/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ #ifndef NDARRAY_CPP #define NDARRAY_CPP #include "../NDArray.h" #include "../NDArrayFactory.h" #include "NativeOpExecutioner.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../NDArray.hpp" #include namespace nd4j { void* NDArray::platformBuffer() { return specialBuffer(); } void* NDArray::getPlatformBuffer() const { return getSpecialBuffer(); } Nd4jLong* NDArray::getPlatformShapeInfo() const { return getSpecialShapeInfo(); } Nd4jLong* NDArray::platformShapeInfo() { return specialShapeInfo(); } void NDArray::syncToDevice() const { _buffer->syncToSpecial(); } void NDArray::syncToHost() const { _buffer->syncToPrimary(getContext()); } void NDArray::tickWriteHost() const { _buffer->writePrimary(); } void NDArray::tickWriteDevice() const { _buffer->writeSpecial(); } void NDArray::tickReadHost() const { _buffer->readPrimary(); } void NDArray::tickReadDevice() const { _buffer->readSpecial(); } void NDArray::tickBothActual() const { _buffer->writePrimary(); _buffer->readSpecial(); } bool NDArray::isActualOnHostSide() const { return _buffer->isPrimaryActual(); } bool NDArray::isActualOnDeviceSide() const { return _buffer->isSpecialActual(); } void NDArray::makeBothBuffersActual() const { if(!isActualOnHostSide()) syncToHost(); if(!isActualOnDeviceSide()) syncToDevice(); } /////////////////////////////////////////////////////////////////// template __global__ static void fillAsTriangularCuda(const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const T val, const int lower, const int upper) { const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); __shared__ int zRank, xRank, areSameOffsets; // xRank == zRank always, except when xRank = 1, in this case zRank = 2 __shared__ Nd4jLong zLen, totalThreads, *sharedMem; // xLen == zLen, except when xRank = 1, in this case zLen = 2*xLen if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); areSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo); xRank = shape::rank(xShapeInfo); zRank = shape::rank(zShapeInfo); zLen = shape::length(zShapeInfo); totalThreads = gridDim.x * blockDim.x; } __syncthreads(); auto coords = sharedMem + threadIdx.x * zRank; const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < zLen; i += totalThreads) { shape::index2coords(zRank, shape::shapeOf(const_cast(zShapeInfo)), i, zLen, coords); const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast(zShapeInfo)), shape::stride(const_cast(zShapeInfo)), coords, zRank); // if( (row + upper < col) || (row + lower > col) ) if((coords[zRank - 2] + upper < coords[zRank - 1]) || (coords[zRank - 2] + lower > coords[zRank - 1])) z[zOffset] = val; else if(vx != vz) { // when x and z are different arrays if(xRank != zRank) coords[0] = coords[1]; const auto xOffset = areSameOffsets ? zOffset : shape::getOffset(0, shape::shapeOf(const_cast(xShapeInfo)), shape::stride(const_cast(xShapeInfo)), coords, xRank); z[zOffset] = x[xOffset]; } } } /////////////////////////////////////////////////////////////////// template void NDArray::fillAsTriangular(const float val, int lower, int upper, const char direction, NDArray* target) { if (isS()) throw std::runtime_error("NDArray::fillAsTriangular: you can't use this method on String array!"); if(target == nullptr) target = this; if(!isSameShape(target) && !(rankOf() == 1 && target->rankOf() == 2 && sizeAt(0) == target->sizeAt(0) && sizeAt(0) == target->sizeAt(1))) throw std::string("NDArray::fillAsTriangular method: wrong shape of target array !"); if (direction == 'u') lower = -target->sizeAt(-2); else if (direction == 'l') upper = target->sizeAt(-1); const int threadsPerBlock = MAX_NUM_THREADS / 4; const int blocksPerGrid = (target->lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = threadsPerBlock * sizeof(decltype(*target->getShapeInfo())) * target->rankOf() + 128; PointersManager manager(getContext(), "NDArray::fillAsTriangular"); NDArray::prepareSpecialUse({target}, {this}); fillAsTriangularCuda<<getCudaStream()>>>(getPlatformBuffer(), getPlatformShapeInfo(), target->getPlatformBuffer(), target->getPlatformShapeInfo(), static_cast(val), lower, upper); NDArray::registerSpecialUse({target}, {this}); manager.synchronize(); } BUILD_SINGLE_TEMPLATE(template void NDArray::fillAsTriangular, (const float val, int lower, int upper, const char direction, NDArray* target), LIBND4J_TYPES); //////////////////////////////////////////////////////////////////////// template __global__ static void identityMatrixCuda(void* vx, const Nd4jLong* xShapeInfo, const T val) { auto x = reinterpret_cast(vx); __shared__ int rank; __shared__ Nd4jLong len, totalThreads, *sharedMem; // xLen == zLen, except when xRank = 1, in this case zLen = 2*xLen if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); rank = shape::rank(xShapeInfo); len = shape::length(xShapeInfo); totalThreads = gridDim.x * blockDim.x; } __syncthreads(); auto coords = sharedMem + threadIdx.x * rank; const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < len; i += totalThreads) { shape::index2coords(rank, shape::shapeOf(const_cast(xShapeInfo)), i, len, coords); const auto offset = shape::getOffset(0, shape::shapeOf(const_cast(xShapeInfo)), shape::stride(const_cast(xShapeInfo)), coords, rank); if(coords[rank - 2] == coords[rank - 1]) // row == col -> on diagonal x[offset] = val; else x[offset] = static_cast(0); } } /////////////////////////////////////////////////////////////////// template static void identityMatrixCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vx, const Nd4jLong *xShapeInfo, const float val) { identityMatrixCuda<<>>(vx, xShapeInfo, static_cast(val)); } BUILD_SINGLE_TEMPLATE(template void identityMatrixCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vx, const Nd4jLong *xShapeInfo, const float val), LIBND4J_TYPES); //////////////////////////////////////////////////////////////////////// void NDArray::setIdentity() { if (isS()) throw std::runtime_error("NDArray::setIdentity: you can't use this method on String array!"); if (rankOf() != 2) throw std::runtime_error("NDArray::setIdentity: method should work only for 2D tensors. But " + toStringValue(rankOf()) + " was given."); const int threadsPerBlock = MAX_NUM_THREADS / 4; const int blocksPerGrid = (lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = threadsPerBlock * sizeof(decltype(getShapeInfo())) * rankOf() + 128; PointersManager manager(getContext(), "NDArray::setIdentity"); syncToDevice(); BUILD_SINGLE_SELECTOR(dataType(), identityMatrixCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, getContext()->getCudaStream(), getPlatformBuffer(), getPlatformShapeInfo(), 1.f), LIBND4J_TYPES); tickWriteDevice(); manager.synchronize(); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void NDArray::swapUnsafe(NDArray& other) { auto xType = this->dataType(); if (xType != other.dataType()) throw std::runtime_error("NDArray::swapUnsage method: both arrays must have the same data type"); if(specialBuffer() == nullptr || other.specialBuffer() == nullptr) throw std::runtime_error("NDArray::swapUnsafe method: input array should not be empty!"); if(lengthOf() != other.lengthOf()) throw std::runtime_error("NDArray::swapUnsafe method: input arrays should have the same length!"); BUILD_SINGLE_SELECTOR(xType, templatedSwapUnsafe, (specialBuffer(), specialShapeInfo(), other.specialBuffer(), other.specialShapeInfo(), getContext()->getCudaStream()), LIBND4J_TYPES); } //////////////////////////////////////////////////////////////////////// void NDArray::synchronize(const char* msg) const { auto res = cudaStreamSynchronize(*(getContext()->getCudaStream())); if (res != 0) throw std::runtime_error(msg + std::string(": synchronization failed !")); } //////////////////////////////////////////////////////////////////////// void NDArray::prepareSpecialUse(const std::initializer_list& writeList, const std::initializer_list& readList, bool synchronizeWritables) { for (const auto& a : readList) a->syncToDevice(); for (const auto& a : writeList) { a->getDataBuffer()->allocateSpecial(); if (synchronizeWritables) a->syncToDevice(); } } //////////////////////////////////////////////////////////////////////// void NDArray::registerSpecialUse(const std::initializer_list& writeList, const std::initializer_list& readList) { for (const auto& p : readList) p->tickReadDevice(); for (const auto& p : writeList) p->tickWriteDevice(); } //////////////////////////////////////////////////////////////////////// void NDArray::preparePrimaryUse(const std::initializer_list& writeList, const std::initializer_list& readList, bool synchronizeWritables) { for (const auto& a : readList) a->syncToHost(); for (const auto& a : writeList) { a->getDataBuffer()->allocatePrimary(); if (synchronizeWritables) a->syncToHost(); } } //////////////////////////////////////////////////////////////////////// void NDArray::registerPrimaryUse(const std::initializer_list& writeList, const std::initializer_list& readList) { for (const auto& p : readList) p->tickReadHost(); for (const auto& p : writeList) p->tickWriteHost(); } ////////////////////////////////////////////////////////////////////////// void NDArray::syncShape() const { cudaMemcpy(getSpecialShapeInfo(), getShapeInfo(), shape::shapeInfoByteLength(getShapeInfo()), cudaMemcpyHostToDevice); } ////////////////////////////////////////////////////////////////////////// void* NDArray::specialBufferWithOffset(Nd4jLong offset) const { return getSpecialBuffer() != nullptr ? static_cast(getSpecialBuffer()) + (offset * sizeOfT()) : nullptr; } ////////////////////////////////////////////////////////////////////////// // change an array by repeating it the number of times given by reps. NDArray NDArray::tile(const std::vector& reps) const { int dim = reps.size(); int product = 1; for(const auto& item : reps) product *= item; if(product == 0) throw std::runtime_error("NDArray::tile method: one of the elements in reps array is zero !"); int rankOld = rankOf(); int diff = rankOld - dim; if(product==1) { // in this case 2 possibilities are present: just reshape or nothing to do NDArray result(*this); if(diff < 0) { // reshape to higher dimension std::vector shapeNew = reps; // need to have unities at first "diff" positions of new shape memcpy(&shapeNew[-diff], result.getShapeInfo()+1, rankOld * sizeof(Nd4jLong)); // put old shape numbers at rest of positions result.reshapei(ordering(), shapeNew); } return result; // nothing to do, if diff >= 0 -> identity tile } // evaluate shapeInfo for resulting array auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace()); // create new buffer, in any case the memory amount new buffer points to is bigger then those for old _buffer std::shared_ptr newBuff = std::make_shared(shape::length(newShapeInfo) * sizeOfT(), dataType(), getContext()->getWorkspace(), true); // assign new shape and new buffer to resulting array NDArray result(newBuff, ShapeDescriptor(newShapeInfo), getContext()); // fill newBuff, loop through all elements of newBuff // looping through getBuffer() goes automatically by means of getSubArrayIndex applying const auto resultLen = result.lengthOf(); auto xType = this->dataType(); auto stream = getContext()->getCudaStream(); prepareSpecialUse({&result}, {this}); BUILD_SINGLE_SELECTOR(xType, tileKernelH, (this->getSpecialBuffer(), this->getSpecialShapeInfo(), result.getSpecialBuffer(), result.getSpecialShapeInfo(), resultLen, stream), LIBND4J_TYPES); registerSpecialUse({&result}, {this}); return result; } ////////////////////////////////////////////////////////////////////////// // change an array by repeating it the number of times given by reps. void NDArray::tile(const std::vector& reps, NDArray& target) const { // evaluate true tile shapeInfo for comparison with target shapeInfo auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace()); if(!shape::equalsSoft(newShapeInfo, target.getShapeInfo())) { throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !"); } // fill newBuff, loop through all elements of newBuff // looping through getBuffer() goes automatically by means of getSubArrayIndex applying const int ews = target.ews(); const int targetLen = target.lengthOf(); auto stream = getContext()->getCudaStream(); prepareSpecialUse({&target}, {this}); BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), tileKernelHH, (getSpecialBuffer(), getSpecialShapeInfo(), target.getSpecialBuffer(), target.getSpecialShapeInfo(), targetLen, ews, stream), LIBND4J_TYPES, LIBND4J_TYPES); registerSpecialUse({&target}, {this}); } ////////////////////////////////////////////////////////////////////////// void NDArray::tile(NDArray& target) const { if(rankOf() > target.rankOf()) throw std::runtime_error("NDArray::tile method - rank of target array must be bigger or equal to the rank of this array !"); if(!ShapeUtils::areShapesBroadcastable(*this, target)) throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !"); // fill newBuff, loop through all elements of newBuff // looping through getBuffer() goes automatically by means of getSubArrayIndex applying const auto ews = target.ews(); const auto targetLen = target.lengthOf(); auto stream = getContext()->getCudaStream(); prepareSpecialUse({&target}, {this}); BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), tileKernelHH, (getSpecialBuffer(), getSpecialShapeInfo(), target.getSpecialBuffer(), target.getSpecialShapeInfo(), targetLen, ews, stream), LIBND4J_TYPES, LIBND4J_TYPES); registerSpecialUse({&target}, {this}); } ////////////////////////////////////////////////////////////////////////// // create