/* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author raver119@gmail.com // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include "../MmulHelper.h" #include #include #include #include namespace sd { ////////////////////////////////////////////////////////////////////////////// // MXK x KxN = MxN -> actual sequence of axes doesn't matter template static __global__ void usualCudaGemm(const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) { const T1* A = reinterpret_cast(vA); const T2* B = reinterpret_cast(vB); T3* C = reinterpret_cast< T3*>(vC); __shared__ int K, *coords; __shared__ bool betaPresent; __shared__ Nd4jLong cLen, totalThreads; __shared__ T3 alphaZ, betaZ; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; coords = reinterpret_cast(shmem); cLen = shape::length(cShapeInfo); K = shape::shapeOf(const_cast(aShapeInfo))[aKaxis]; betaPresent = beta; totalThreads = gridDim.x * blockDim.x; alphaZ = alpha; betaZ = beta; } __syncthreads(); auto aCoords = coords + threadIdx.x * 6; // 6 = (aRank + bRank + cRank) auto bCoords = aCoords + 2; auto cCoords = bCoords + 2; const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < cLen; i += totalThreads) { // evaluate C coordinates shape::index2coords(i, cShapeInfo, cCoords); // evaluate A coordinates aCoords[aMaxis] = cCoords[cMaxis]; aCoords[aKaxis] = 0; // evaluate B coordinates bCoords[bKaxis] = 0; bCoords[bNaxis] = cCoords[cNaxis]; auto aOffset = shape::getOffset(aShapeInfo, aCoords); auto bOffset = shape::getOffset(bShapeInfo, bCoords); T3 val = A[aOffset] * B[bOffset]; // first iteration for (uint j = 1; j < K; ++j) { // rest iterations aOffset += shape::stride(aShapeInfo)[aKaxis]; bOffset += shape::stride(bShapeInfo)[bKaxis]; val = val + A[aOffset] * B[bOffset]; } auto cOffset = shape::getOffset(cShapeInfo, cCoords); if(betaPresent) C[cOffset] = alphaZ * val + betaZ * C[cOffset]; else C[cOffset] = alphaZ * val; } } //////////////////////////////////////////////////////////////////////// template __host__ static void usualGemm(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) { usualCudaGemm<<>>(vA, aShapeInfo, vB, bShapeInfo, vC, cShapeInfo, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta); } //////////////////////////////////////////////////////////////////////// // MXN x N = M -> actual sequence of {M,N} axes doesn't matter template static __global__ void usualCudaGemv(const void* vA, const Nd4jLong* aShapeInfo, const void* vX, const Nd4jLong* xShapeInfo, void* vY, const Nd4jLong* yShapeInfo, const int incx, const int incy, const int aMaxis, const double alpha, const double beta) { const T1* A = reinterpret_cast(vA); const T2* X = reinterpret_cast(vX); T3* Y = reinterpret_cast< T3*>(vY); __shared__ int M, N; __shared__ bool betaPresent; __shared__ Nd4jLong cLen, totalThreads, aNstride, aMstride; __shared__ T3 alphaZ, betaZ; if (threadIdx.x == 0) { N = shape::length(xShapeInfo); M = shape::length(yShapeInfo); aMstride = shape::stride(aShapeInfo)[aMaxis]; aNstride = shape::stride(aShapeInfo)[aMaxis == 0 ? 1 : 0]; totalThreads = gridDim.x * blockDim.x; betaPresent = beta; alphaZ = alpha; betaZ = beta; } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < M; i += totalThreads) { // evaluate offsets auto aOffset = i * aMstride; auto xOffset = 0; T3 val = A[aOffset] * X[xOffset]; // first iteration for (uint j = 1; j < N; ++j) { // rest iterations aOffset += aNstride; xOffset += incx; val = val + A[aOffset] * X[xOffset]; } auto yOffset = i * incy; if(betaPresent) Y[yOffset] = alphaZ * val + betaZ * Y[yOffset]; else Y[yOffset] = alphaZ * val; } } //////////////////////////////////////////////////////////////////////// template __host__ static void usualGemv(const int blocksPerGrid, const int threadsPerBlock, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vX, const Nd4jLong* xShapeInfo, void* vY, const Nd4jLong* yShapeInfo, const int incx, const int incy, const int aMaxis, const double alpha, const double beta) { usualCudaGemv<<>>(vA, aShapeInfo, vX, xShapeInfo, vY, yShapeInfo, incx, incy, aMaxis, alpha, beta); } ////////////////////////////////////////////////////////////////////////////// template static __global__ void usualCudaDot(const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) { T1* X = reinterpret_cast(const_cast(vX)); T2* Y = reinterpret_cast(const_cast(vY)); T3* Z = reinterpret_cast(vZ); extern __shared__ unsigned char