3D_BP op: output's gradient array must be 4D, but got %i instead!", gradO->rankOf()); REQUIRE_TRUE(gradI->rankOf() == 5, 0, "UPSAMPLING3D_BP op: input's gradient array must be 4D, but got %i instead!", gradI->rankOf()); ConvolutionUtils::upsampling3dBP(*block.launchContext(), *gradO, *gradI, (bool)isNCDHW); return Status::OK(); } DECLARE_SHAPE_FN(upsampling3d_bp) { REQUIRE_TRUE(inputShape->at(0)[0] == 5, 0, "UPSAMPLING3D_BP op: input array must be 4D, but got %i instead!", inputShape->at(0)[0]); REQUIRE_TRUE(inputShape->at(1)[0] == 5, 0, "UPSAMPLING3D_BP op: output's gradient array must be 4D, but got %i instead!", inputShape->at(1)[0]); auto gradIShapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShape->at(0), inputShape->at(1), false, block.getWorkspace()); return SHAPELIST(CONSTANT(gradIShapeInfo)); } } } #endif