/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include "testlayers.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace nd4j; using namespace nd4j::graph; class DeclarableOpsTests1 : public testing::Test { public: const int bS = 2; // batch size const int iD = 1; // input depth (number of picture channels, for example rgb=3) const int iH = 28; // picture height in pixels const int iW = 28; // picture width in pixels const int oD = 3; // output depth (= N for dense layer) const int kH = 5; // kernel height in pixels const int kW = 5; // kernel width in pixels const int sH = 1; // stride step in horizontal direction const int sW = 1; // stride step in vertical direction const int pH = 0; // padding height const int pW = 0; // padding width const int dH = 2; // dilation height const int dW = 2; // dilation width const int oH = (iH - kH - (kH-1)*(dH-1) + 2*pH)/sH + 1; // output height const int oW = (iW - kW - (kW-1)*(dW-1) + 2*pW)/sW + 1; // output width DeclarableOpsTests1() { nd4j::memory::MemoryTracker::getInstance()->reset(); } ~DeclarableOpsTests1() { nd4j::memory::MemoryTracker::getInstance()->summarize(); } }; template class TypedDeclarableOpsTests1 : public testing::Test { public: const int bS = 2; // batch size const int iD = 1; // input depth (number of picture channels, for example rgb=3) const int iH = 28; // picture height in pixels const int iW = 28; // picture width in pixels const int oD = 3; // output depth (= N for dense layer) const int kH = 5; // kernel height in pixels const int kW = 5; // kernel width in pixels const int sH = 1; // stride step in horizontal direction const int sW = 1; // stride step in vertical direction const int pH = 0; // padding height const int pW = 0; // padding width const int dH = 2; // dilation height const int dW = 2; // dilation width const int oH = (iH - kH - (kH-1)*(dH-1) + 2*pH)/sH + 1; // output height const int oW = (iW - kW - (kW-1)*(dW-1) + 2*pW)/sW + 1; // output width TypedDeclarableOpsTests1() { printf("\n"); } }; typedef ::testing::Types TestingTypes; TYPED_TEST_CASE(TypedDeclarableOpsTests1, TestingTypes); ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, BasicInitialization1) { auto concat = new nd4j::ops::concat(); std::string expName("concat"); ASSERT_EQ(expName, *(concat->getOpName())); auto x0 = NDArrayFactory::create_('c', {1, 5}); auto x1 = NDArrayFactory::create_('c', {1, 5}); auto x2 = NDArrayFactory::create_('c', {1, 5}); auto x3 = NDArrayFactory::create_('c', {1, 5}); auto x4 = NDArrayFactory::create_('c', {1, 5}); x0->assign(1.0f); x1->assign(1.0f); x2->assign(1.0f); x3->assign(1.0f); x4->assign(1.0f); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x0); variableSpace->putVariable(-2, x1); variableSpace->putVariable(-3, x2); variableSpace->putVariable(-4, x3); variableSpace->putVariable(-5, x4); auto nodeVar = new Variable(); variableSpace->putVariable(1, nodeVar); Context block(1, variableSpace); block.getIArguments()->push_back(1); block.fillInputs({-1, -2, -3, -4, -5}); ASSERT_FALSE(nodeVar->hasNDArray()); Nd4jStatus result = concat->execute(&block); ASSERT_TRUE(nodeVar->hasNDArray()); ASSERT_EQ(25, nodeVar->getNDArray()->lengthOf()); ASSERT_NEAR(25.0, nodeVar->getNDArray()->reduceNumber(reduce::Sum).e(0), 1e-5); ASSERT_EQ(ND4J_STATUS_OK, result); delete variableSpace; delete concat; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, BasicInitialization2) { auto op = nd4j::ops::OpRegistrator::getInstance()->getOperation("concat"); ASSERT_TRUE(op != nullptr); std::string expName("concat"); ASSERT_EQ(expName, *(op->getOpName())); ASSERT_EQ(-1, op->getOpDescriptor()->getNumberOfInputs()); ASSERT_EQ(1, op->getOpDescriptor()->getNumberOfOutputs()); } TEST_F(DeclarableOpsTests1, BasicInitialization3) { auto op1 = nd4j::ops::OpRegistrator::getInstance()->getOperation("concat"); std::string expName("concat"); auto hash = nd4j::ops::HashHelper::getInstance()->getLongHash(expName); auto op2 = nd4j::ops::OpRegistrator::getInstance()->getOperation(hash); ASSERT_TRUE(op1 == op2); } TEST_F(DeclarableOpsTests1, SynonymInitialization2) { auto op = nd4j::ops::OpRegistrator::getInstance()->getOperation("Mul"); auto op2 = nd4j::ops::OpRegistrator::getInstance()->getOperation("multiply"); ASSERT_TRUE(op != nullptr); std::string expName("multiply"); ASSERT_EQ(expName, *(op->getOpName())); ASSERT_TRUE(op == op2); } TEST_F(DeclarableOpsTests1, TestTensorMmul1) { NDArray x('c', {2, 3, 4}, nd4j::DataType::FLOAT32); NDArray y('c', {2, 3, 4}, nd4j::DataType::FLOAT32); x.linspace(1); y.linspace(1); NDArray exp('c', {2, 2}, {650.0, 1586.0, 1586.0, 4250.0}, nd4j::DataType::FLOAT32); nd4j::ops::tensormmul op; auto results = op.execute({&x, &y}, {}, {2,1,2,2,1,2}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto *out = results->at(0); // exp.printShapeInfo(); // out->printShapeInfo(); // exp.printBuffer(); // out->printBuffer(); // PointersManager manager(x.getContext(), "scatter"); // manager.printDevContentOnHost(out->getSpecialBuffer(), out->lengthOf()); // manager.printDevContentOnHost(exp.getSpecialBuffer(), exp.lengthOf()); ASSERT_TRUE(exp.isSameShape(out)); ASSERT_TRUE(exp.equalsTo(out)); delete results; } TEST_F(DeclarableOpsTests1, TestTensorDot2) { NDArray x('f', {2, 3, 4}, {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24.