/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

//
// @author saudet
// @author raver119@gmail.com
//

#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <platform_boilerplate.h>

#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>

using namespace mkldnn;

namespace nd4j      {
namespace ops       {
namespace platforms {

//////////////////////////////////////////////////////////////////////
static void conv2d_mkldnn(nd4j::graph::Context &block, const NDArray *input, const NDArray *weights,
                          const NDArray *bias, NDArray *output, const int kH, const int kW, const int sH,
                          const int sW, int pH, int pW, const int dH, const int dW, const int isSameMode,
                          const int isNCHW) {

    int bS, iC, iH, iW, oC, oH, oW;                             // batch size, input channels, input height/width, output channels, output height/width;
    int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH;       // corresponding indexes
    ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *output, bS, iC, iH, iW, oC, oH, oW,
                                               indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);

    if(isSameMode)                       // SAME
        ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);

    mkldnn_memory_desc_t empty;
    mkldnn::memory::desc conv_src_md(empty), conv_weights_md(empty), conv_bias_md(empty), conv_dst_md(
            empty);
    mkldnn::memory::desc user_src_md(empty), user_weights_md(empty), user_bias_md(empty), user_dst_md(
            empty);
    mkldnn::memory::dims conv_strides, conv_padding, conv_padding_r, conv_dilation;
    mkldnnUtils::getMKLDNNMemoryDescConv2d(kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW,
                                           bS, iC, iH, iW, oC, oH, oW, input, nullptr, weights, nullptr,
                                           bias, output,
                                           &conv_src_md, nullptr, &conv_weights_md, nullptr,
                                           &conv_bias_md, &conv_dst_md,
                                           &user_src_md, nullptr, &user_weights_md, nullptr,
                                           &user_bias_md, &user_dst_md,
                                           conv_strides, conv_padding, conv_padding_r, conv_dilation);

    auto conv_desc = bias != nullptr
                     ? convolution_forward::desc(prop_kind::forward,
                                                 algorithm::convolution_auto, conv_src_md,
                                                 conv_weights_md, conv_bias_md,
                                                 conv_dst_md, conv_strides, conv_dilation, conv_padding,
                                                 conv_padding_r)
                     : convolution_forward::desc(prop_kind::forward,
                                                 algorithm::convolution_auto, conv_src_md,
                                                 conv_weights_md,
                                                 conv_dst_md, conv_strides, conv_dilation, conv_padding,
                                                 conv_padding_r);
    auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
    mkldnn::stream stream(engine);
    auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, engine);
    auto user_src_memory = mkldnn::memory(user_src_md, engine, const_cast<NDArray *>(input)->buffer());
    auto user_weights_memory = mkldnn::memory(user_weights_md, engine,
                                              const_cast<NDArray *>(weights)->buffer());
    auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer());
    auto conv_src_memory = user_src_memory;
    if (conv_prim_desc.src_desc() != user_src_memory.get_desc()) {
        conv_src_memory = mkldnn::memory(conv_prim_desc.src_desc(), engine);
        reorder(user_src_memory, conv_src_memory).execute(stream, user_src_memory, conv_src_memory);
    }
    auto conv_weights_memory = user_weights_memory;
    if (conv_prim_desc.weights_desc() != user_weights_memory.get_desc()) {
        conv_weights_memory = mkldnn::memory(conv_prim_desc.weights_desc(), engine);
        reorder(user_weights_memory, conv_weights_memory).execute(stream, user_weights_memory,
                                                                  conv_weights_memory);
    }
    auto conv_dst_memory = user_dst_memory;
    if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
        conv_dst_memory = mkldnn::memory(conv_prim_desc.dst_desc(), engine);
    }
    if (bias != nullptr) {
        auto conv_bias_memory = mkldnn::memory(conv_prim_desc.bias_desc(), engine,
                                               const_cast<NDArray *>(bias)->buffer());
        convolution_forward(conv_prim_desc).execute(stream, {{MKLDNN_ARG_SRC,     conv_src_memory},
                                                             {MKLDNN_ARG_WEIGHTS, conv_weights_memory},
                                                             {MKLDNN_ARG_BIAS,    conv_bias_memory},
                                                             {MKLDNN_ARG_DST,     conv_dst_memory}});
    } else {
        convolution_forward(conv_prim_desc).execute(stream, {{MKLDNN_ARG_SRC,     conv_src_memory},
                                                             {MKLDNN_ARG_WEIGHTS, conv_weights_memory},
                                                             {MKLDNN_ARG_DST,     conv_dst_memory}});
    }
    if (conv_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
        reorder(conv_dst_memory, user_dst_memory).execute(stream, conv_dst_memory, user_dst_memory);
    }
    stream.wait();
}

