/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include <op_boilerplate.h> #include <loops/broadcasting.h> #include <loops/legacy_ops.h> #include <types/types.h> #include <Environment.h> #include <cuda.h> #include <cuda_runtime.h> #include <string> #include <stdexcept> #include <StringUtils.h> #include <specials_cuda.h> using namespace simdOps; template<typename X, typename Y, typename Z, typename OpClass> static __global__ void broadcastSimple( void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) { functions::broadcast::Broadcast<X,Y,Z>::template transformCuda<OpClass>(x,xShapeInfo,y,yShapeInfo,z,zShapeInfo,dimension,dimensionLength,tadOnlyShapeInfo,tadOffsets,tadOnlyShapeInfoZ,tadOffsetsZ); } template<typename X, typename Y, typename Z, typename OpClass> static __global__ void broadcastInverseSimple( void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) { functions::broadcast::Broadcast<X,Y,Z>::template transformInverseCuda<OpClass>(x,xShapeInfo,y,yShapeInfo,z,zShapeInfo,dimension,dimensionLength,tadOnlyShapeInfo,tadOffsets,tadOnlyShapeInfoZ,tadOffsetsZ); } namespace functions { namespace broadcast { template<typename X, typename Y, typename Z> template <typename OpClass> __host__ void Broadcast<X,Y,Z>::intermediateBroadcast(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) { broadcastSimple<X, Y, Z, OpClass><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ); } template<typename X, typename Y, typename Z> __host__ void Broadcast<X,Y,Z>::execBroadcast(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) { DISPATCH_BY_OPNUM_TTT(intermediateBroadcast, PARAMS(launchDims, stream, x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ), OPS_A(BROADCAST_OPS)) DEBUG_KERNEL(stream, opNum); } template<typename X, typename Y, typename Z> template <typename OpClass> __host__ void Broadcast<X,Y,Z>::intermediateInverseBroadcast(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) { broadcastInverseSimple<X, Y, Z, OpClass><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ); } template<typename X, typename Y, typename Z> __host__ void Broadcast<X,Y,Z>::execInverseBroadcast(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShapeInfo, void *y, Nd4jLong *yShapeInfo, void *z, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) { DISPATCH_BY_OPNUM_TTT(intermediateInverseBroadcast, PARAMS(launchDims, stream, x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ), OPS_A(BROADCAST_OPS)) DEBUG_KERNEL(stream, opNum); } template<typename X, typename Y, typename Z> template <typename OpType> __device__ void Broadcast<X,Y,Z>::transformInverseCuda( void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) { if (tadOnlyShapeInfoZ == nullptr) { tadOnlyShapeInfoZ = tadOnlyShapeInfo; tadOffsetsZ = tadOffsets; } auto x = reinterpret_cast<X*>(vx); auto y = reinterpret_cast<Y*>(vy); auto z = reinterpret_cast<Z*>(vz); //decompose in to several sub tads after //moving all dimensions (in sorted order) //to the back. //permuted version of the x shape info for setting up the tad problem __shared__ Nd4jLong tadLength; __shared__ Nd4jLong tadEWS; __shared__ int numTads; __shared__ Nd4jLong xEWS; __shared__ Nd4jLong zEWS; if (threadIdx.x == 0) { tadLength = shape::length(tadOnlyShapeInfo); tadEWS = shape::elementWiseStride(tadOnlyShapeInfo); numTads = shape::length(yShapeInfo) / tadLength; xEWS = shape::elementWiseStride(xShapeInfo); zEWS = shape::elementWiseStride(tadOnlyShapeInfoZ); } __syncthreads(); auto xOrder = shape::order(xShapeInfo); auto yOrder = shape::order(tadOnlyShapeInfo); auto zOrder = shape::order(tadOnlyShapeInfoZ); for (int r = blockIdx.x; r < numTads; r += gridDim.x) { auto rY = y + tadOffsets[r]; auto rZ = z + tadOffsetsZ[r]; if(tadEWS > 0 && zEWS > 0 && xEWS > 0 && dimensionLength == 1 && xOrder == yOrder && xOrder == zOrder) { for (int i = threadIdx.x; i < tadLength; i+= blockDim.x) rZ[i * zEWS] = OpType::op(x[i * xEWS], rY[i * tadEWS]); } else { // it is expected that x and z tads and y array all have the same length for (Nd4jLong i = threadIdx.x; i < tadLength; i+= blockDim.x) { auto xOffset = shape::getIndexOffset(i, xShapeInfo, tadLength); auto yOffset = shape::getIndexOffset(i, tadOnlyShapeInfo, tadLength); auto zOffset = shape::getIndexOffset(i, tadOnlyShapeInfoZ, tadLength); rZ[zOffset] = OpType::op(x[xOffset], rY[yOffset]); } } } } template<typename X, typename Y, typename Z> template <typename OpType> __device__ void Broadcast<X,Y,Z>::transformCuda( void *vx, Nd4jLong *xShapeInfo, void *vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets, Nd4jLong *tadOnlyShapeInfoZ, Nd4jLong *tadOffsetsZ) { if (tadOnlyShapeInfoZ == nullptr) { tadOnlyShapeInfoZ = tadOnlyShapeInfo; tadOffsetsZ = tadOffsets; } auto x = reinterpret_cast<X*>(vx); auto y = reinterpret_cast<Y*>(vy); auto z = reinterpret_cast<Z*>(vz); //decompose in to several sub tads after //moving all dimensions (in sorted order) //to the back. //permuted version of the x shape info for setting up the tad problem __shared__ Nd4jLong tadLength; __shared__ Nd4jLong tadEWS; __shared__ int numTads; __shared__ Nd4jLong yEWS; __shared__ Nd4jLong zEWS; if (threadIdx.x == 0) { tadLength = shape::length(tadOnlyShapeInfo); tadEWS = shape::elementWiseStride(tadOnlyShapeInfo); numTads = shape::length(xShapeInfo) / tadLength; yEWS = shape::elementWiseStride(yShapeInfo); zEWS = shape::elementWiseStride(tadOnlyShapeInfoZ); } __syncthreads(); auto xOrder = shape::order(tadOnlyShapeInfo); auto yOrder = shape::order(yShapeInfo); auto zOrder = shape::order(tadOnlyShapeInfoZ); for (int r = blockIdx.x; r < numTads; r += gridDim.x) { auto rX = x + tadOffsets[r]; auto rZ = z + tadOffsetsZ[r]; if(tadEWS > 0 && zEWS > 0 && yEWS > 0 && xOrder == yOrder && xOrder == zOrder) { for (int i = threadIdx.x; i < tadLength; i+= blockDim.x) rZ[i * zEWS] = OpType::op(rX[i * tadEWS], y[i * yEWS]); } else { // it is expected that x and z tads and y array all have the same length for (Nd4jLong i = threadIdx.x; i < tadLength; i+= blockDim.x) { auto xOffset = shape::getIndexOffset(i, tadOnlyShapeInfo, tadLength); auto yOffset = shape::getIndexOffset(i, yShapeInfo, tadLength); auto zOffset = shape::getIndexOffset(i, tadOnlyShapeInfoZ, tadLength); rZ[zOffset] = OpType::op(rX[xOffset], y[yOffset]); } } } } BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_0); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_1); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_2); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_3); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_4); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_5); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_6); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_7); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_8); BUILD_PAIRWISE_TEMPLATE(template class ND4J_EXPORT Broadcast, , PAIRWISE_TYPES_9); } }