/******************************************************************************* * Copyright (c) 2020 Konduit, K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include #include "../triangular_solve.h" namespace nd4j { namespace ops { namespace helpers { /* * lower triangular process for system of linear equations * x_1 = b_1/a_1,1 * x_2 = (b_2 - a_2,1 * x_1) / a_2,2 * x_3 = (b_3 - a_3,1 * x_1 - a_3,2 * x_2) / a_3,3 * ... * x_M = (b_M - a_M,1 * x_1 - ... a_M,M-1 * x_M-1)/ a_M,M * * output == x * a == leftInput * b == rightInput * * */ template static void lowerTriangularSolve(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool adjoint, NDArray* output) { auto rows = leftInput->rows(); //output->t(0,0) = rightInput->t(0,0) / leftInput->t(0,0); for (auto r = 0; r < rows; r++) { auto sum = rightInput->t(r, 0); for (auto c = 0; c < r; c++) { sum -= leftInput->t(r,c) * output->t(c, 0); } output->t(r, 0) = sum / leftInput->t(r, r); } } /* * upper triangular process for system of linear equations * x_M = b_M/a_M,M * x_M-1 = (b_M-1 - a_M-1,M-2 * x_M) / a_M-1,M-1 * x_M-2 = (b_M-2 - a_M-2,M-3 * x_M-2 - a_M-2,M-1 * x_M) / a_3,3 * ... * x_1 = (b_1 - a_1,2 * x_2 - ... a_1,M * x_M)/ a_1,1 * * output == x * a == leftInput * b == rightInput * * */ template static void upperTriangularSolve(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool adjoint, NDArray* output) { auto rows = leftInput->rows(); for (auto r = rows; r > 0; r--) { auto sum = rightInput->t(r - 1, 0); for (auto c = r; c < rows; c++) { sum -= leftInput->t(r - 1, c) * output->t(c, 0); } output->t(r - 1, 0) = sum / leftInput->t(r - 1, r - 1); } } template static int triangularSolveFunctor_(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) { auto leftPart = leftInput->allTensorsAlongDimension({-2, -1}); auto rightPart = rightInput->allTensorsAlongDimension({-2, -1}); auto outputPart = output->allTensorsAlongDimension({-2, -1}); auto batchLoop = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i += increment) { if (lower) { lowerTriangularSolve(context, leftPart[i], rightPart[i], adjoint, outputPart[i]); } else { upperTriangularSolve(context, leftPart[i], rightPart[i], adjoint, outputPart[i]); } } }; samediff::Threads::parallel_tad(batchLoop, 0, leftPart.size(), 1); return Status::OK(); } template static void adjointTriangularMatrix_(nd4j::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) { auto inputPart = input->allTensorsAlongDimension({-2, -1}); auto outputPart = output->allTensorsAlongDimension({-2, -1}); auto batchLoop = PRAGMA_THREADS_FOR { for (auto batch = start; batch < stop; batch += increment) { if (!lower) { for (auto r = 0; r < input->rows(); r++) { for (auto c = 0; c <= r; c++) { outputPart[batch]->t(r, c) = inputPart[batch]->t(c, r); } } } else { for (auto r = 0; r < input->rows(); r++) { for (auto c = r; c < input->columns(); c++) { outputPart[batch]->t(r, c) = inputPart[batch]->t(c, r); } } } } }; samediff::Threads::parallel_tad(batchLoop, 0, inputPart.size(), 1); } int triangularSolveFunctor(nd4j::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool lower, bool adjoint, NDArray* output) { BUILD_SINGLE_SELECTOR(leftInput->dataType(), return triangularSolveFunctor_, (context, leftInput, rightInput, lower, adjoint, output), FLOAT_NATIVE); } void adjointMatrix(nd4j::LaunchContext* context, NDArray const* input, bool const lower, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), adjointTriangularMatrix_, (context, input, lower, output), FLOAT_NATIVE); } } } }