}, nd4j::DataType::FLOAT32); NDArray y('f', {2, 3, 4}, {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24.}, nd4j::DataType::FLOAT32); NDArray exp('c', {2, 2}, {2300.0, 2444.0, 2444.0, 2600.0}, nd4j::DataType::FLOAT32); nd4j::ops::tensormmul op; auto results = op.execute({&x, &y}, {}, {2,1,2,2,1,2}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto *out = results->at(0); // out->printBuffer(); // out->printShapeInfo(); ASSERT_TRUE(exp.isSameShape(out)); ASSERT_TRUE(exp.equalsTo(out)); delete results; } TEST_F(DeclarableOpsTests1, TestTensorDot3) { NDArray x('c', {2, 3, 4}, {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24.}, nd4j::DataType::FLOAT32); NDArray y('f', {2, 3, 4}, {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24.}, nd4j::DataType::FLOAT32); NDArray exp('f', {2, 2}, {1090.0, 2818.0, 1168.0, 3040.0}, nd4j::DataType::FLOAT32); nd4j::ops::tensormmul op; auto results = op.execute({&x, &y}, {}, {2,1,2,2,1,2}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto *out = results->at(0); // out->printBuffer(); // out->printShapeInfo(); ASSERT_TRUE(exp.isSameShape(out)); ASSERT_TRUE(exp.equalsTo(out)); delete results; } TEST_F(DeclarableOpsTests1, TestTensorDot4) { NDArray x('f', {2, 3, 4}, {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24.}, nd4j::DataType::FLOAT32); NDArray y('c', {2, 3, 4}, {1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24.}, nd4j::DataType::FLOAT32); NDArray exp('f', {2, 2}, {1090.0, 1168.0, 2818.0, 3040.0}, nd4j::DataType::FLOAT32); nd4j::ops::tensormmul op; auto results = op.execute({&x, &y}, {}, {2,1,2,2,1,2}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto *out = results->at(0); // out->printBuffer(); // out->printShapeInfo(); ASSERT_TRUE(exp.isSameShape(out)); ASSERT_TRUE(exp.equalsTo(out)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, DivergentCheck1) { auto op = nd4j::ops::OpRegistrator::getInstance()->getOperation("switch"); ASSERT_TRUE(op != nullptr); std::string expName("Switch"); ASSERT_EQ(expName, *(op->getOpName())); ASSERT_TRUE(op->getOpDescriptor()->isDivergent()); ASSERT_EQ(2, op->getOpDescriptor()->getNumberOfOutputs()); } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, AddMatrices1) { auto x = NDArrayFactory::create_ ('c', {5, 3}); auto y = NDArrayFactory::create_ ('c', {5, 3}); auto exp = NDArrayFactory::create_('c', {5, 3}); x->assign(2); y->assign(1); exp->assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::add addOp; addOp.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete exp; delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, AddVectorVector1) { auto x = NDArrayFactory::create_ ('c', {1, 15}); auto y = NDArrayFactory::create_ ('c', {1, 15}); auto exp = NDArrayFactory::create_('c', {1, 15}); x->assign(2); y->assign(1); exp->assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::add addOp; addOp.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete exp; delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, AddMatrixScalar1) { auto x = NDArrayFactory::create_('c', {5, 3}); auto y = NDArrayFactory::create_('c', {1, 1}); auto exp = NDArrayFactory::create('c', {5, 3}); x->assign(2); y->assign(1); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::add addOp; addOp.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, AddScalarScalar1) { auto x = NDArrayFactory::create_('c', {1, 1}); auto y = NDArrayFactory::create_('c', {1, 1}); auto exp = NDArrayFactory::create('c', {1, 1}); x->assign(2); y->assign(1); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::add addOp; addOp.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, SubtractMatrices1) { auto x = NDArrayFactory::create_('c', {5, 3}); auto y = NDArrayFactory::create_('c', {5, 3}); auto exp = NDArrayFactory::create('c', {5, 3}); x->assign(3); y->assign(1); exp.assign(2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::subtract subOp; subOp.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, SubtractTest_1) { auto x = NDArrayFactory::create_('c', {1, 6}); auto y = NDArrayFactory::create_('c', {1, 6}); auto exp = NDArrayFactory::create('c', {1, 6}); x->assign(3); y->assign(1); exp.assign(2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::subtract subOp; subOp.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, SubtractTest_2) { auto x = NDArrayFactory::create('c', {3, 4, 5, 1}); auto y = NDArrayFactory::create('c', {1, 6}); // auto y({6}, {1,1,1,1,1,1}); auto exp = NDArrayFactory::create('c', {3, 4, 5, 6}); x.assign(3); y.assign(1); exp.assign(2); nd4j::ops::subtract subOp; auto res = subOp.execute({&x, &y}, {}, {}); ASSERT_TRUE(res->status() == ND4J_STATUS_OK); ASSERT_TRUE(res->at(0)->equalsTo(&exp)); delete res; } TEST_F(DeclarableOpsTests1, TestRng1) { /* Nd4jLong *buffer = new Nd4jLong[100000]; NativeOps nativeOps; nd4j::random::RandomBuffer *rng = (nd4j::random::RandomBuffer *) nativeOps.initRandom(nullptr, 123, 100000, (Nd4jPointer) buffer); if (rng == nullptr) throw std::runtime_error("RNG initialization failed"); auto x = NDArrayFactory::create_('c', {5, 3}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); auto block = new Context(1, variableSpace, true); block->fillInputs({-1}); block->setRNG(rng); block->getTArguments()->push_back(0.0f); block->getTArguments()->push_back(1.0f); nd4j::ops::randomuniform uniform; Nd4jStatus status = uniform.