/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include namespace nd4j { namespace ops { namespace helpers { //////////////////////////////////////////////////////////////////////// template linkage void tanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ T th = nd4j::math::nd4j_tanh(x); return y * ((T)1.0f - (th * th)); }; input->applyPairwiseLambda(epsilon, functor, output); } BUILD_SINGLE_TEMPLATE(template void tanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES); void tanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), tanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } // return static_cast(d2) * simdOps::HardTanhDerivative::op(d1, nullptr); template linkage void hardTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ T th = nd4j::math::nd4j_tanh(x); return y * simdOps::HardTanhDerivative::op(x, nullptr); }; input->applyPairwiseLambda(epsilon, functor, output); } BUILD_SINGLE_TEMPLATE(template void hardTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES); void hardTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } template linkage void rationalTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ return y * simdOps::RationalTanhDerivative::op(x, nullptr); }; input->applyPairwiseLambda(epsilon, functor, output); } BUILD_SINGLE_TEMPLATE(template void rationalTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES); void rationalTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), rationalTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } template linkage void rectifiedTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ return x > (T) 0.0f ? y * (nd4j::math::nd4j_tanhderivative(x)) : (T) 0.0f; }; input->applyPairwiseLambda(epsilon, functor, output); } BUILD_SINGLE_TEMPLATE(template void rectifiedTanhDerivative_, (NDArray* input, NDArray* epsilon, NDArray*output);, FLOAT_TYPES); void rectifiedTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), rectifiedTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } } } }