/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author saudet // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include #include "mkldnnUtils.h" #include #include namespace nd4j { namespace ops { namespace platforms { ////////////////////////////////////////////////////////////////////////// static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray* weights, const float epsilon, NDArray* z) { // unfortunately mkl dnn doesn't support any format (mkldnn::memory::format_tag::any) // also it gives wrong results for formats nhwc and ndhwc // x -> 2D:nc, 4D:nchw, 5D:ncdhw // mean -> 1D [c] // variance -> 1D [c] // weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta // z(output) - same shape as x const int xRank = x->rankOf(); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // input type mkldnn::memory::data_type type = mkldnn::memory::data_type::f32; // indicate whether gamma or/and beta are given auto flags = mkldnn::normalization_flags::use_global_stats; if (weights != nullptr) flags |= mkldnn::normalization_flags::use_scale_shift; mkldnn::memory::dims dims; mkldnn::memory::format_tag format; if(xRank == 2) { dims = {x->sizeAt(0), x->sizeAt(1)}; format = mkldnn::memory::format_tag::nc; } else if(xRank == 4) { dims = {x->sizeAt(0), x->sizeAt(1), x->sizeAt(2), x->sizeAt(3)}; format = mkldnn::memory::format_tag::nchw; } else { // xRank = 5 dims = {x->sizeAt(0), x->sizeAt(1), x->sizeAt(2), x->sizeAt(3), x->sizeAt(4)}; format = mkldnn::memory::format_tag::ncdhw; } // memory descriptors for arrays // x mkldnn::memory::desc x_mkl_md = mkldnn::memory::desc(dims, type, format); mkldnn::memory::desc x_user_md = mkldnn::memory::desc(dims, type, format); x_user_md.data.format_kind = mkldnn_blocked; // overrides format x_user_md.data.format_desc.blocking.strides[0] = x->stridesOf()[0]; x_user_md.data.format_desc.blocking.strides[1] = x->stridesOf()[1]; if(xRank > 2) { x_user_md.data.format_desc.blocking.strides[2] = x->stridesOf()[2]; x_user_md.data.format_desc.blocking.strides[3] = x->stridesOf()[3]; } if(xRank > 4) x_user_md.data.format_desc.blocking.strides[4] = x->stridesOf()[4]; // z, output mkldnn::memory::desc z_mkl_md = mkldnn::memory::desc(dims, type, format); mkldnn::memory::desc z_user_md = mkldnn::memory::desc(dims, type, format); z_user_md.data.format_kind = mkldnn_blocked; // overrides format z_user_md.data.format_desc.blocking.strides[0] = z->stridesOf()[0]; z_user_md.data.format_desc.blocking.strides[1] = z->stridesOf()[1]; if(xRank > 2) { z_user_md.data.format_desc.blocking.strides[2] = z->stridesOf()[2]; z_user_md.data.format_desc.blocking.strides[3] = z->stridesOf()[3]; } if(xRank > 4) z_user_md.data.format_desc.blocking.strides[4] = z->stridesOf()[4]; // batchnorm forward description mkldnn::batch_normalization_forward::desc op_ff_desc(mkldnn::prop_kind::forward_inference, x_mkl_md, epsilon, flags); mkldnn::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine); // arguments (memory buffers) necessary for calculations std::unordered_map args; mkldnn::stream stream(engine); // provide memory and check whether reorder is required // x auto x_user_mem = mkldnn::memory(x_user_md, engine, x->getBuffer()); const bool xReorder = op_ff_prim_desc.src_desc() != x_user_mem.get_desc(); auto x_mkl_mem = xReorder ? mkldnn::memory(op_ff_prim_desc.src_desc(), engine) : x_user_mem; if (xReorder) mkldnn::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem); args[MKLDNN_ARG_SRC] = x_mkl_mem; // z auto z_user_mem = mkldnn::memory(z_user_md, engine, z->getBuffer()); const bool zReorder = op_ff_prim_desc.dst_desc() != z_user_mem.get_desc(); auto z_mkl_mem = zReorder ? mkldnn::memory(op_ff_prim_desc.dst_desc(), engine) : z_user_mem; if (zReorder) mkldnn::reorder(z_user_mem, z_mkl_mem).execute(stream, z_user_mem, z_mkl_mem); args[MKLDNN_ARG_DST] = z_mkl_mem; // mean