shmem[]; auto pairwiseMul = reinterpret_cast(shmem); const int tid = blockIdx.x * blockDim.x + threadIdx.x; if(tid < length) pairwiseMul[tid] = X[tid * incx] * Y[tid * incy]; __syncthreads(); if(tid == 0) { T3 sum = 0; for(Nd4jLong i = 0; i < length; ++i) sum = sum + pairwiseMul[i]; if(beta) *Z = (T3)alpha * sum + (T3)beta * *Z; else *Z = (T3)alpha * sum; } } //////////////////////////////////////////////////////////////////////// template __host__ static void usualDot(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ) { usualCudaDot<<>>(length, alpha, vX, incx, vY, incy, beta, vZ); } ////////////////////////////////////////////////////////////////////////////// // MXK x KxN = MxN NDArray* MmulHelper::mmulMxM(const NDArray* A, const NDArray* B, NDArray* C, double alpha, double beta, const char outOrder) { if(A->rankOf() != 2) throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of A array is not equal 2 !"); if(B->rankOf() != 2) throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of B array is not equal 2 !"); const auto M = A->sizeAt(0); const auto K = A->sizeAt(1); const auto N = B->sizeAt(1); if(C != nullptr && C->rankOf() != 2) throw std::runtime_error("MmulHelper::mmulMxM cuda: rank of C array is not equal 2 !"); if(B->sizeAt(0) != K) throw std::runtime_error("MmulHelper::mmulMxM cuda: B array has wrong number of rows !"); if(C != nullptr && C->sizeAt(0) != M) throw std::runtime_error("MmulHelper::mmulMxM cuda: C array has wrong number of rows !"); if(C != nullptr && C->sizeAt(1) != N) throw std::runtime_error("MmulHelper::mmulMxM cuda: C array has wrong number of columns !"); if(C == nullptr) C = new NDArray(outOrder, {M,N}, DataTypeUtils::pickPairwiseResultType(A->dataType(), B->dataType()), A->getContext()); if (C->isEmpty()) return C; const int major = Environment::getInstance().capabilities()[AffinityManager::currentDeviceId()].first(); const auto aType = A->dataType(); const auto bType = B->dataType(); const auto cType = C->dataType(); const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC); const bool typeDouble = ABC && aType == DataType::DOUBLE; const bool typeFloat = ABC && aType == DataType::FLOAT32; const bool typeHalf = ABC && aType == DataType::HALF && major >= 6; const bool typeIntFloat = AB && aType == DataType::INT8 && cType == DataType::FLOAT32 && major >= 6; const bool typeHalfFloat = AB && aType == DataType::HALF && cType == DataType::FLOAT32 && major >= 6; std::lock_guard lock(*LaunchContext::deviceMutex()); auto handle = reinterpret_cast(A->getContext()->getCublasHandle()); auto stream = A->getContext()->getCudaStream(); auto status = cublasSetStream_v2(*handle, *stream); if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status); if(!typeDouble && !typeFloat && !typeHalf && !typeIntFloat && !typeHalfFloat) { const int threadsPerBlock = MAX_NUM_THREADS / 2; const int blocksPerGrid = (C->lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = threadsPerBlock * sizeof(int) * 6 + 128; // 6 = aRank + bRank + cRank NDArray::prepareSpecialUse({C}, {A, B}); // BUILD_TRIPLE_SELECTOR(aType, bType, cType, usualGemm, (blocksPerGrid, threadsPerBlock, sharedMem, stream, A->specialBuffer(), A->specialShapeInfo(), B->specialBuffer(), B->specialShapeInfo(), C->specialBuffer(), C->special(), 0, 1, 0, 1, 0, 1, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES); BUILD_SINGLE_SELECTOR_THRICE(aType, usualGemm, (blocksPerGrid, threadsPerBlock, sharedMem, stream, A->specialBuffer(), A->specialShapeInfo(), B->specialBuffer(), B->specialShapeInfo(), C->specialBuffer(), C->specialShapeInfo(), 0, 1, 0, 1, 0, 1, alpha, beta), NUMERIC_TYPES) NDArray::registerSpecialUse({C}, {A, B}); auto cudaResult = cudaStreamSynchronize(*stream); if (cudaResult != 0) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", cudaResult); } else { std::vector toDelete; NDArray *pA(const_cast(A)), *pB(const_cast(B)), *pC(const_cast(C)); bool aMcont = M == 1 || A->strideAt(0) == 1; bool aKcont = K == 1 || A->strideAt(1) == 1; bool bKcont = K == 1 || B->strideAt(0) == 1; bool bNcont = N == 1 || B->strideAt(1) == 1; bool cMcont = M == 1 || C->strideAt(0) == 1; bool cNcont = N == 1 || C->strideAt(1) == 1; if(!aMcont && !aKcont) { pA = new NDArray(A->dup('f')); toDelete.push_back(pA); aMcont = true; } if(!bKcont && !bNcont) { pB = new NDArray(B->dup('f')); toDelete.push_back(pB); bKcont = true; } if(!cMcont) { pC = new