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); ASSERT_TRUE(x->sumNumber() > 0.0); nativeOps.destroyRandom((Nd4jPointer) rng); delete[] buffer; delete variableSpace; delete block; */ } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, MergeSumTest1) { auto x = NDArrayFactory::create_('c', {5, 5}); auto y = NDArrayFactory::create_('c', {5, 5}); auto z = NDArrayFactory::create_('c', {5, 5}); auto exp = NDArrayFactory::create('c', {5, 5}); x->assign(3); y->assign(1); z->assign(2); exp.assign(6); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); variableSpace->putVariable(-3, z); variableSpace->putVariable(1, new Variable(NDArrayFactory::create_('c', {5, 5}))); auto block = new Context(1, variableSpace, false); block->fillInputs({-1, -2, -3}); nd4j::ops::mergeadd merge; merge.execute(block); auto res = variableSpace->getVariable(1)->getNDArray(); ASSERT_TRUE(res->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ClipByValue1) { auto x = NDArrayFactory::create_('c', {5, 5}); auto exp = NDArrayFactory::create('c', {5, 5}); x->assign(4); x->p(0, -1); x->p(1, 2); exp.assign(3); exp.p(0, 0); exp.p(1, 2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(1, new Variable()); auto block = new Context(1, variableSpace, true); block->getTArguments()->push_back(0.0f); block->getTArguments()->push_back(3.0f); block->fillInputs({-1}); nd4j::ops::clipbyvalue clip; clip.execute(block); // x->printIndexedBuffer("Result"); // exp.printIndexedBuffer("Expect"); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, MergeMaxTest1) { auto x = NDArrayFactory::create_('c', {5, 5}); auto y = NDArrayFactory::create_('c', {5, 5}); auto z = NDArrayFactory::create_('c', {5, 5}); auto exp = NDArrayFactory::create('c', {5, 5}); x->assign(3); y->assign(1); z->assign(2); exp.assign(3); auto zu = NDArrayFactory::create('c', {5, 5}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); variableSpace->putVariable(-3, z); variableSpace->putVariable(1, new Variable(NDArrayFactory::create_('c', {5, 5}))); auto block = new Context(1, variableSpace, false); block->fillInputs({-1, -2, -3}); nd4j::ops::mergemax merge; merge.execute(block); auto res = variableSpace->getVariable(1)->getNDArray(); ASSERT_TRUE(res->equalsTo(&exp)); delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, MergeAvgTest1) { auto x = NDArrayFactory::create_('c', {5, 5}); auto y = NDArrayFactory::create_('c', {5, 5}); auto z = NDArrayFactory::create_('c', {5, 5}); auto exp = NDArrayFactory::create('c', {5, 5}); x->assign(3); y->assign(1); z->assign(2); exp.assign(2); auto zu = NDArrayFactory::create('c', {5, 5}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); variableSpace->putVariable(-3, z); variableSpace->putVariable(1, new Variable(NDArrayFactory::create_('c', {5, 5}))); auto block = new Context(1, variableSpace, false); block->fillInputs({-1, -2, -3}); nd4j::ops::mergeavg merge; merge.execute(block); auto res = variableSpace->getVariable(1)->getNDArray(); ASSERT_TRUE(res->equalsTo(&exp)); delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, SubtractVectorVector1) { auto x = NDArrayFactory::create_('c', {1, 15}); auto y = NDArrayFactory::create_('c', {1, 15}); auto exp = NDArrayFactory::create('c', {1, 15}); x->assign(3); y->assign(1); exp.assign(2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::subtract subOp; subOp.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, SubtractMatrixScalar1) { auto x = NDArrayFactory::create_('c', {5, 3}); auto y = NDArrayFactory::create_('c', {1, 1}); auto exp = NDArrayFactory::create('c', {5, 3}); x->assign(3); y->assign(1); exp.assign(2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::subtract subOp; subOp.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, SubtractScalarScalar1) { auto x = NDArrayFactory::create_('c', {1, 1}); auto y = NDArrayFactory::create_('c', {1, 1}); auto exp = NDArrayFactory::create('c', {1, 1}); x->assign(3); y->assign(1); exp.assign(2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::subtract subOp; subOp.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseSubtractMatrices1) { auto x = NDArrayFactory::create_('c', {5, 3}); auto y = NDArrayFactory::create_('c', {5, 3}); auto exp = NDArrayFactory::create('c', {5, 3}); x->assign(3.f); y->assign(1.f); exp.assign(-2.f); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reversesubtract subOp; subOp.execute(block); // x->printIndexedBuffer("Output Subtract"); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseSubtractTest_1) { auto x = NDArrayFactory::create('c', {1, 6}); auto y = NDArrayFactory::create('c', {1, 6}); auto exp = NDArrayFactory::create('c', {1, 6}); x.assign(3.f); y.assign(1.f); exp.assign(-2.f); nd4j::ops::reversesubtract subOp; auto res = subOp.execute({&x, &y}, {}, {}); ASSERT_TRUE(res->status() == ND4J_STATUS_OK); ASSERT_TRUE(res->at(0)->equalsTo(&exp)); delete res; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseSubtractTest_2) { // auto x('c', {1, 6}); auto x = NDArrayFactory::create('c', {1, 6}); auto y = NDArrayFactory::create('c', {3, 4, 5, 1}); auto exp = NDArrayFactory::create('c', {3, 4, 5, 6}); auto