auto mean_mkl_mem = mkldnn::memory(op_ff_prim_desc.mean_desc(), engine, mean->getBuffer()); args[MKLDNN_ARG_MEAN] = mean_mkl_mem; // variance auto var_mkl_mem = mkldnn::memory(op_ff_prim_desc.variance_desc(), engine, variance->getBuffer()); args[MKLDNN_ARG_VARIANCE] = var_mkl_mem; // gamma and beta (and their gradients) if they are present if(weights != nullptr) { auto w_mkl_mem = mkldnn::memory(op_ff_prim_desc.weights_desc(), engine, weights->getBuffer()); args[MKLDNN_ARG_WEIGHTS] = w_mkl_mem; } // run calculations mkldnn::batch_normalization_forward(op_ff_prim_desc).execute(stream, args); // reorder outputs if necessary if (zReorder) mkldnn::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); stream.wait(); // shape::printArray(z_mkl_mem.map_data(),8); } ////////////////////////////////////////////////////////////////////////// static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray* dLdO, const NDArray* weights, const float epsilon, NDArray* dLdI, NDArray* dLdW) { // unfortunately mkl dnn doesn't support any format (mkldnn::memory::format_tag::any) // also it gives wrong results for formats nhwc and ndhwc // x -> 2D:nc, 4D:nchw, 5D:ncdhw // mean -> 1D [c] // variance -> 1D [c] // dLdO - same shape as x // weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta // dLdI - same shape as x // dLdW - same shape as weights, dLdW({0,1, 0,0}) contains grad_gamma and dLdW({1,2, 0,0}) contains grad_beta const int xRank = x->rankOf(); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // input type mkldnn::memory::data_type type = mkldnn::memory::data_type::f32; // indicate whether gamma or/and beta are given auto flags = mkldnn::normalization_flags::use_global_stats; if (weights != nullptr) flags |= mkldnn::normalization_flags::use_scale_shift; mkldnn::memory::dims dims; mkldnn::memory::format_tag format; if(xRank == 2) { dims = {x->sizeAt(0), x->sizeAt(1)}; format = mkldnn::memory::format_tag::nc; } else if(xRank == 4) { dims = {x->sizeAt(0), x->sizeAt(1), x->sizeAt(2), x->sizeAt(3)}; format = mkldnn::memory::format_tag::nchw; } else { // xRank = 5 dims = {x->sizeAt(0), x->sizeAt(1), x->sizeAt(2), x->sizeAt(3), x->sizeAt(4)}; format = mkldnn::memory::format_tag::ncdhw; } // memory descriptors for arrays // x mkldnn::memory::desc x_mkl_md = mkldnn::memory::desc(dims, type, format); mkldnn::memory::desc x_user_md = mkldnn::memory::desc(dims, type, format); x_user_md.data.format_kind = mkldnn_blocked; // overrides format x_user_md.data.format_desc.blocking.strides[0] = x->stridesOf()[0]; x_user_md.data.format_desc.blocking.strides[1] = x->stridesOf()[1]; if(xRank > 2) { x_user_md.data.format_desc.blocking.strides[2] = x->stridesOf()[2]; x_user_md.data.format_desc.blocking.strides[3] = x->stridesOf()[3]; } if(xRank > 4) x_user_md.data.format_desc.blocking.strides[4] = x->stridesOf()[4]; // dLdO mkldnn::memory::desc dLdO_mkl_md = mkldnn::memory::desc(dims, type, format); mkldnn::memory::desc dLdO_user_md = mkldnn::memory::desc(dims, type, format); dLdO_user_md.data.format_kind = mkldnn_blocked; // overrides format dLdO_user_md.data.format_desc.blocking.strides[0] = dLdO->stridesOf()[0]; dLdO_user_md.data.format_desc.blocking.strides[1] = dLdO->stridesOf()[1]; if(xRank > 2) { dLdO_user_md.data.format_desc.blocking.strides[2] = dLdO->stridesOf()[2]; dLdO_user_md.data.format_desc.blocking.strides[3] = dLdO->stridesOf()[3]; } if(xRank > 4) dLdO_user_md.data.format_desc.blocking.strides[4] = dLdO->stridesOf()[4]; // dLdI mkldnn::memory::desc dLdI_mkl_md = mkldnn::memory::desc(dims, type, format); mkldnn::memory::desc dLdI_user_md = mkldnn::memory::desc(dims, type, format); dLdI_user_md.data.format_kind = mkldnn_blocked; // overrides format