NDArray(C->dup('f')); toDelete.push_back(pC); cMcont = true; } const bool transA = !aMcont; const bool transB = !bKcont; const int lda = (aMcont && aKcont) ? M : transA ? pA->strideAt(0) : pA->strideAt(1); const int ldb = (bKcont && bNcont) ? K : transB ? pB->strideAt(0) : pB->strideAt(1); const int ldc = (cMcont && cNcont) ? M : pC->strideAt(1); const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N; const cublasOperation_t transBblas = transB ? CUBLAS_OP_T : CUBLAS_OP_N; NDArray::prepareSpecialUse({pC}, {pA, pB}); // choose appropriate cuda gemm api depending on data types if(typeDouble) { status = cublasDgemm(*handle, transAblas, transBblas, M, N, K, &alpha, (double*)pA->specialBuffer(), lda, (double*)pB->specialBuffer(), ldb, &beta, (double*)pC->specialBuffer(), ldc); } else if(typeFloat) { float alphaF(alpha), betaF(beta); status = cublasSgemm(*handle, transAblas, transBblas, M, N, K, &alphaF, (float*)pA->specialBuffer(), lda, (float*)pB->specialBuffer(), ldb, &betaF, (float*)pC->specialBuffer(), ldc); } else if(typeHalf) { float16 alphaH(alpha), betaH(beta); status = cublasHgemm(*handle, transAblas, transBblas, M, N, K, &alphaH.data, (__half*)pA->specialBuffer(), lda, (__half*)pB->specialBuffer(), ldb, &betaH.data, (__half*)pC->specialBuffer(), ldc); } else if(typeIntFloat) { float alphaF(alpha), betaF(beta); status = cublasSgemmEx(*handle, transAblas, transBblas, M, N, K, &alphaF, pA->specialBuffer(), CUDA_R_8I, lda, pB->specialBuffer(), CUDA_R_8I, ldb, &betaF, pC->specialBuffer(), CUDA_R_32F, ldc); } else if(typeHalfFloat) { float alphaF(alpha), betaF(beta); status = cublasSgemmEx(*handle, transAblas, transBblas, M, N, K, &alphaF, pA->specialBuffer(), CUDA_R_16F, lda, pB->specialBuffer(), CUDA_R_16F, ldb, &betaF, pC->specialBuffer(), CUDA_R_32F, ldc); } if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", status); NDArray::registerSpecialUse({pC}, {pA, pB}); auto cudaResult = cudaStreamSynchronize(*stream); if (cudaResult != 0) throw cuda_exception::build("MmulHelper::mmulMxM cuda failed !", cudaResult); if(C != pC) C->assign(pC); for(int i = toDelete.size() - 1; i >= 0; --i) delete toDelete[i]; } return C; } //////////////////////////////////////////////////////////////////////////// // MXN x N = M NDArray* MmulHelper::mmulMxV(const NDArray* A, const NDArray* X, sd::NDArray* Y, const double alpha, const double beta, const char outOrder) { int xLenDim, yLenDim(0); if(A->rankOf() != 2) throw std::runtime_error("MmulHelper::mmulMxV cuda: rank of A array is not equal 2 !"); if(!shape::isCommonVector(X->shapeInfo(), xLenDim)) throw std::runtime_error("MmulHelper::mmulMxV cuda: X array must be vector !"); const auto M = A->sizeAt(0); const auto N = A->sizeAt(1); if(Y != nullptr && !shape::isCommonVector(Y->shapeInfo(), yLenDim)) throw std::runtime_error("MmulHelper::mmulMxV cuda: Y array must be vector !"); if(X->lengthOf() != N) throw std::runtime_error("MmulHelper::mmulMxV cuda: X vector has wrong length !"); if(Y != nullptr && Y->lengthOf() != M) throw std::runtime_error("MmulHelper::mmulMxV cuda: Y array has wrong length !"); if(Y == nullptr) Y = new NDArray(outOrder, {M}, DataTypeUtils::pickPairwiseResultType(A->dataType(), X->dataType()), A->getContext()); if (Y->isEmpty()) return Y; const int incx = X->strideAt(xLenDim); const int incy = Y->strideAt(yLenDim); const auto aType = A->dataType(); const auto xType = X->dataType(); const auto yType = Y->dataType(); const bool AX(aType == xType), AY(aType == yType), AXY(AX && AY); const bool typeDouble = AXY && aType == DataType::DOUBLE; const bool typeFloat = AXY && aType == DataType::FLOAT32; std::lock_guard lock(*LaunchContext::deviceMutex()); auto handle = reinterpret_cast(A->getContext()->getCublasHandle()); auto stream = A->getContext()->getCudaStream(); auto status = cublasSetStream_v2(*handle, *stream); if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", status); if(!typeDouble && !typeFloat) { const int threadsPerBlock = MAX_NUM_THREADS; const int blocksPerGrid = (M + threadsPerBlock - 1) / threadsPerBlock; NDArray::prepareSpecialUse({Y}, {A, X}); // BUILD_TRIPLE_SELECTOR(aType, xType, yType, usualGemv, (blocksPerGrid, threadsPerBlock, stream, A->specialBuffer(), A->specialShapeInfo(), X->specialBuffer(), X->specialShapeInfo(), Y->specialBuffer(), Y->special(), incx, incy, 0, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES); BUILD_SINGLE_SELECTOR_THRICE(xType, usualGemv, (blocksPerGrid, threadsPerBlock, stream, A->specialBuffer(), A->specialShapeInfo(), X->specialBuffer(), X->specialShapeInfo(), Y->specialBuffer(), Y->specialShapeInfo(), incx, incy, 0, alpha, beta), NUMERIC_TYPES) NDArray::registerSpecialUse({Y}, {A, X}); auto cudaResult = cudaStreamSynchronize(*stream); if (cudaResult != 0) throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", cudaResult); } else { NDArray *pA(const_cast(A)); bool aMcont = M == 1 || A->strideAt(0) == 1; bool aNcont = N == 1 || A->strideAt(1) == 1; if(!aMcont && !aNcont) { pA = new NDArray(A->dup('f')); aMcont = true; } const bool transA = !aMcont; const int lda = (aMcont && aNcont) ? M : transA ? pA->strideAt(0) : pA->strideAt(1); const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N; NDArray::prepareSpecialUse({Y}, {pA, X}); // choose appropriate cuda gemm api depending on data types if(typeDouble) { status = cublasDgemv(*handle, transAblas, transA ? N : M, transA ? M : N, &alpha, (double*)pA->specialBuffer(), lda, (double*)X->specialBuffer(), incx, &beta, (double*)Y->specialBuffer(), incy); } else if(typeFloat) { float alphaF(alpha), betaF(beta); status = cublasSgemv(*handle, transAblas, transA ? N : M, transA ? M : N, &alphaF, (float*)pA->specialBuffer(), lda, (float*)X->specialBuffer(), incx, &betaF, (float*)Y->specialBuffer(), incy); } if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", status); auto cudaResult = cudaStreamSynchronize(*stream); if (cudaResult != 0) throw cuda_exception::build("MmulHelper::mmulMxV cuda failed !", cudaResult); NDArray::registerSpecialUse({Y}, {pA, X}); if(pA != A) delete pA; } return Y; } //////////////////////////////////////////////////////////////////////////// // (X * Y) = Z[0] NDArray* MmulHelper::dot(const NDArray* X, const NDArray* Y, sd::NDArray* Z, const double alpha, const double beta) { int xLenDim(0), yLenDim(0); if(!shape::isCommonVector(X->shapeInfo(), xLenDim)) throw std::runtime_error("MmulHelper::dot cuda: X array must be vector !"); if(!shape::isCommonVector(Y->shapeInfo(), yLenDim)) throw std::runtime_error("MmulHelper::dot cuda: Y array must be vector !"); if(Z != nullptr && !Z->isScalar()) throw std::runtime_error("MmulHelper::dot cuda: Z array must be scalar !"); const auto length = X->lengthOf(); if(Y->lengthOf() != length) throw std::runtime_error("MmulHelper::dot cuda: lengths of input vectors are different !"); if(Z == nullptr) Z = new NDArray(DataTypeUtils::pickPairwiseResultType(X->dataType(), Y->dataType()), X->getContext()); const Nd4jLong incx = X->strideAt(xLenDim); const Nd4jLong incy = Y->strideAt(yLenDim); const auto xType = X->dataType(); const auto yType = Y->dataType(); const auto zType = Z->dataType(); if(!X->isActualOnDeviceSide()) X->syncToDevice(); if(!Y->isActualOnDeviceSide()) Y->syncToDevice(); if(!Z->isActualOnDeviceSide()) Z->syncToDevice(); cudaStream_t* stream = X->getContext()->getCudaStream(); dim3 threadsPerBlock(512); dim3 blocksPerGrid(1); if (length > 512) threadsPerBlock.x = math::nd4j_ceil(static_cast(length) / 512); NDArray::prepareSpecialUse({Z}, {X, Y}); //BUILD_TRIPLE_SELECTOR(xType, yType, zType, usualDot, (blocksPerGrid, threadsPerBlock, stream, length, alpha, X->specialBuffer(), incx, Y->specialBuffer(), incy, beta, Z->specialBuffer()), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES); BUILD_SINGLE_SELECTOR_THRICE(xType, usualDot, (blocksPerGrid, threadsPerBlock, stream, length, alpha, X->specialBuffer(), incx, Y->specialBuffer(), incy, beta, Z->specialBuffer()), NUMERIC_TYPES) auto cudaResult = cudaStreamSynchronize(*stream); if (cudaResult != 0) throw cuda_exception::build("MmulHelper::dot cuda failed !", cudaResult); NDArray::registerSpecialUse({Z}, {X, Y}); return Z; } ////////////////////////////////////////////////////////////////////////////// // [bS,M,K] x [bS,K,N] = [bS,M,N] // [bS,M,K] x [K,N] = [bS,M,N] // [M,K] x [bS,K,N] = [bS,M,N] // bS could stand for several axes template static __global__ void batchedCudaGemm(const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo, const int* aBatchDims, const int* bBatchDims, const int* cBatchDims, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) { const T1* A = reinterpret_cast(vA); const T2* B = reinterpret_cast(vB); T3* C = reinterpret_cast< T3*>(vC); __shared__ bool betaPresent; __shared__ int aRank, bRank, cRank, K, *coords; __shared__ Nd4jLong cLen, totalThreads; __shared__ T3 alphaZ, betaZ; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; coords = reinterpret_cast(shmem); cLen = shape::length(cShapeInfo); K = shape::shapeOf(const_cast(aShapeInfo))[aKaxis]; totalThreads = gridDim.x * blockDim.x; aRank = shape::rank(aShapeInfo); bRank = shape::rank(bShapeInfo); cRank = shape::rank(cShapeInfo); betaPresent = beta; alphaZ = alpha; betaZ = beta; } __syncthreads(); auto aCoords = coords + threadIdx.x * (aRank + bRank + cRank); auto bCoords = aCoords + aRank; auto cCoords = bCoords + bRank; const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (Nd4jLong i = tid; i < cLen; i += totalThreads) { // evaluate C coordinates shape::index2coords(i, cShapeInfo, cCoords); // calculate index of current batch Nd4jLong batchInd; if(cBatchDims != nullptr) batchInd = shape::coords2index(cShapeInfo, cBatchDims, cRank - 2, cCoords); // evaluate A coordinates if(aBatchDims != nullptr) shape::index2coords(batchInd, aShapeInfo, aBatchDims, aRank - 2, aCoords); aCoords[aMaxis] = cCoords[cMaxis]; aCoords[aKaxis] = 0; // evaluate B coordinates if(bBatchDims != nullptr) shape::index2coords(batchInd, bShapeInfo, bBatchDims, bRank - 2, bCoords); bCoords[bKaxis] = 0; bCoords[bNaxis] = cCoords[cNaxis]; auto aOffset = shape::getOffset(aShapeInfo, aCoords); auto bOffset = shape::getOffset(bShapeInfo, bCoords); T3 val = A[aOffset] * B[bOffset]; // first iteration for (uint j = 1; j < K; ++j) { // rest iterations aOffset += shape::stride(aShapeInfo)[aKaxis]; bOffset += shape::stride(bShapeInfo)[bKaxis]; val = val + A[aOffset] * B[bOffset]; } auto cOffset = shape::getOffset(cShapeInfo, cCoords); if(betaPresent) C[cOffset] = alphaZ * val + betaZ * C[cOffset]; else C[cOffset] = alphaZ * val; } } //////////////////////////////////////////////////////////////////////// template __host__ static void batchedGemm(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, cudaStream_t *stream, const void* vA, const Nd4jLong* aShapeInfo, const void* vB, const Nd4jLong* bShapeInfo, void* vC, const Nd4jLong* cShapeInfo, const int* aBatchDims, const int* bBatchDims, const int* cBatchDims, const int aMaxis, const int aKaxis, const int bKaxis, const int bNaxis, const int cMaxis, const int cNaxis, const double alpha, const double beta) { batchedCudaGemm<<>>(vA, aShapeInfo, vB, bShapeInfo, vC, cShapeInfo, aBatchDims, bBatchDims, cBatchDims, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta); } /////////////////////////////////////////////////////////////////// NDArray* MmulHelper::mmulNxN(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) { const int aRank = A->rankOf(); const int bRank = B->rankOf(); // input ranks validation if(aRank > bRank && bRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !"); else if(bRank > aRank && aRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !"); else if (aRank == bRank ) { for(int i = 0; i < aRank - 2; ++i) if(A->sizeAt(i) != B->sizeAt(i)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); } if(A->sizeAt(-1) != B->sizeAt(-2)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); // validation of C array std::vector cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector(); cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2); cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1); if(C != nullptr ) { if(!C->isSameShape(cExpectedShape)) throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !"); } else C = new NDArray(outOrder, cExpectedShape, DataTypeUtils::pickPairwiseResultType(A->dataType(), B->dataType()), A->getContext()); if (C->isEmpty()) return C; const int cRank = C->rankOf(); const int aMaxis(aRank-2), aKaxis(aRank-1), bKaxis(bRank-2), bNaxis(bRank-1), cMaxis(cRank-2), cNaxis(cRank-1); const int threadsPerBlock = MAX_NUM_THREADS / 8; const int blocksPerGrid = (C->lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = threadsPerBlock * sizeof(int) * (aRank + bRank + cRank) + 128; PointersManager manager(A->getContext(), "MmulHelper::mmulNxN"); const int *aBatchDims(nullptr), *bBatchDims(nullptr), *cBatchDims(nullptr); if(aRank > 2) aBatchDims = reinterpret_cast(manager.replicatePointer(ShapeUtils::evalDimsToExclude(aRank, {aMaxis, aKaxis}).data(), (aRank - 2) * sizeof(int))); if(bRank > 2) bBatchDims = reinterpret_cast(manager.replicatePointer(ShapeUtils::evalDimsToExclude(bRank, {bKaxis, bNaxis}).data(), (bRank - 2) * sizeof(int))); if(cRank > 2) cBatchDims = reinterpret_cast(manager.replicatePointer(ShapeUtils::evalDimsToExclude(cRank, {cMaxis, cNaxis}).data(), (cRank - 2) * sizeof(int))); NDArray::prepareSpecialUse({C}, {A, B}); // BUILD_TRIPLE_SELECTOR(A->dataType(), b->dataType(), C->dataType(), batchedGemm, (blocksPerGrid, threadsPerBlock, A->getContext()->getCudaStream(), A->specialBuffer(), A->specialShapeInfo(), B->specialBuffer(), B->specialShapeInfo(), C->specialBuffer(), C->special(), aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES); BUILD_SINGLE_SELECTOR_THRICE(A->dataType(), batchedGemm, (blocksPerGrid, threadsPerBlock, sharedMem, A->getContext()->getCudaStream(), A->specialBuffer(), A->specialShapeInfo(), B->specialBuffer(), B->specialShapeInfo(), C->specialBuffer(), C->specialShapeInfo(), aBatchDims, bBatchDims, cBatchDims, aMaxis, aKaxis, bKaxis, bNaxis, cMaxis, cNaxis, alpha, beta), NUMERIC_TYPES) NDArray::registerSpecialUse({C}, {A, B}); manager.synchronize(); return C; } /* ////////////////////////////////////////////////////////////////////////////// // MXN x N = M template static __global__ void usualCudaGemv(const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) { T1* A = reinterpret_cast(const_cast(vA)); T2* X = reinterpret_cast(const_cast(vX)); T3* Y = reinterpret_cast(vY); __shared__ T3 alphaZ, betaZ; __shared__ Nd4jLong strideArow, strideAcol; const int row = blockIdx.x * blockDim.x + threadIdx.x; if(row == 0) { alphaZ = alpha; betaZ = beta; if(transA) { strideArow = lda; strideAcol = 1; } else { strideArow = 1; strideAcol = lda; } } __syncthreads(); T3 val = 0; if (row < M) for (int i = 0; i < N; i++) val = val + A[row * strideArow + i * strideAcol] * X[i * incx]; Y[row * incy] = alphaZ * val + betaZ * Y[row * incy]; } //////////////////////////////////////////////////////////////////////// template __host__ static void usualGemv(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vX, const int incx, const double beta, void* vY, const int incy) { usualCudaGemv<<>>(transA, M, N, alpha, vA, lda, vX, incx, beta, vY, incy); } */ /* ////////////////////////////////////////////////////////////////////////////// MXK x KxN = MxN C array must be in f order template static __global__ void usualCudaGemm(const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) { T1* A = reinterpret_cast(const_cast(vA)); T2* B = reinterpret_cast(const_cast(vB)); T3* C = reinterpret_cast(vC); __shared__ T3 alphaZ, betaZ; __shared__ Nd4jLong strideArow, strideAcol, strideBrow, strideBcol; const int row = blockIdx.y * blockDim.y + threadIdx.y; const int col = blockIdx.x * blockDim.x + threadIdx.x; if(row == 0 && col == 0) { alphaZ = alpha; betaZ = beta; if(transA) { strideArow = lda; strideAcol = 1; } else { strideArow = 1; strideAcol = lda; } if(transB) { strideBrow = ldb; strideBcol = 1; } else { strideBrow = 1; strideBcol = ldb; } } __syncthreads(); T3 val = 0; if (row < M && col < N) for (int i = 0; i < K; i++) val = val + A[row * strideArow + i * strideAcol] * B[i * strideBrow + col * strideBcol]; C[row + col * ldc] = alphaZ * val + betaZ * C[row + col * ldc]; } ////////////////////////////////////////////////////////////////////////////// template __host__ static void usualGemm(const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc) { usualCudaGemm<<>>(transA, transB, M, N, K, alpha, vA, lda, vB, ldb, beta, vC, ldc); } */ ////////////////////////////////////////////////////////////////////////// /* NDArray* MmulHelper::mmulNxNold1(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) { const int aRank = A->rankOf(); const int bRank = B->rankOf(); // input ranks validation if(aRank > bRank && bRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !"); else if(bRank > aRank && aRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !"); else if (aRank == bRank ) { for(int i = 0; i < aRank - 2; ++i) if(A->sizeAt(i) != B->sizeAt(i)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); } if(A->sizeAt(-1) != B->sizeAt(-2)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); // validation of C array std::vector cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector(); cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2); cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1); if(C != nullptr ) { if(!C->isSameShape(cExpectedShape)) throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !"); } else { C = new