/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #if NOT_EXCLUDED(OP_multiply) #include namespace sd { namespace ops { BROADCASTABLE_OP_IMPL(multiply, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto z = OUTPUT_VARIABLE(0); BROADCAST_CHECK_EMPTY(x,y,z); const Nd4jLong* zShapeInfo = nullptr; const bool areShapesBroadcastable = ShapeUtils::evalBroadcastShapeInfo(x->shapeInfo(), y->shapeInfo(), true, zShapeInfo, block.getWorkspace()); REQUIRE_TRUE(areShapesBroadcastable, 0, "MULTIPLY OP: the shapes of x %s and y %s are not suitable for broadcast !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str()); auto tZ = BroadcastHelper::broadcastApply(sd::BroadcastOpsTuple::Multiply(), x, y, z); if (tZ == nullptr) return ND4J_STATUS_KERNEL_FAILURE; else if (tZ != z) throw std::runtime_error("multiply: result was replaced"); return Status::OK(); } DECLARE_SYN(Mul, multiply); DECLARE_TYPES(multiply) { getOpDescriptor() ->setAllowedInputTypes(0, DataType::ANY) ->setAllowedInputTypes(1, DataType::ANY) ->setAllowedOutputTypes(0, DataType::INHERIT); } DECLARE_TYPES(multiply_bp) { getOpDescriptor() ->setAllowedInputTypes(DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } /////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(multiply_bp, 3, 2, false, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto dLdz = INPUT_VARIABLE(2); auto dLdx = OUTPUT_VARIABLE(0); auto dLdy = OUTPUT_VARIABLE(1); const Nd4jLong* dLdzShapeInfo = nullptr; const bool areShapesBroadcastable = ShapeUtils::evalBroadcastShapeInfo(x->shapeInfo(), y->shapeInfo(), true, dLdzShapeInfo, block.getWorkspace()); REQUIRE_TRUE(areShapesBroadcastable, 0, "MULTIPLY_BP OP: the shapes of x %s and y %s are not suitable for broadcast !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(y).c_str()); REQUIRE_TRUE(shape::equalsSoft(dLdz->shapeInfo(), dLdzShapeInfo), 0, "MULTIPLY_BP OP: wrong shape of next epsilon array (dLdOut), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(dLdzShapeInfo).c_str(), ShapeUtils::shapeAsString(dLdz).c_str()); const Nd4jLong xLen = x->lengthOf(); const Nd4jLong yLen = y->lengthOf(); if(x->isScalar() && y->isScalar()) { // both are scalars y->applyPairwiseTransform(pairwise::Multiply, *dLdz, *dLdx); x->applyPairwiseTransform(pairwise::Multiply, *dLdz, *dLdy); //dLdx->assign((*y) * (*dLdz)); //dLdy->assign((*x) * (*dLdz)); } else if(x->isScalar()) { // x is scalar and y is not dLdx->assign((*y * *dLdz).reduceNumber(reduce::Sum)); dLdz->applyScalarArr(scalar::Multiply, *x, *dLdy); //dLdz->applyTrueBroadcast(broadcast::Multiply, x, dLdy, true); } else if(y->isScalar()) { // y is scalar and x is not dLdy->assign((*x * *dLdz).reduceNumber(reduce::Sum)); dLdz->applyScalarArr(scalar::Multiply, *y, *dLdx); } else if(x->isSameShape(y)) { x->applyPairwiseTransform(pairwise::Multiply, *dLdz, *dLdy); y->applyPairwiseTransform(pairwise::Multiply, *dLdz, *dLdx); } else if (x->isSameShape(dLdz)) { auto yTiled = NDArray(dLdz, false, block.launchContext()); y->tile(yTiled); std::vector axesForY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), dLdz->shapeInfo()); dLdy->assign( (*x * *dLdz).reduceAlongDimension(reduce::Sum, axesForY) ); yTiled.applyPairwiseTransform(pairwise::Multiply, *dLdz, *dLdx); } else if (y->isSameShape(dLdz)) { auto xTiled = NDArray(dLdz, false, block.launchContext()); x->tile(xTiled); std::vector axesForX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), dLdz->shapeInfo()); dLdx->assign( (*y * *dLdz).reduceAlongDimension(reduce::Sum, axesForX) ); xTiled.applyPairwiseTransform(pairwise::Multiply, *dLdz, *dLdy); } else { auto xTiled = NDArray(dLdz, false, block.launchContext()); auto yTiled = NDArray(dLdz, false, block.launchContext()); x->tile(xTiled); y->tile(yTiled); std::vector axesForX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), dLdz->shapeInfo()); std::vector axesForY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), dLdz->shapeInfo()); dLdx->assign( (*y * *dLdz).reduceAlongDimension(reduce::Sum, axesForX) ); dLdy->assign( (*x * *dLdz).reduceAlongDimension(reduce::Sum, axesForY) ); } return Status::OK(); } DECLARE_SHAPE_FN(multiply_bp) { auto xShapeInfo = inputShape->at(0); auto yShapeInfo = inputShape->at(1); Nd4jLong *dLdxShapeInfo = nullptr; Nd4jLong *dLdyShapeInfo = nullptr; COPY_SHAPE(xShapeInfo, dLdxShapeInfo); COPY_SHAPE(yShapeInfo, dLdyShapeInfo); return SHAPELIST(CONSTANT(dLdxShapeInfo), CONSTANT(dLdyShapeInfo)); } /* CUSTOM_OP_IMPL(multiply_bp, 3, 2, false, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto epsNext = INPUT_VARIABLE(2); auto gradX = OUTPUT_VARIABLE(0); auto gradY = OUTPUT_VARIABLE(1); auto lambdaX = LAMBDA_TT(_e, _y) { return _e * _y; }; auto lambdaY = LAMBDA_TT(_e, _x) { return _e * _x; }; if (x->isSameShape(y)) { // PWT case case // X gradient epsNext->applyPairwiseLambda(y, lambdaX, gradX); // Y gradient epsNext->applyPairwiseLambda(x, lambdaY, gradY); } else if (y->isScalar()) { // scalar case T _y = y->e(0); auto lambdaS = LAMBDA_T(_e, _y) { return _e * _y; }; T tmpX = x->template reduceNumber>(); gradY->assign(tmpX); epsNext->applyLambda(lambdaS, *gradX); } else { // broadcast case auto preX = x->dup(); auto preY = y->dup(); auto targetShape = epsNext->getShapeAsVector(); preX->tileToShape(targetShape); preY->tileToShape(targetShape); auto axisX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), epsNext->shapeInfo()); auto axisY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), epsNext->shapeInfo()); if (axisX.size() > 0) { auto sum = preX->template reduceAlongDimension>(axisX); gradX->assign(sum); delete sum; } else gradX->assign(preX); if (axisY.size() > 0) { auto sum = preY->template reduceAlongDimension>(axisY); gradY->assign(sum); delete sum; } else gradY->assign(preY); delete preX; delete preY; } return Status::OK(); } */ } } #endif