dLdI_user_md.data.format_desc.blocking.strides[0] = dLdI->stridesOf()[0]; dLdI_user_md.data.format_desc.blocking.strides[1] = dLdI->stridesOf()[1]; if(xRank > 2) { dLdI_user_md.data.format_desc.blocking.strides[2] = dLdI->stridesOf()[2]; dLdI_user_md.data.format_desc.blocking.strides[3] = dLdI->stridesOf()[3]; } if(xRank > 4) dLdI_user_md.data.format_desc.blocking.strides[4] = dLdI->stridesOf()[4]; // batchnorm forward description mkldnn::batch_normalization_forward::desc op_ff_desc(mkldnn::prop_kind::forward_inference, x_mkl_md, epsilon, flags); mkldnn::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine); // batchnorm backprop description mkldnn::batch_normalization_backward::desc op_bp_desc(mkldnn::prop_kind::backward, dLdO_mkl_md, x_mkl_md, epsilon, flags); mkldnn::batch_normalization_backward::primitive_desc op_bp_prim_desc(op_bp_desc, engine, op_ff_prim_desc); // arguments (memory buffers) necessary for calculations std::unordered_map args; mkldnn::stream stream(engine); // provide memory and check whether reorder is required // x auto x_user_mem = mkldnn::memory(x_user_md, engine, x->getBuffer()); const bool xReorder = op_bp_prim_desc.src_desc() != x_user_mem.get_desc(); auto x_mkl_mem = xReorder ? mkldnn::memory(op_bp_prim_desc.src_desc(), engine) : x_user_mem; if (xReorder) mkldnn::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem); args[MKLDNN_ARG_SRC] = x_mkl_mem; // dLdO auto dLdO_user_mem = mkldnn::memory(dLdO_user_md, engine, dLdO->getBuffer()); const bool dLdOReorder = op_bp_prim_desc.diff_src_desc() != dLdO_user_mem.get_desc(); auto dLdO_mkl_mem = dLdOReorder ? mkldnn::memory(op_bp_prim_desc.diff_src_desc(), engine) : dLdO_user_mem; if (dLdOReorder) mkldnn::reorder(dLdO_user_mem, dLdO_mkl_mem).execute(stream, dLdO_user_mem, dLdO_mkl_mem); args[MKLDNN_ARG_DIFF_DST] = dLdO_mkl_mem; // mean auto mean_mkl_mem = mkldnn::memory(op_bp_prim_desc.mean_desc(), engine, mean->getBuffer()); args[MKLDNN_ARG_MEAN] = mean_mkl_mem; // variance auto var_mkl_mem = mkldnn::memory(op_bp_prim_desc.variance_desc(), engine, variance->getBuffer()); args[MKLDNN_ARG_VARIANCE] = var_mkl_mem; // dLdI auto dLdI_user_mem = mkldnn::memory(dLdI_user_md, engine, dLdI->getBuffer()); const bool dLdIReorder = op_bp_prim_desc.diff_dst_desc() != dLdI_user_mem.get_desc(); auto dLdI_mkl_mem = dLdIReorder ? mkldnn::memory(op_bp_prim_desc.diff_dst_desc(), engine) : dLdI_user_mem; args[MKLDNN_ARG_DIFF_SRC] = dLdI_mkl_mem; // gamma and beta (and their gradients) if they are present if(weights != nullptr) { auto w_mkl_mem = mkldnn::memory(op_bp_prim_desc.weights_desc(), engine, weights->getBuffer()); args[MKLDNN_ARG_WEIGHTS] = w_mkl_mem; auto dLdW_mkl_mem = mkldnn::memory(op_bp_prim_desc.weights_desc(), engine, dLdW->getBuffer()); args[MKLDNN_ARG_DIFF_WEIGHTS] = dLdW_mkl_mem; } // run calculations mkldnn::batch_normalization_backward(op_bp_prim_desc).execute(stream, args); // reorder outputs if necessary if (dLdIReorder) mkldnn::reorder(dLdI_mkl_mem, dLdI_user_mem).execute(stream, dLdI_mkl_mem, dLdI_user_mem); stream.wait(); // shape::printArray(dLdI_mkl_mem.map_data(),8); } PLATFORM_IMPL(batchnorm) { auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw auto mean = INPUT_VARIABLE(1); // [c] auto variance = INPUT_VARIABLE(2); // [c] NDArray* gamma = nullptr; // [c] NDArray* beta = nullptr; // [c] auto output = OUTPUT_VARIABLE(0); // same shape as input const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const double epsilon = T_ARG(0); if(applyScale) gamma = INPUT_VARIABLE(3); if(applyOffset) beta = INPUT_VARIABLE(3 + (int)applyScale); const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const int numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes); REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank); REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str()); if(gamma != nullptr) REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str()); if(beta != nullptr) REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str()); // types of all input arrays should be the same (except dLdO) for(int i = 1; i < block.width() - 1; ++i) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_MKLDNN op: types of all input arrays should be the same !"); NDArray *weights = nullptr; if(applyScale || applyOffset) { weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType()); if(applyScale) (*weights)({0,1, 0,0}).assign(gamma); else (*weights)({0,1, 0,0}).assign(1); if(applyOffset) (*weights)({1,2, 0,0}).assign(beta); else (*weights)({1,2, 0,0}).assign(0); } batchnormMKLDNN(input, mean, variance, weights, epsilon, output); delete weights; return Status::OK(); } ////////////////////////////////////////////////////////////////////////// PLATFORM_CHECK(batchnorm) { // we don't want to use mkldnn if cpu doesn't support avx/avx2 // if (::optimalLevel() < 2) // return false; auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw auto mean = INPUT_VARIABLE(1); // [c] auto variance = INPUT_VARIABLE(2); // [c] NDArray* gamma = nullptr; // [c] NDArray* beta = nullptr; // [c] auto output = OUTPUT_VARIABLE(0); // same shape as input const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); if(applyScale) gamma = INPUT_VARIABLE(3); if(applyOffset) beta = INPUT_VARIABLE(3 + (int)applyScale); const int numOfIntArgs = block.getIArguments()->size(); std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension DataType inputType = input->dataType(); DataType meanType = mean->dataType(); DataType varType = variance->dataType(); DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32; DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32; DataType outType = output->dataType(); const int inRank = input->rankOf(); return block.isUseMKLDNN() && axes.size() == 1 && axes[0] == 1 && (inRank == 2 || inRank == 4 || inRank == 5) && (inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 && gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 && outType == DataType::FLOAT32); } ////////////////////////////////////////////////////////////////////////// // PLATFORM_IMPL(batchnorm) { // auto input = INPUT_VARIABLE(0); // auto mean = INPUT_VARIABLE(1); // auto variance = INPUT_VARIABLE(2); // NDArray *gamma = nullptr; // NDArray *beta = nullptr; // auto output = OUTPUT_VARIABLE(0); // const bool applyScale = (bool) INT_ARG(0); // const bool applyOffset = (bool) INT_ARG(1); // const double epsilon = T_ARG(0); // if (applyScale) // gamma = INPUT_VARIABLE(3); // if (applyOffset) // beta = INPUT_VARIABLE(3 + static_cast(applyScale)); // std::vector axes; // if (block.numI() > 2) // for (int i = 2; i < block.numI(); ++i) // axes.push_back(INT_ARG(i)); // else // axes.push_back(input->rankOf() - 1); // std::vector shape({2, mean->lengthOf()}); // NDArray weights = NDArrayFactory::create('c', shape, block.launchContext()); // weights({0, 1, 0, 0}).assign(1.0f); // weights({1, 2, 0, 0}).assign(0.0f); // mkldnn_memory_desc_t empty; // mkldnn::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(empty), user_dst_md(empty); // auto flag = mkldnn::normalization_flags::use_global_stats; // if (applyScale || applyOffset) // flag |= mkldnn::normalization_flags::use_scale_shift; // mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output, // &batchnorm_src_md, nullptr, &batchnorm_dst_md, // &user_src_md, nullptr, &user_dst_md, axes[0]); // auto batchnorm_desc = mkldnn::batch_normalization_forward::desc(mkldnn::prop_kind::forward_inference, batchnorm_src_md, epsilon, flag); // auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // mkldnn::stream stream(engine); // auto batchnorm_prim_desc = mkldnn::batch_normalization_forward::primitive_desc(batchnorm_desc, engine); // auto