NDArray(outOrder, cExpectedShape, B->dataType()); } // multiplication const std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(C->rankOf(), {-2, -1}); const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(C->shapeInfo(), dimsToExclude); std::vector idxRanges(2 * C->rankOf()); // #pragma omp parallel for schedule(guided) firstprivate(idxRanges) for(Nd4jLong i = 0; i < numOfSubArrs; ++i) { ShapeUtils::evalIdxRangesForSubArr(i, C->shapeInfo(), dimsToExclude, idxRanges.data()); NDArray cSubArr = (*C)(idxRanges); if(aRank > bRank) { NDArray aSubArr = (*A)(idxRanges); mmulMxM(&aSubArr, B, &cSubArr, 1., 0., outOrder); } else if(bRank > aRank) { NDArray bSubArr = (*B)(idxRanges); mmulMxM(A, &bSubArr, &cSubArr, 1., 0, outOrder); } else { NDArray aSubArr = (*A)(idxRanges); NDArray bSubArr = (*B)(idxRanges); mmulMxM(&aSubArr, &bSubArr, &cSubArr, 1., 0., outOrder); } } return C; } */ ////////////////////////////////////////////////////////////////////////// // [bS,M,K] x [bS,K,N] = [bS,M,N] // [bS,M,K] x [K,N] = [bS,M,N] // [M,K] x [bS,K,N] = [bS,M,N] // bS could stand for several axes /* NDArray* MmulHelper::mmulNxNold2(const NDArray* A, const NDArray* B, NDArray* C, const double alpha, const double beta, const char outOrder) { const int aRank = A->rankOf(); const int bRank = B->rankOf(); // input ranks validation if(aRank > bRank && bRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of B array should be equal 2 !"); else if(bRank > aRank && aRank != 2) throw std::runtime_error("MmulHelper::mmulNxN: rank of A array should be equal 2 !"); else if (aRank == bRank ) { for(int i = 0; i < aRank - 2; ++i) if(A->sizeAt(i) != B->sizeAt(i)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); } if(A->sizeAt(-1) != B->sizeAt(-2)) throw std::runtime_error("MmulHelper::mmulNxN: shapes of A and B arrays are not suitable for matrix multiplication !"); // validation of C array std::vector cExpectedShape = aRank > bRank ? A->getShapeAsVector() : B->getShapeAsVector(); cExpectedShape[cExpectedShape.size() - 2] = A->sizeAt(-2); cExpectedShape[cExpectedShape.size() - 1] = B->sizeAt(-1); if(C != nullptr ) { if(!C->isSameShape(cExpectedShape)) throw std::runtime_error("MmulHelper::mmulNxN: shape of C array is not suitable for AxB matrix multiplication !"); } else C = new NDArray(outOrder, cExpectedShape, B->dataType()); const int cRank = C->rankOf(); const auto M = A->sizeAt(-2); const auto K = A->sizeAt(-1); const auto N = B->sizeAt(-1); NDArray *pA(const_cast(A)), *pB(const_cast(B)), *pC(const_cast(C)); std::vector toDelete; bool aMcont = M == 1 || A->strideAt(-2) == 1; bool aKcont = K == 1 || A->strideAt(-1) == 1; bool bKcont = K == 1 || B->strideAt(-2) == 1; bool bNcont = N == 1 || B->strideAt(-1) == 1; bool cMcont = M == 1 || C->strideAt(-2) == 1; bool cNcont = N == 1 || C->strideAt(-1) == 1; if(!aMcont && !aKcont) { pA = new NDArray(A->dup('c')); toDelete.push_back(pA); aKcont = true; } if(!bKcont && !bNcont) { pB = new NDArray(B->dup('c')); toDelete.push_back(pB); bNcont = true; } std::vector permut(cRank); if(!cMcont) { std::iota(permut.begin(), permut.end(), 0); permut[cRank - 2] = cRank - 1; permut[cRank - 1] = cRank - 2; // swap two last dimensions [..., M,N] -> [..., N,M] auto Cpermut = C->permute(permut); pC = new NDArray('c', Cpermut.getShapeAsVector(), Cpermut.dataType(), A->getContext()); pC->assign(Cpermut); toDelete.push_back(pC); cMcont = true; } const auto aType = pA->dataType(); const auto bType = pB->dataType(); const auto cType = pC->dataType(); const bool AB(aType == bType), AC(aType == cType), ABC(AB && AC); bool badTypes = false; cudaDataType_t cudaType, cudaAType, cudaBType, cudaCType; if(ABC && aType == DataType::HALF) { cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_16F; } else if(ABC && aType == DataType::FLOAT32) { cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_32F; } else if(ABC && aType == DataType::DOUBLE) { cudaType = cudaAType = cudaBType = cudaCType = CUDA_R_64F; } else if(AB && cType == DataType::FLOAT32 && aType == DataType::INT8) { cudaType = cudaCType = CUDA_R_32F; cudaAType = cudaBType = CUDA_R_8I; } else if(AB && cType == DataType::FLOAT32 && aType == DataType::HALF) { cudaType = cudaCType = CUDA_R_32F; cudaAType = cudaBType = CUDA_R_16F; } else badTypes = true; const int bS = pC->lengthOf() / (M*N); const std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(cRank, {-2, -1}); NDArray::prepareSpecialUse({pC}, {pA, pB}); if(!badTypes) { std::vector