z(exp); x.assign(3.f); y.assign(1.f); exp.assign(-2.f); x.applyTrueBroadcast(BROADCAST(ReverseSubtract), &y, &z, true); // x.printIndexedBuffer("ReverseSubtract Legacy"); ASSERT_TRUE(exp.equalsTo(&z)); nd4j::ops::reversesubtract subOp; auto res = subOp.execute({&x, &y}, {}, {}); ASSERT_TRUE(res->status() == ND4J_STATUS_OK); //res->at(0)->printIndexedBuffer("OUtput REVERSED SUB"); ASSERT_TRUE(res->at(0)->equalsTo(&exp)); delete res; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseSubtractTest_3) { // auto x('c', {1, 6}); auto x = NDArrayFactory::create('c', {6}); auto y = NDArrayFactory::create('c', {3, 4, 5, 1}); auto exp = NDArrayFactory::create('c', {3, 4, 5, 6}); auto z(exp); x.assign(1); y.assign(3); exp.assign(2); x.applyTrueBroadcast(BROADCAST(ReverseSubtract), &y, &z, true); ASSERT_TRUE(z.equalsTo(&exp)); nd4j::ops::reversesubtract subOp; auto res = subOp.execute({&x, &y}, {}, {}); ASSERT_TRUE(res->status() == ND4J_STATUS_OK); ASSERT_TRUE(res->at(0)->equalsTo(&exp)); delete res; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseModTest_1) { // auto x('c', {1, 6}); auto x = NDArrayFactory::create('c', {6}); auto y = NDArrayFactory::create('c', {3, 4, 5, 1}); auto exp = NDArrayFactory::create('c', {3, 4, 5, 6}); auto z(exp); x.assign(2.); y.assign(9.f); exp.assign(1.f); y.applyTrueBroadcast(BROADCAST(Mod), &x, &z, true); // z.printIndexedBuffer("MOD1"); ASSERT_TRUE(exp.equalsTo(&z)); x.applyTrueBroadcast(BROADCAST(ReverseMod), &y, &exp, true); ASSERT_TRUE(exp.equalsTo(&z)); nd4j::ops::reversemod subOp; auto res = subOp.execute({&x, &y}, {}, {}); ASSERT_TRUE(res->status() == ND4J_STATUS_OK); ASSERT_TRUE(res->at(0)->equalsTo(&exp)); ASSERT_TRUE(exp.equalsTo(&z)); delete res; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseModTest_2) { // auto x('c', {1, 6}); auto x = NDArrayFactory::create('c', {3, 4, 5}); auto y = NDArrayFactory::create('c', {3, 4, 5}); auto exp = NDArrayFactory::create('c', {3, 4, 5}); auto z(exp); x.assign(2.f); y.assign(9.f); exp.assign(1.f); x.applyTrueBroadcast(BROADCAST(ReverseMod), &y, &z, true); ASSERT_TRUE(z.equalsTo(&exp)); x.applyTrueBroadcast(BROADCAST(ReverseMod), &y, &exp, true); ASSERT_TRUE(z.equalsTo(&exp)); nd4j::ops::reversemod subOp; auto res = subOp.execute({&x, &y}, {}, {}); ASSERT_TRUE(res->status() == ND4J_STATUS_OK); // res->at(0)->printIndexedBuffer("OUtput REVERSED MOD2"); ASSERT_TRUE(res->at(0)->equalsTo(&exp)); delete res; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseSubtractVectorVector1) { auto x = NDArrayFactory::create_ ('c', {1, 15}); auto y = NDArrayFactory::create_ ('c', {1, 15}); auto exp = NDArrayFactory::create_ ('c', {1, 15}); x->assign(3); y->assign(1); exp->assign(-2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reversesubtract subOp; subOp.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete variableSpace; delete block; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseSubtractMatrixScalar1) { auto x = NDArrayFactory::create_ ('c', {5, 3}); auto y = NDArrayFactory::create_ ('c', {1, 1}); auto exp = NDArrayFactory::create_('c', {5, 3}); x->assign(3); y->assign(1); exp->assign(-2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reversesubtract subOp; subOp.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete variableSpace; delete block; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseSubtractScalarScalar1) { auto x = NDArrayFactory::create_ ('c', {1, 1}); auto y = NDArrayFactory::create_ ('c', {1, 1}); auto exp = NDArrayFactory::create_('c', {1, 1}); x->assign(3); y->assign(1); exp->assign(-2); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reversesubtract subOp; subOp.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete variableSpace; delete block; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, MultiplyMatrices1) { auto x = NDArrayFactory::create_ ('c', {5, 3}); auto y = NDArrayFactory::create_ ('c', {5, 3}); auto exp = NDArrayFactory::create_('c', {5, 3}); x->assign(2); y->assign(3); exp->assign(6); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::multiply mul; mul.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete variableSpace; delete block; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, MultiplyVectorVector1) { auto x = NDArrayFactory::create_ ('c', {1, 15}); auto y = NDArrayFactory::create_ ('c', {1, 15}); auto exp = NDArrayFactory::create_('c', {1, 15}); x->assign(2); y->assign(3); exp->assign(6); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::multiply mul; mul.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete variableSpace; delete block; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, MultiplyMatrixScalar) { auto x = NDArrayFactory::create_ ('c', {5, 3}); auto y = NDArrayFactory::create_ ('c', {1, 1}); auto exp = NDArrayFactory::create_('c', {5, 3}); x->assign(2); y->assign(3); exp->assign(6); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::multiply mul; mul.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete variableSpace; delete block; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, MultiplyScalarScalar1) { auto x = NDArrayFactory::create_ ('c', {1, 1}); auto y = NDArrayFactory::create_ ('c', {1, 1}); auto exp = NDArrayFactory::create_('c', {1, 1}); x->assign(2); y->assign(3); exp->assign(6); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::multiply mul; mul.