user_src_memory = mkldnn::memory(user_src_md, engine, input->buffer()); // auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer()); // auto batchnorm_mean_memory = mkldnn::memory(batchnorm_prim_desc.mean_desc(), engine, // mean->buffer()); // auto batchnorm_variance_memory = mkldnn::memory(batchnorm_prim_desc.variance_desc(), engine, // variance->buffer()); // auto batchnorm_src_memory = user_src_memory; // mkldnn::memory m(batchnorm_src_md, engine); // if (m.get_desc() != user_src_memory.get_desc()) { // batchnorm_src_memory = mkldnn::memory(batchnorm_src_md, engine); // mkldnn::reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory, // batchnorm_src_memory); // } // auto batchnorm_dst_memory = user_dst_memory; // if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) { // batchnorm_dst_memory = mkldnn::memory(batchnorm_prim_desc.dst_desc(), engine); // } // if (applyScale || applyOffset) { // if (gamma != nullptr) { // weights({0, 1, 0, 0}).assign(gamma); // } // if (beta != nullptr) { // weights({1, 2, 0, 0}).assign(beta); // } // auto batchnorm_weights_memory = mkldnn::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer()); // mkldnn::batch_normalization_forward(batchnorm_prim_desc).execute(stream, // {{MKLDNN_ARG_SRC, batchnorm_src_memory}, // {MKLDNN_ARG_MEAN, batchnorm_mean_memory}, // {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory}, // {MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory}, // {MKLDNN_ARG_DST, batchnorm_dst_memory}}); // } else { // mkldnn::batch_normalization_forward(batchnorm_prim_desc).execute(stream, // {{MKLDNN_ARG_SRC, batchnorm_src_memory}, // {MKLDNN_ARG_MEAN, batchnorm_mean_memory}, // {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory}, // {MKLDNN_ARG_DST, batchnorm_dst_memory}}); // } // if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) { // mkldnn::reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory, // user_dst_memory); // } // stream.wait(); // return Status::OK(); // } ////////////////////////////////////////////////////////////////////////// // PLATFORM_CHECK(batchnorm) { // // we don't want to use mkldnn if cpu doesn't support avx/avx2 // if (::optimalLevel() < 2) // return false; // auto input = INPUT_VARIABLE(0); // auto mean = INPUT_VARIABLE(1); // auto variance = INPUT_VARIABLE(2); // NDArray *gamma = nullptr; // NDArray *beta = nullptr; // auto output = OUTPUT_VARIABLE(0); // const bool applyScale = (bool) INT_ARG(0); // const bool applyOffset = (bool) INT_ARG(1); // const double epsilon = T_ARG(0); // if (applyScale) // gamma = INPUT_VARIABLE(3); // if (applyOffset) // beta = INPUT_VARIABLE(3 + static_cast(applyScale)); // std::vector axes; // if (block.numI() > 2) // for (int i = 2; i < block.numI(); ++i) // axes.push_back(INT_ARG(i)); // else // axes.push_back(input->rankOf() - 1); // return block.isUseMKLDNN() && // nd4j::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) && // axes.size() == 1; // } ////////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(batchnorm_bp) { NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw NDArray* mean = INPUT_VARIABLE(1); // [c] NDArray* variance = INPUT_VARIABLE(2); // [c] NDArray* dLdO = INPUT_VARIABLE(3); // same as input NDArray* gamma = nullptr; // [c] NDArray* beta = nullptr; // [c] NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input NDArray* dLdM = OUTPUT_VARIABLE(1); // [c] NDArray* dLdV = OUTPUT_VARIABLE(2); // [c] NDArray* dLdG = nullptr; // [c] NDArray* dLdB = nullptr; // [c] const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); const float epsilon = T_ARG(0); if(applyScale) { gamma = INPUT_VARIABLE(4); dLdG = OUTPUT_VARIABLE(3); } if(applyOffset) { beta = INPUT_VARIABLE(4 + (int)applyScale); dLdB = OUTPUT_VARIABLE(3 + (int)applyScale); } const int numOfIntArgs = block.getIArguments()->size(); const int inRank = input->rankOf(); // get axes args to normalize input array over std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(inRank-1); // default dimension to reduce along is last dimension const int numOfAxes = axes.size(); REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_BP_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes); REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_BP_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank); REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str()); REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str()); REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str()); if(gamma != nullptr) REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str()); if(beta != nullptr) REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str()); // types of all input arrays should be the same (except dLdO) for(int i = 1; i < block.width() - 1; ++i) REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP_MKLDNN op: types of all input arrays should be the same !"); NDArray *weights = nullptr, *dLdW = nullptr; if(applyScale || applyOffset) { weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType()); dLdW = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType()); if(applyScale) (*weights)({0,1, 0,0}).assign(gamma); else (*weights)({0,1, 0,0}).assign(1); if(applyOffset) (*weights)({1,2, 0,0}).assign(beta); else (*weights)({1,2, 0,0}).assign(0); } *dLdM = 0; *dLdV = 0; batchnormBackPropMKLDNN(input, mean, variance, dLdO, weights, epsilon, dLdI, dLdW); if(applyScale || applyOffset) { if(applyScale) dLdG->assign((*dLdW)({0,1, 0,0})); if(applyOffset) dLdB->assign((*dLdW)({1,2, 0,0})); delete weights; delete dLdW; } return Status::OK(); } ////////////////////////////////////////////////////////////////////////// PLATFORM_CHECK(batchnorm_bp) { // we don't want to use mkldnn if cpu doesn't support avx/avx2 // if (::optimalLevel() < 2) // return false; NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw NDArray* mean = INPUT_VARIABLE(1); // [c] NDArray* variance = INPUT_VARIABLE(2); // [c] NDArray* dLdO = INPUT_VARIABLE(3); // same as input NDArray* gamma = nullptr; // [c] NDArray* beta = nullptr; // [c] NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input NDArray* dLdM = OUTPUT_VARIABLE(1); // [c] NDArray* dLdV = OUTPUT_VARIABLE(2); // [c] NDArray* dLdG = nullptr; // [c] NDArray* dLdB = nullptr; // [c] const bool applyScale = (bool)INT_ARG(0); const bool applyOffset = (bool)INT_ARG(1); if(applyScale) { gamma = INPUT_VARIABLE(4); dLdG = OUTPUT_VARIABLE(3); } if(applyOffset) { beta = INPUT_VARIABLE(4 + (int)applyScale); dLdB = OUTPUT_VARIABLE(3 + (int)applyScale); } const int numOfIntArgs = block.getIArguments()->size(); std::vector axes; if(numOfIntArgs > 2) for(int i = 2; i < numOfIntArgs; ++i) axes.push_back(INT_ARG(i)); else axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension DataType inputType = input->dataType(); DataType meanType = mean->dataType(); DataType varType = variance->dataType(); DataType dLdOType = dLdO->dataType(); DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32; DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32; DataType dLdIType = dLdI->dataType(); DataType dLdGType = gamma != nullptr ? dLdG->dataType() : DataType::FLOAT32; DataType dLdBType = beta != nullptr ? dLdB->dataType() : DataType::FLOAT32; const int inRank = input->rankOf(); return block.isUseMKLDNN() && axes.size() == 1 && axes[0] == 1 && (inRank == 2 || inRank == 4 || inRank == 5) && (inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 && dLdOType == DataType::FLOAT32 && gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 && dLdIType == DataType::FLOAT32 && dLdGType == DataType::FLOAT32 && dLdBType == DataType::FLOAT32); } } } }