/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 16.04.2018 // // function nnCell implements an Elman RNN cell: output = activation(Wx*x + bx + Wh*ht + bh) #include #include namespace nd4j { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// static FORCEINLINE NDArray activation(const NDArray& arr) { return (const_cast(arr)).transform(transform::Tanh); } ////////////////////////////////////////////////////////////////////////// void rnnCell(nd4j::LaunchContext * context, const NDArray* xt, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* ht_1, NDArray* ht) { // xt input [bS x inSize] // Wx input-to-hidden weights, [inSize x numUnits] // Wh hidden-to-hidden weights, [numUnits x numUnits] // b biases, [2*numUnits]: {0, numUnits} are input-to-hidden biases and {numUnits, 2*numUnits} are hidden-to-hidden biases // ht_1 previous cell output [bS x numUnits], that is at previous time step t-1, in case of projection=false -> numUnits=numUnits!!! const int numUnits = ht_1->sizeAt(1); // ht is current cell output [bS x numUnits], that is at current time step t ht->assign(activation(mmul(*xt, *Wx) + (*b)({{0, numUnits}}) + mmul(*ht_1, *Wh) + (*b)({{numUnits, 2*numUnits}}))); // [bS x numUnits] + [numUnits] + [bS x numUnits] + [numUnits] = [bS x numUnits] } ////////////////////////////////////////////////////////////////////////// void rnnTimeLoop(nd4j::LaunchContext * context, const NDArray* x, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* h0, const NDArray* maxTimeStep, NDArray* h, NDArray* hFinal) { // x input [time x bS x inSize] // Wx input-to-hidden weights, [inSize x numUnits] // Wh hidden-to-hidden weights, [numUnits x numUnits] // b biases for, [2*numUnits] // h0 initial cell output (at time step = 0) [bS x numUnits] // maxTimeStep vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep const int time = x->sizeAt(0); const int bS = x->sizeAt(1); // at first time step if(h0) hFinal->assign(h0); else *hFinal = 0.; BlasHelper::getInstance(); // to avoid memory leak in pragma parallel loops // loop through batch of inputs for (int e = 0; e < bS; ++e) { // loop through time steps for (int t = 0; t < time; ++t) { int maxStep = maxTimeStep ? maxTimeStep->e(e) : time; auto xt = (*x)({t,t+1, e,e+1, 0,0}, true); auto ht = (*h)({t,t+1, e,e+1, 0,0}, true); auto ht_1 = (*hFinal)({e,e+1, 0,0}, true); // previous state if(t >= maxStep) { ht = 0.; if(maxStep != 0) ht_1.assign((*h)({maxStep-1,maxStep, e,e+1, 0,0})); } else { helpers::rnnCell(context, &xt, Wx, Wh, b, &ht_1, &ht); ht_1.assign(ht); } } } } } } }