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete block; delete variableSpace; delete exp; } TEST_F(DeclarableOpsTests1, TestMatMul1) { auto x = NDArrayFactory::create_('c', {3, 5}); x->linspace(1); auto y = NDArrayFactory::create_('c', {5, 3}); y->linspace(1); float _expB[]{135.0f, 310.0f, 485.0f, 150.0f, 350.0f, 550.0f, 165.0f, 390.0f, 615.0f}; Nd4jLong _expS[] {2, 3, 3, 1, 3, 0, 1, 102}; // expected shape ArrayOptions::setDataType(_expS, nd4j::DataType::FLOAT32); NDArray exp(_expB, _expS); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); variableSpace->putVariable(1, new Variable()); auto block = new Context(1, variableSpace, false); block->fillInputs({-1, -2}); nd4j::ops::matmul op; Nd4jStatus status = op.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); ASSERT_TRUE(variableSpace->hasVariable(1)); auto result = variableSpace->getVariable(1)->getNDArray(); ASSERT_TRUE(result->equalsTo(&exp)); delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, TestSoftMax_bp_1) { auto input = NDArrayFactory::create_('c', {2, 2}); for (int e = 0; e < input->lengthOf(); e++) input->p(e, e+1); auto epsilon = NDArrayFactory::create_('c', {2, 2}); epsilon->p(0, 0.1f); epsilon->p(1, 0.2f); epsilon->p(2, 0.3f); epsilon->p(3, 0.4f); auto output = NDArrayFactory::create_('c', {2, 2}); output->assign(1.0f); auto exp = NDArrayFactory::create_('c', {2, 2}); exp->p(0, -0.019661194f); exp->p(1, 0.019661194f); exp->p(2, -0.019661194f); exp->p(3, 0.019661194f); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, input); variableSpace->putVariable(-2, epsilon); variableSpace->putVariable(1, output); //variableSpace->putVariable(42, exp); auto block = new Context(1, variableSpace, false); block->fillInputs({-1, -2}); nd4j::ops::softmax_bp op; Nd4jStatus status = op.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); ASSERT_TRUE(output->equalsTo(exp)); delete variableSpace; delete block; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, BroadcastDivideTest_1) { auto x = NDArrayFactory::create('c', {3, 4, 5, 1}); auto y = NDArrayFactory::create('c', {1, 6}); auto exp = NDArrayFactory::create('c', {3, 4, 5, 6}); x.assign(6); y.assign(2); exp.assign(3); nd4j::ops::divide div; auto res = div.execute({&x, &y}, {}, {}); ASSERT_EQ(res->status(), ND4J_STATUS_OK); ASSERT_TRUE(res->at(0)->equalsTo(exp)); delete res; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, BroadcastReverseDivideTest_1) { auto x = NDArrayFactory::create('c', {3, 4, 5, 1}); auto y = NDArrayFactory::create('c', {1, 6}); auto exp = NDArrayFactory::create('c', {3, 4, 5, 6}); x.assign(3.f); y.assign(6.f); exp.assign(2.f); nd4j::ops::reversedivide div; auto res = div.execute({&x, &y}, {}, {}); ASSERT_EQ(res->status(), ND4J_STATUS_OK); ASSERT_TRUE(res->at(0)->equalsTo(exp)); auto z(exp); x.applyTrueBroadcast(BROADCAST(ReverseDivide), &y, &z, true); y.applyTrueBroadcast(BROADCAST(Divide), &x, &exp, true); ASSERT_TRUE(z.equalsTo(&exp)); delete res; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, DivideMatrices1) { auto x = NDArrayFactory::create_ ('c', {5, 3}); auto y = NDArrayFactory::create_ ('c', {5, 3}); auto exp = NDArrayFactory::create_('c', {5, 3}); x->assign(6); y->assign(2); exp->assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::divide div; div.execute(block); ASSERT_TRUE(x->equalsTo(exp)); delete variableSpace; delete block; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, DivideVectorVector1) { auto x = NDArrayFactory::create_('c', {1, 15}); auto y = NDArrayFactory::create_('c', {1, 15}); auto exp = NDArrayFactory::create('c', {1, 15}); x->assign(6); y->assign(2); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::divide div; div.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, DivideMatrixScalar1) { auto x = NDArrayFactory::create_('c', {5, 3}); auto y = NDArrayFactory::create_('c', {1, 1}); auto exp = NDArrayFactory::create('c', {5, 3}); x->assign(6); y->assign(2); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::divide div; div.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, DivideScalarScalar1) { auto x = NDArrayFactory::create_('c', {5, 1}); auto y = NDArrayFactory::create_('c', {5, 1}); auto exp = NDArrayFactory::create('c', {5, 1}); x->assign(6); y->assign(2); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::divide div; div.execute(block); //x->printBuffer("x"); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseDivideMatrices1) { auto x = NDArrayFactory::create_('c', {5, 3}); auto y = NDArrayFactory::create_('c', {5, 3}); auto exp = NDArrayFactory::create('c', {5, 3}); x->assign(2); y->assign(6); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reversedivide div; div.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseDivideVectorVector1) { auto x = NDArrayFactory::create_('c', {1, 15}); auto y = NDArrayFactory::create_('c', {1, 15}); auto exp = NDArrayFactory::create('c', {1, 15}); x->assign(2); y->assign(6); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reversedivide div; div.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseDivideMatrixScalar1) { auto x = NDArrayFactory::create_('c', {5, 3}); auto y = NDArrayFactory::create_('c', {1, 1}); auto exp = NDArrayFactory::create('c', {5, 3}); x->assign(2); y->assign(6); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reversedivide div; div.