//////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(conv2d) {
    auto input = INPUT_VARIABLE(
            0);                                    // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
    auto weights = INPUT_VARIABLE(1);                                    // [kH, kW, iC, oC] always
    auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr;      // [oC]

    auto output = OUTPUT_VARIABLE(
            0);                                   // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW)

    int sH = INT_ARG(2);                                                        // strides height
    int sW = INT_ARG(3);                                                        // strides width
    int pH = INT_ARG(4);                                                        // paddings height
    int pW = INT_ARG(5);                                                        // paddings width
    int dH = INT_ARG(6);                                                        // dilations height
    int dW = INT_ARG(7);                                                        // dilations width
    int isSameMode = INT_ARG(8);                                                // 0-VALID, 1-SAME
    bool isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1;       // INT_ARG(9): 0-NCHW,  1-NHWC

    int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0)); // filter(kernel) height
    int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1)); // filter(kernel) width

    conv2d_mkldnn(block, input, weights, bias, output, kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW);

    return Status::OK();
}

PLATFORM_CHECK(conv2d) {
    // we don't want to use mkldnn if cpu doesn't support avx/avx2
    if (::optimalLevel() < 2)
        return false;

    auto input = INPUT_VARIABLE(0);
    auto weights = INPUT_VARIABLE(1);

    // conv2d is only available for float32 dtype
    return block.isUseMKLDNN() && input->dataType() == nd4j::DataType::FLOAT32 &&
           weights->dataType() == nd4j::DataType::FLOAT32;
}

//////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(conv2d_bp) {
    auto input = INPUT_VARIABLE(
            0);                                                // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
    auto weights = INPUT_VARIABLE(
            1);                                                // [kH, kW, iC, oC] always
    auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr;                  // [oC]
    auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(
            2);        // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next

    auto gradI = OUTPUT_VARIABLE(
            0);                                                 // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
    auto gradW = OUTPUT_VARIABLE(
            1);                                                 // [kH, kW, iC, oC] always
    auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr;                   // [oC]

    int kH = INT_ARG(0);                                                        // filter(kernel) height
    int kW = INT_ARG(1);                                                        // filter(kernel) width
    int sH = INT_ARG(2);                                                        // strides height
    int sW = INT_ARG(3);                                                        // strides width
    int pH = INT_ARG(4);                                                        // paddings height
    int pW = INT_ARG(5);                                                        // paddings width
    int dH = INT_ARG(6);                                                        // dilations height
    int dW = INT_ARG(7);                                                        // dilations width
    int isSameMode = INT_ARG(8);                                                // 0-VALID, 1-SAME
    int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1;          // INT_ARG(9): 0-NCHW, 1-NHWC

    REQUIRE_TRUE(input->rankOf() == 4, 0,
                 "CUSTOM CONV2D_BP OP: rank of input array must be equal to 4, but got %i instead !",
                 input->rankOf());
    REQUIRE_TRUE(weights->rankOf() == 4, 0,
                 "CUSTOM CONV2D_BP OP: rank of weights array must be equal to 4, but got %i instead !",
                 weights->rankOf());
    REQUIRE_TRUE(gradO->rankOf() == 4, 0,
                 "CUSTOM CONV2D_BP OP: rank of output's gradients (next epsilon) array must be equal to 4, but got %i instead !",
                 gradO->rankOf());

    int bS, iC, iH, iW, oC, oH, oW;                             // batch size, input channels, input height/width, output channels, output height/width;
    int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH;       // corresponding indexes
    ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC,
                                               indIiH, indWiC, indWoC, indWkH, indOoH);

    if (isSameMode)                       // SAME
        ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW);