new array by repeating it the number of times given by reps NDArray* NDArray::repeat(int dimension, const std::vector& repeats) const { auto outShape = ShapeUtils::evalRepeatShape(dimension, repeats, *this); // the size of outShape == rank int rank = rankOf(); // = outShape.size() std::vector newShape(rank); for (int i = 0; i < rank; i++) newShape[i] = outShape[i]; auto ret = new NDArray('c', outShape, dataType(), getContext()); auto repeatDelta = shape::prodLong(newShape.data(), rank) / this->lengthOf(); std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(rankOf(), {dimension}); const Nd4jLong numTads = ShapeUtils::getNumOfSubArrs(getShapeInfo(), dimsToExclude); //this->tensorsAlongDimension({dimension}); std::vector copy({dimension}); auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(this->getShapeInfo(), copy); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(ret->getShapeInfo(), copy); prepareSpecialUse({ret}, {this}); auto stream = getContext()->getCudaStream(); BUILD_SINGLE_SELECTOR(dataType(), repeatKernelH, (getSpecialBuffer(), ret->getSpecialBuffer(), numTads, lengthOf(), ret->lengthOf(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), *stream), LIBND4J_TYPES); registerSpecialUse({ret}, {this}); return ret; } ////////////////////////////////////////////////////////////////////////// // fill array by repeating it the number of times given by reps void NDArray::repeat(int dimension, NDArray& target) const { if(dimension < 0) dimension += rankOf(); if(rankOf() != target.rankOf()) throw std::invalid_argument("NDArray::repeat(int dimension, NDArray& target) method: wrong rank of target array it must be equal to this array rank!"); Nd4jLong repeatDelta = target.sizeAt(dimension) / sizeAt(dimension); if(repeatDelta == 0) throw std::invalid_argument("NDArray::repeat(int dimension, NDArray& target) method: wrong shape of target array!"); std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(rankOf(), {dimension}); const Nd4jLong numTads = ShapeUtils::getNumOfSubArrs(getShapeInfo(), dimsToExclude); std::vector copy({dimension}); auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(this->getShapeInfo(), copy); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(target.getShapeInfo(), copy); NDArray::prepareSpecialUse({&target}, {this}); auto stream = getContext()->getCudaStream(); BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), repeatKernelHH, (getSpecialBuffer(), target.getSpecialBuffer(), numTads, lengthOf(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), *stream), LIBND4J_TYPES, LIBND4J_TYPES); NDArray::registerSpecialUse({&target}, {this}); } ////////////////////////////////////////////////////////////////////////// template void NDArray::printCurrentBuffer(const bool host, const char* msg, const int precision) const {\ if(_length == 0) { printf("NDArray::printActualBuffer: array length is zero !\n"); return; } if(msg) printf("%s", msg); if(host) { if(getBuffer() == nullptr || _length == 0) { printf("NDArray::printActualBuffer: host buffer is nullptr !\n"); return; } const T* buff = bufferAsT(); for (uint i = 0; i < _length; i++) printf("%.*f, ", precision, (double)buff[getOffset(i)]); printf("\n"); } else { if(getSpecialBuffer() == nullptr || _length == 0) { printf("NDArray::printSpecialBuffer: special buffer is nullptr !\n"); return; } void* pHost = operator new(sizeof(T) * _length); if (ews() != 1) { for (uint i = 0; i < _length; i++) cudaMemcpyAsync(pHost + i * sizeof(T), getSpecialBuffer() + getOffset(i) * sizeof(T), sizeof(T), cudaMemcpyDeviceToHost, *(getContext()->getCudaStream())); } else cudaMemcpyAsync(pHost, getSpecialBuffer(), sizeOfT() * _length, cudaMemcpyDeviceToHost, *getContext()->getCudaStream()); cudaError_t cudaResult = cudaStreamSynchronize(*getContext()->getCudaStream()); if(cudaResult != 0) throw std::runtime_error("NDArray::printSpecialBuffer: cudaStreamSynchronize failed!"); for (uint i = 0; i < _length; i++) printf("%.*f, ", precision, (double)reinterpret_cast(pHost)[i]); printf("\n"); operator delete(pHost); } } template void NDArray::printCurrentBuffer(const bool host,const char* msg, const int precision) const; template void NDArray::printCurrentBuffer(const bool host, const char* msg, const int precision) const; template void NDArray::printCurrentBuffer(const bool host, const char* msg, const int precision) const; } // end namespace nd4j #endif