/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Oleh Semeniv (oleg.semeniv@gmail.com) // #include #if NOT_EXCLUDED(OP_Pow) #include #include namespace sd { namespace ops { BROADCASTABLE_OP_IMPL(Pow, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto z = OUTPUT_VARIABLE(0); BROADCAST_CHECK_EMPTY(x,y,z); //REQUIRE_TRUE(!y->isB(), 0, "Pairwise OP: you can't divide by bool array!"); auto tZ = BroadcastHelper::broadcastApply({scalar::Pow, pairwise::Pow, broadcast::Pow}, x, y, z); if (tZ == nullptr) return ND4J_STATUS_KERNEL_FAILURE; else if (tZ != z) { OVERWRITE_RESULT(tZ); } return Status::OK(); } DECLARE_TYPES(Pow) { getOpDescriptor() ->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS}) ->setAllowedInputTypes(1, {ALL_FLOATS, ALL_INTS}) ->setAllowedOutputTypes(0, {ALL_FLOATS, ALL_INTS}); } CUSTOM_OP_IMPL(Pow_bp, 3, 2, false, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto dLdz = INPUT_VARIABLE(2); auto dLdx = OUTPUT_VARIABLE(0); auto dLdy = OUTPUT_VARIABLE(1); const Nd4jLong* dLdzShapeInfo = nullptr; const bool areShapesBroadcastable = ShapeUtils::evalBroadcastShapeInfo(x->shapeInfo(), y->shapeInfo(), true, dLdzShapeInfo, block.getWorkspace()); REQUIRE_TRUE(areShapesBroadcastable, 0, "POW_BP OP: the shapes of x %s" " and y %s are not suitable for broadcast !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str()); REQUIRE_TRUE(shape::equalsSoft(dLdz->shapeInfo(), dLdzShapeInfo), 0, "POW_BP OP: wrong shape of next epsilon array (dLdOut)," " expected is %s, but got %s instead !", ShapeUtils::shapeAsString(dLdzShapeInfo).c_str(), ShapeUtils::shapeAsString(dLdz).c_str()); // dL/dy = x^y * log(x) * dL/dz auto temp = x->applyTrueBroadcast(BroadcastOpsTuple::Pow(), *y); // a = x^y x->applyTransform(transform::Log, *dLdx); // b = log(x) dLdx->applyScalar(sd::scalar::ReplaceNans, 0, *dLdx); temp *= *dLdx; // c = b*a temp *= *dLdz; // dL/dy = c * dL/dz if (dLdy->isSameShape(*dLdz)) { dLdy->assign(temp); } else { std::vector axesForY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), dLdz->shapeInfo()); dLdy->assign(temp.reduceAlongDimension(reduce::Sum, axesForY)); // dL/dy = sum(c * dL/dz) } // dL/dx = y*x^(y-1) * dL/dz x->applyTrueBroadcast(BroadcastOpsTuple::PowDerivative(), *y, temp); // a = y*x^(y-1) temp *= *dLdz; // dLdx = a*dL/dz if (dLdx->isSameShape(*dLdz)) { dLdx->assign(temp); // dLdx = a*dL/dz } else { std::vector axesForX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), dLdz->shapeInfo()); dLdx->assign(temp.reduceAlongDimension(reduce::Sum, axesForX)); // dLdx = a*dL/dz } return Status::OK(); } DECLARE_SHAPE_FN(Pow_bp) { auto xShapeInfo = inputShape->at(0); auto yShapeInfo = inputShape->at(1); Nd4jLong* dLdxShapeInfo = nullptr; Nd4jLong* dLdyShapeInfo = nullptr; COPY_SHAPE(xShapeInfo, dLdxShapeInfo); COPY_SHAPE(yShapeInfo, dLdyShapeInfo); return SHAPELIST(CONSTANT(dLdxShapeInfo), CONSTANT(dLdyShapeInfo)); } DECLARE_TYPES(Pow_bp) { getOpDescriptor() ->setAllowedInputTypes({ ALL_FLOATS, ALL_INTS }) ->setAllowedOutputTypes({ ALL_FLOATS }); } } } #endif