    mkldnn_memory_desc_t empty;
    mkldnn::memory::desc conv_src_md(empty), conv_diff_src_md(empty), conv_weights_md(empty),
            conv_diff_weights_md(empty), conv_bias_md(empty), conv_dst_md(empty);
    mkldnn::memory::desc user_src_md(empty), user_diff_src_md(empty), user_weights_md(empty),
            user_diff_weights_md(empty), user_bias_md(empty), user_dst_md(empty);
    mkldnn::memory::dims conv_strides, conv_padding, conv_padding_r, conv_dilation;
    mkldnnUtils::getMKLDNNMemoryDescConv2d(kH, kW, sH, sW, pH, pW, dH, dW, isSameMode, isNCHW,
                                           bS, iC, iH, iW, oC, oH, oW, input, gradI, weights, gradW,
                                           gradB, gradO,
                                           &conv_src_md, &conv_diff_src_md, &conv_weights_md,
                                           &conv_diff_weights_md, &conv_bias_md, &conv_dst_md,
                                           &user_src_md, &user_diff_src_md, &user_weights_md,
                                           &user_diff_weights_md, &user_bias_md, &user_dst_md,
                                           conv_strides, conv_padding, conv_padding_r, conv_dilation);
    auto conv_desc = gradB != nullptr
                     ? convolution_forward::desc(prop_kind::forward,
                                                 algorithm::convolution_auto, conv_src_md,
                                                 conv_weights_md, conv_bias_md,
                                                 conv_dst_md, conv_strides, conv_dilation, conv_padding,
                                                 conv_padding_r)
                     : convolution_forward::desc(prop_kind::forward,
                                                 algorithm::convolution_auto, conv_src_md,
                                                 conv_weights_md,
                                                 conv_dst_md, conv_strides, conv_dilation, conv_padding,
                                                 conv_padding_r);
    auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, mkldnnUtils::getEngine(
            LaunchContext::defaultContext()->engine()));
    if (gradW != nullptr) {
        auto convW_desc = gradB != nullptr
                          ? convolution_backward_weights::desc(
                        algorithm::convolution_auto, conv_src_md, conv_diff_weights_md, conv_bias_md,
                        conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r)
                          : convolution_backward_weights::desc(
                        algorithm::convolution_auto, conv_src_md, conv_diff_weights_md,
                        conv_dst_md, conv_strides, conv_dilation, conv_padding, conv_padding_r);

        auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
        mkldnn::stream stream(engine);
        auto convW_prim_desc = convolution_backward_weights::primitive_desc(convW_desc, engine,
                                                                            conv_prim_desc);
        auto userW_src_memory = mkldnn::memory(user_src_md, engine,
                                               const_cast<NDArray *>(input)->buffer());
        auto userW_weights_memory = mkldnn::memory(user_diff_weights_md, engine, gradW->buffer());
        auto userW_dst_memory = mkldnn::memory(user_dst_md, engine,
                                               const_cast<NDArray *>(gradO)->buffer());

        auto convW_src_memory = userW_src_memory;
        if (convW_prim_desc.src_desc() != userW_src_memory.get_desc()) {
            convW_src_memory = mkldnn::memory(convW_prim_desc.src_desc(), engine);
            reorder(userW_src_memory, convW_src_memory).execute(stream, userW_src_memory,
                                                                convW_src_memory);
        }

        auto convW_weights_memory = userW_weights_memory;
        if (convW_prim_desc.diff_weights_desc() != userW_weights_memory.get_desc()) {
            convW_weights_memory = mkldnn::memory(convW_prim_desc.diff_weights_desc(), engine);
        }

        auto convW_dst_memory = userW_dst_memory;
        if (convW_prim_desc.diff_dst_desc() != userW_dst_memory.get_desc()) {
            convW_dst_memory = mkldnn::memory(convW_prim_desc.diff_dst_desc(), engine);
            reorder(userW_dst_memory, convW_dst_memory).execute(stream, userW_dst_memory,
                                                                convW_dst_memory);
        }