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, ReverseDivideScalarScalar1) { auto x = NDArrayFactory::create_('c', {1, 1}); auto y = NDArrayFactory::create_('c', {1, 1}); auto exp = NDArrayFactory::create('c', {1, 1}); x->assign(2); y->assign(6); exp.assign(3); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reversedivide div; div.execute(block); ASSERT_TRUE(x->equalsTo(&exp)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reshapeas1) { const std::vector xShape = {5,4,3}; const std::vector yShape = {3,5,4}; auto x = NDArrayFactory::create_('f', xShape); auto y = NDArrayFactory::create_('f', yShape); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(-2, y); auto block = new Context(1, variableSpace, true); block->fillInputs({-1, -2}); nd4j::ops::reshapeas reshape; reshape.execute(block); ASSERT_TRUE(x->isSameShape(y)); delete variableSpace; delete block; } TEST_F(DeclarableOpsTests1, Test_Cast_1) { // TODO: right now there's no real cast implementation, but genera idea should be the same: arrays equality to be expected auto x = NDArrayFactory::create('c', {5, 5}); auto yExp = NDArrayFactory::create('c', {5, 5}); x.linspace(1); yExp.linspace(1); nd4j::ops::cast op; auto result = op.execute({&x}, {}, {3}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); // z->printIndexedBuffer("OUtput"); // yExp.printIndexedBuffer("Expect"); // z->printShapeInfo("OUt shape"); // yExp.printShapeInfo("Exp shape"); ASSERT_TRUE(yExp.equalsTo(z)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, TestRegistrator1) { auto res = nd4j::ops::OpRegistrator::getInstance()->getAllCustomOperations(); // nd4j_printf("Ops: %s\n", res) } // ////////////////////////////////////////////////////////////////////// // TEST_F(DeclarableOpsTests1, TestLegacyExecution1) { // NativeOps nativeOps; // auto x = NDArrayFactory::create_('c', {10, 10}); // x->assign(1.0f); // auto y = NDArrayFactory::create_('c', {10, 10}); // y->assign(2.0f); // auto z = NDArrayFactory::create_('c', {10, 10}); // auto exp = NDArrayFactory::create_('c', {10, 10}); // exp->assign(3.0f); // z->assign(120.0f); // std::string opName("add"); // auto hash = nd4j::ops::HashHelper::getInstance()->getInstance()->getLongHash(opName); // auto inputBuffers = new Nd4jPointer[2]; // auto inputShapes = new Nd4jPointer[2]; // inputBuffers[0] = (Nd4jPointer) x->getBuffer(); // inputBuffers[1] = (Nd4jPointer) y->getBuffer(); // inputShapes[0] = (Nd4jPointer) x->getShapeInfo(); // inputShapes[1] = (Nd4jPointer) y->getShapeInfo(); // auto outputBuffers = new Nd4jPointer[1]; // auto outputShapes = new Nd4jPointer[1]; // outputBuffers[0] = (Nd4jPointer) z->getBuffer(); // outputShapes[0] = (Nd4jPointer) z->getShapeInfo(); // //auto status = nativeOps.execCustomOp(nullptr, hash, inputBuffers, inputShapes, 2, outputBuffers, outputShapes, 1, nullptr, 0, nullptr, 0, false); // auto status = nativeOps.execCustomOp(nullptr, hash, inputBuffers, inputShapes, 2, outputBuffers, outputShapes, 1, nullptr, 0, nullptr, 0, nullptr, 0, false); // ASSERT_EQ(ND4J_STATUS_OK, status); // // z->printIndexedBuffer("Output add"); // ASSERT_NEAR(2.0f, y->meanNumber().e(0), 1e-5); // ASSERT_NEAR(1.0f, x->meanNumber().e(0), 1e-5); // ASSERT_NEAR(3.0f, z->meanNumber().e(0), 1e-5); // delete x; // delete y; // delete z; // delete exp; // delete[] inputBuffers; // delete[] inputShapes; // delete[] outputBuffers; // delete[] outputShapes; // } // ////////////////////////////////////////////////////////////////////// // TEST_F(DeclarableOpsTests1, TestLegacyExecution2) { // NativeOps nativeOps; // auto x = NDArrayFactory::create_('c', {10, 10}); // x->assign(1.0f); // auto y = NDArrayFactory::create_('c', {10, 10}); // y->assign(2.0f); // auto z = NDArrayFactory::create_('c', {10, 10}); // auto exp = NDArrayFactory::create_('c', {10, 10}); // exp->assign(3.0); // std::string opName("add"); // auto hash = nd4j::ops::HashHelper::getInstance()->getInstance()->getLongHash(opName); // auto inputBuffers = new Nd4jPointer[2]; // auto inputShapes = new Nd4jPointer[2]; // inputBuffers[0] = (Nd4jPointer) x->getBuffer(); // inputBuffers[1] = (Nd4jPointer) y->getBuffer(); // inputShapes[0] = (Nd4jPointer) x->getShapeInfo(); // inputShapes[1] = (Nd4jPointer) y->getShapeInfo(); // auto outputBuffers = new Nd4jPointer[1]; // auto outputShapes = new Nd4jPointer[1]; // nativeOps.execCustomOp(nullptr, hash, inputBuffers, inputShapes, 2, outputBuffers, outputShapes, 1, nullptr, 0, nullptr, 0, nullptr, 0, true); // ASSERT_NEAR(2.0, y->meanNumber().e(0), 1e-5); // ASSERT_NEAR(3.0, x->meanNumber().e(0), 1e-5); // delete x; // delete y; // delete z; // delete exp; // delete[] inputBuffers; // delete[] inputShapes; // delete[] outputBuffers; // delete[] outputShapes; // } #ifndef __CUDABLAS__ ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, TestGemv1) { auto xBuffer = new float[15]{1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f}; auto xShape = new Nd4jLong[8] {2, 5, 3, 3, 1, 0, 1, 99}; ArrayOptions::setDataType(xShape, nd4j::DataType::FLOAT32); auto x = new NDArray(xBuffer, xShape); auto yBuffer = new float[3]{2.f, 4.f, 6.f}; auto yShape = new