subArrOffsets(bS); std::vector subArrShapeInfo(shape::shapeInfoLength(2)); // all sub-arrays have rank = 2 std::vector aSubArrs(bS), bSubArrs(bS), cSubArrs(bS); if(aRank > 2) shape::calcSubArrsShapeInfoAndOffsets(pA->shapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data()); for (int i = 0; i < bS; ++i) aSubArrs[i] = aRank == 2 ? pA->specialBuffer() : pA->specialBuffer() + subArrOffsets[i] * pA->sizeOfT(); if(bRank > 2) shape::calcSubArrsShapeInfoAndOffsets(pB->shapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data()); for (int i = 0; i < bS; ++i) bSubArrs[i] = bRank == 2 ? pB->specialBuffer() : pB->specialBuffer() + subArrOffsets[i] * pB->sizeOfT(); shape::calcSubArrsShapeInfoAndOffsets(pC->shapeInfo(), bS, dimsToExclude.size(), dimsToExclude.data(), subArrShapeInfo.data(), subArrOffsets.data()); for (int i = 0; i < bS; ++i) cSubArrs[i] = pC->specialBuffer() + subArrOffsets[i] * pC->sizeOfT(); PointersManager manager(A->getContext(), "mmulNxN"); const void** aSubArrsCuda = reinterpret_cast(manager.replicatePointer(aSubArrs.data(), aSubArrs.size() * sizeof(void*))); const void** bSubArrsCuda = reinterpret_cast(manager.replicatePointer(bSubArrs.data(), bSubArrs.size() * sizeof(void*))); void** cSubArrsCuda = reinterpret_cast< void **>(manager.replicatePointer(cSubArrs.data(), cSubArrs.size() * sizeof(void*))); const bool transA = !aMcont; const bool transB = !bKcont; const int lda = (aMcont && aKcont) ? M : transA ? pA->strideAt(-2) : pA->strideAt(-1); const int ldb = (bKcont && bNcont) ? K : transB ? pB->strideAt(-2) : pB->strideAt(-1); const int ldc = (cMcont && cNcont) ? M : C != pC ? pC->strideAt(-2) : pC->strideAt(-1); const cublasOperation_t transAblas = transA ? CUBLAS_OP_T : CUBLAS_OP_N; const cublasOperation_t transBblas = transB ? CUBLAS_OP_T : CUBLAS_OP_N; union Coeff {__half _h; float _f; double _d; }; Coeff uAlpha, uBeta; if(cudaType == CUDA_R_16F) { uAlpha._h = alpha; uBeta._h = beta; } else if(cudaType == CUDA_R_32F) { uAlpha._f = alpha; uBeta._f = beta; } else if(cudaType == CUDA_R_64F) { uAlpha._d = alpha; uBeta._d = beta; } auto handle = reinterpret_cast(A->getContext()->getCublasHandle()); auto stream = A->getContext()->getCudaStream(); auto status = cublasSetStream_v2(*handle, *stream); if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", status); status = cublasGemmBatchedEx(*handle, transAblas, transBblas, M, N, K, &uAlpha, aSubArrsCuda, cudaAType, lda, bSubArrsCuda, cudaBType, ldb, &uBeta, cSubArrsCuda, cudaCType, ldc, bS, cudaType, CUBLAS_GEMM_DEFAULT); if (status != CUBLAS_STATUS_SUCCESS) throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", status); auto cudaResult = cudaStreamSynchronize(*stream); if (cudaResult != 0) throw cuda_exception::build("MmulHelper::mmulNxN cuda failed !", cudaResult); } else { std::vector idxRanges(2 * pC->rankOf()); for(Nd4jLong i = 0; i < bS; ++i) { ShapeUtils::evalIdxRangesForSubArr(i, pC->shapeInfo(), dimsToExclude, idxRanges.data()); NDArray cSubArr = (*pC)(idxRanges); if(aRank > bRank) { NDArray aSubArr = (*pA)(idxRanges); mmulMxM(&aSubArr, pB, &cSubArr, 1., 0., pC->ordering()); } else if(bRank > aRank) { NDArray bSubArr = (*pB)(idxRanges); mmulMxM(pA, &bSubArr, &cSubArr, 1., 0, pC->ordering()); } else { NDArray aSubArr = (*pA)(idxRanges); NDArray bSubArr = (*pB)(idxRanges); mmulMxM(&aSubArr, &bSubArr, &cSubArr, 1., 0., pC->ordering()); } } } NDArray::registerSpecialUse({pC}, {pA, pB}); if(C != pC) C->assign(pC->permute(permut)); for(int i = toDelete.size() - 1; i >= 0; --i) delete toDelete[i]; return C; } */ //BUILD_TRIPLE_TEMPLATE(template void usualGemm, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* vA, const int lda, const void* vB, const int ldb, const double beta, void* vC, const int ldc), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES); //BUILD_TRIPLE_TEMPLATE(template void usualGemv, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const bool transA, const int M, const int N, const double alpha, const void* vA, const int lda, const void* vB, const int incx, const double beta, void* vC, const int incy), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES); //BUILD_TRIPLE_TEMPLATE(template void usualDot, (const dim3 &blocksPerGrid, const dim3 &threadsPerBlock, cudaStream_t *stream, const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ), NUMERIC_TYPES, NUMERIC_TYPES, FLOAT_TYPES); }