        if (gradB != nullptr) {
            auto convW_bias_memory = mkldnn::memory(convW_prim_desc.diff_bias_desc(), engine,
                                                    gradB->buffer());
            convolution_backward_weights(convW_prim_desc).execute(stream,
                                                                  {{MKLDNN_ARG_SRC,          convW_src_memory},
                                                                   {MKLDNN_ARG_DIFF_DST,     convW_dst_memory},
                                                                   {MKLDNN_ARG_DIFF_WEIGHTS, convW_weights_memory},
                                                                   {MKLDNN_ARG_DIFF_BIAS,    convW_bias_memory}});
        } else {
            convolution_backward_weights(convW_prim_desc).execute(stream,
                                                                  {{MKLDNN_ARG_SRC,          convW_src_memory},
                                                                   {MKLDNN_ARG_DIFF_DST,     convW_dst_memory},
                                                                   {MKLDNN_ARG_DIFF_WEIGHTS, convW_weights_memory}});
        }

        if (convW_prim_desc.diff_weights_desc() != userW_weights_memory.get_desc()) {
            reorder(convW_weights_memory, userW_weights_memory).execute(stream, convW_weights_memory,
                                                                        userW_weights_memory);
        }

        stream.wait();
    }

    if (gradI != nullptr) {
        auto convI_desc =
                convolution_backward_data::desc(algorithm::convolution_auto, conv_diff_src_md,
                                                conv_weights_md, conv_dst_md, conv_strides, conv_dilation,
                                                conv_padding, conv_padding_r);

        auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
        mkldnn::stream stream(engine);
        auto convI_prim_desc = convolution_backward_data::primitive_desc(convI_desc, engine,
                                                                         conv_prim_desc);
        auto userI_src_memory = mkldnn::memory(user_diff_src_md, engine, gradI->buffer());
        auto userI_weights_memory = mkldnn::memory(user_weights_md, engine,
                                                   const_cast<NDArray *>(weights)->buffer());
        auto userI_dst_memory = mkldnn::memory(user_dst_md, engine,
                                               const_cast<NDArray *>(gradO)->buffer());

        auto convI_src_memory = userI_src_memory;
        if (convI_prim_desc.diff_src_desc() != userI_src_memory.get_desc()) {
            convI_src_memory = mkldnn::memory(convI_prim_desc.diff_src_desc(), engine);
        }

        auto convI_weights_memory = userI_weights_memory;
        if (convI_prim_desc.weights_desc() != userI_weights_memory.get_desc()) {
            convI_weights_memory = mkldnn::memory(convI_prim_desc.weights_desc(), engine);
            reorder(userI_weights_memory, convI_weights_memory).execute(stream, userI_weights_memory,
                                                                        convI_weights_memory);
        }

        auto convI_dst_memory = userI_dst_memory;
        if (convI_prim_desc.diff_dst_desc() != userI_dst_memory.get_desc()) {
            convI_dst_memory = mkldnn::memory(convI_prim_desc.diff_dst_desc(), engine);
            reorder(userI_dst_memory, convI_dst_memory).execute(stream, userI_dst_memory,
                                                                convI_dst_memory);
        }

        convolution_backward_data(convI_prim_desc).execute(stream,
                                                           {{MKLDNN_ARG_DIFF_DST, convI_dst_memory},
                                                            {MKLDNN_ARG_WEIGHTS,  convI_weights_memory},
                                                            {MKLDNN_ARG_DIFF_SRC, convI_src_memory}});

        if (convI_prim_desc.diff_src_desc() != userI_src_memory.get_desc()) {
            reorder(convI_src_memory, userI_src_memory).execute(stream, convI_src_memory,
                                                                userI_src_memory);
        }

        stream.wait();
    };

    return Status::OK();
}

PLATFORM_CHECK(conv2d_bp) {
    // we don't want to use mkldnn if cpu doesn't support avx/avx2
    if (::optimalLevel() < 2)
        return false;

    auto input = INPUT_VARIABLE(
            0);                                                // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
    auto weights = INPUT_VARIABLE(
            1);                                                // [kH, kW, iC, oC] always
    auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr;                  // [oC]
    auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(
            2);        // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW), epsilon_next

    auto gradI = OUTPUT_VARIABLE(
            0);                                                 // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW), epsilon
    auto gradW = OUTPUT_VARIABLE(
            1);                                                 // [kH, kW, iC, oC] always
    auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr;                   // [oC]


    return block.isUseMKLDNN() &&
           nd4j::MKLDNNStream::isSupported({input, weights, bias, gradO, gradI, gradW, gradB});
}



}
}
}