Nd4jLong[8] {2, 3, 1, 1, 1, 0, 1, 99}; ArrayOptions::setDataType(yShape, nd4j::DataType::FLOAT32); auto y = new NDArray(yBuffer, yShape); auto z = NDArrayFactory::create_('f', {5, 1}); auto expBuffer = new float[5]{28.00,64.00,100.00,136.00,172.00}; auto exp = new NDArray(expBuffer, z->getShapeInfo()); nd4j::blas::GEMV::op('f', x->rows(), x->columns(), 1.0f, x->getBuffer(), y->rows(), y->getBuffer(), 1, 0.0, z->getBuffer(), 1); //z->printBuffer(); ASSERT_TRUE(z->equalsTo(exp)); delete []xBuffer; delete []xShape; delete x; delete []yBuffer; delete []yShape; delete y; delete z; delete []expBuffer; delete exp; } #endif ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reshape1) { const std::vector xShape = {5,4,3}; const std::vector yShape = {3,5,4}; auto x = NDArrayFactory::create_('f', xShape); auto y = NDArrayFactory::create_('f', yShape); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); auto block = new Context(1, variableSpace, true); block->fillInputs({-1}); std::vector* arguments = block->getIArguments(); arguments->push_back(-y->ordering()); arguments->push_back(3); arguments->push_back(5); arguments->push_back(4); nd4j::ops::reshape reshape; reshape.execute(block); ASSERT_TRUE(x->isSameShape(y)); delete y; delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reshape2) { const std::vector xShape = {5,4,3}; const std::vector yShape = {3,5,4}; auto x = NDArrayFactory::create_('c', xShape); auto y = NDArrayFactory::create_('c', yShape); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(1, new Variable()); auto block = new Context(1, variableSpace, false); block->fillInputs({-1}); std::vector* arguments = block->getIArguments(); arguments->push_back(-y->ordering()); arguments->push_back(3); arguments->push_back(5); arguments->push_back(4); nd4j::ops::reshape reshape; Nd4jStatus status = reshape.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); ASSERT_TRUE(result->isSameShape(y)); delete y; delete block; delete variableSpace; } TEST_F(DeclarableOpsTests1, Reshape3) { auto x = NDArrayFactory::create('c', {3, 4, 5}); nd4j::ops::reshape op; auto result = op.execute({&x}, {}, {-99, 3, 4, 5}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(x.isSameShape(z)); delete result; } TEST_F(DeclarableOpsTests1, Reshape4) { auto x = NDArrayFactory::create('c', {3, 4, 5}); nd4j::ops::reshape op; auto result = op.execute({&x}, {}, {3, 4, 5}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(x.isSameShape(z)); delete result; } TEST_F(DeclarableOpsTests1, Reshape5) { auto x = NDArrayFactory::create('c', {3, 4, 5}); nd4j::ops::reshape op; auto result = op.execute({&x}, {}, {5, 4, 3}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); delete result; } TEST_F(DeclarableOpsTests1, Reshape6){ auto x = NDArrayFactory::create('c', {3, 4, 5}); auto exp = NDArrayFactory::create('c', {4, 15}); nd4j::ops::reshape op; auto result = op.execute({&x}, {}, {4, -1}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(z->isSameShape(exp)); delete result; } TEST_F(DeclarableOpsTests1, Reshape7){ auto x = NDArrayFactory::create('c', {3, 4, 5}); auto exp = NDArrayFactory::create('c', {60}); nd4j::ops::reshape op; auto result = op.execute({&x}, {}, {-1}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(z->isSameShape(exp)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Repeat1) { float eBuffer[8] = {1.0,2.0,1.0,2.0,3.0,4.0,3.0,4.0}; Nd4jLong eShape[8] = {2, 4, 2, 2, 1, 0, 1, 99}; ArrayOptions::setDataType(eShape, nd4j::DataType::FLOAT32); auto x = NDArrayFactory::create_('c', {2, 2}); auto exp = new NDArray(eBuffer, eShape); for (int e = 0; e < x->lengthOf(); e++) x->p(e, e + 1); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(1, new Variable()); auto block = new Context(1, variableSpace, false); block->fillInputs({-1}); std::vector* arguments = block->getIArguments(); *arguments = {2}; // set repeats arguments->push_back(0); // set dimension nd4j::ops::repeat repeat; Nd4jStatus status = repeat.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); ASSERT_TRUE(exp->equalsTo(result)); delete exp; delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Transpose1) { auto x = NDArrayFactory::create_('c', {3,5,2}); auto exp = NDArrayFactory::create_('f', {2,5,3}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); auto block = new Context(1, variableSpace, true); // in-place block->fillInputs({-1}); nd4j::ops::transpose transpose; Nd4jStatus status = transpose.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); // ASSERT_TRUE(x.isSameShapeStrict(&exp)); for (int e = 0; e < x->rankOf() * 2 + 2; e++) { ASSERT_EQ(x->getShapeInfo()[e], exp->getShapeInfo()[e]); } // ASSERT_EQ(x.getShapeInfo()[x.rankOf() * 2 + 2],-exp.getShapeInfo()[x.rankOf() * 2 + 2]); ASSERT_EQ(x->getShapeInfo()[x->rankOf() * 2 + 3], exp->getShapeInfo()[x->rankOf() * 2 + 3]); delete exp; delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Transpose2) { auto x = NDArrayFactory::create_('c', {3,5,2}); auto exp = NDArrayFactory::create_('f', {2,5,3}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(1, new Variable()); auto block = new Context(1, variableSpace, false); // not-in-place block->fillInputs({-1}); nd4j::ops::transpose transpose; Nd4jStatus status = transpose.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); // ASSERT_TRUE(result->isSameShapeStrict(&exp)); for (int e = 0; e < result->rankOf() * 2 + 2; e++) { ASSERT_EQ(result->getShapeInfo()[e], exp->getShapeInfo()[e]); } //ASSERT_EQ(result->getShapeInfo()[x.rankOf() * 2 + 2],-exp.getShapeInfo()[x.rankOf() * 2 + 2]); ASSERT_EQ(result->getShapeInfo()[x->rankOf() * 2 + 3], exp->getShapeInfo()[x->rankOf() * 2 + 3]); delete exp; delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// // in-place TEST_F(DeclarableOpsTests1, Permute1) { Nd4jLong shapeX[] = {3, 5, 10, 15, 150, 15, 1, 0, 1, 99}; Nd4jLong shapeExp[] = {3, 15, 5, 10, 1, 150, 15, 0, 0, 99}; const std::vector perm = {2, 0, 1}; ArrayOptions::setDataType(shapeX, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shapeExp, nd4j::DataType::FLOAT32); auto x = new NDArray(shapeX,true); auto exp = new NDArray(shapeExp,true); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); auto block = new Context(1, variableSpace, true); // in-place block->fillInputs({-1}); std::vector* arguments = block->getIArguments(); *arguments = perm; // set dimensions to be permuted nd4j::ops::permute permute; Nd4jStatus status = permute.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); ASSERT_TRUE(x->isSameShapeStrict(exp)); delete exp; delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// // not-in-place TEST_F(DeclarableOpsTests1, Permute2) { Nd4jLong shapeX[] = {3, 5, 10, 15, 150, 15, 1, 0, 1, 99}; Nd4jLong shapeExp[] = {3, 15, 5, 10, 1, 150, 15, 0, 0, 99}; const std::vector perm = {2, 0, 1}; ArrayOptions::setDataType(shapeX, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shapeExp, nd4j::DataType::FLOAT32); auto x = new NDArray(shapeX, true); auto exp = new NDArray(shapeExp, true); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(1, new Variable()); auto block = new Context(1, variableSpace, false); // not-in-place block->fillInputs({-1}); auto arguments = block->getIArguments(); *arguments = perm; // set dimensions to be permuted nd4j::ops::permute permute; Nd4jStatus status = permute.execute(block); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); ASSERT_EQ(ND4J_STATUS_OK, status); ASSERT_TRUE(result->isSameShapeStrict(exp)); delete block; delete variableSpace; delete exp; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, TestArgumentsValidation1) { Nd4jLong shapeX[] = {3, 5, 10, 15, 150, 15, 1, 0, 1, 99}; Nd4jLong shapeExp[] = {3, 15, 5, 10, 1, 150, 15, 0, -1, 99}; ArrayOptions::setDataType(shapeX, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shapeExp, nd4j::DataType::FLOAT32); const std::vector perm = {2, 0, 1}; auto x = new NDArray(shapeX); auto exp = new NDArray(shapeExp); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(1, new Variable()); auto block = new Context(1, variableSpace, false); // not-in-place block->fillInputs({-1}); nd4j::ops::im2col permute; Nd4jStatus status = permute.execute(block); ASSERT_TRUE(status != 0); delete exp; delete block; delete variableSpace; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, TestReductionShape1) { auto input = NDArrayFactory::create_('c', {4, 5, 5, 10, 10}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, input); auto block = new Context(1, variableSpace, false); // not-in-place block->fillInputs({-1}); // kernel params block->getIArguments()->push_back(MAX_INT); nd4j::ops::testreduction testop; auto inP = new Nd4jLong[shape::shapeInfoLength(input->getShapeInfo())]; memcpy(inP, input->getShapeInfo(), shape::shapeInfoByteLength(input->rankOf())); auto inshape = new ShapeList(inP); auto shapes = testop.calculateOutputShape(inshape, *block); ASSERT_EQ(1,shapes->size()); ASSERT_EQ(0,shapes->at(0)[0]); // scalar shape has rank 0 ASSERT_EQ(8192,shapes->at(0)[1]); ASSERT_EQ(1,shapes->at(0)[2]); delete[] inP; delete variableSpace; delete block; delete inshape; delete shapes; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, TestReductionShape2) { auto input = NDArrayFactory::create_('c', {4, 5, 5, 10, 10}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, input); auto block = new Context(1, variableSpace, false); // not-in-place block->fillInputs({-1}); // kernel params //block->getIArguments()->push_back(4); block->getIArguments()->push_back(1); block->getIArguments()->push_back(2); block->getIArguments()->push_back(3); block->getIArguments()->push_back(4); nd4j::ops::testreduction testop; auto inshapes = new ShapeList(input->getShapeInfo()); auto shapes = testop.calculateOutputShape(inshapes, *block); ASSERT_EQ(1,shapes->size()); ASSERT_EQ(1,shapes->at(0)[0]); ASSERT_EQ(4,shapes->at(0)[1]); ASSERT_EQ(1,shapes->at(0)[2]); delete variableSpace; delete block; delete shapes; delete inshapes; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, TestCustomShape1) { auto input = NDArrayFactory::create_('c', {2, 3, 4}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, input); auto block = new Context(1, variableSpace, false); // not-in-place block->fillInputs({-1}); nd4j::ops::testcustom test; auto inshapes = new ShapeList(input->getShapeInfo()); auto shapes = test.calculateOutputShape(inshapes, *block); //input.printShapeInfo("input"); //shape::printShapeInfoLinear(shape); ASSERT_EQ(input->getShapeInfo()[0] , shapes->at(0)[0]); ASSERT_EQ(input->getShapeInfo()[1] * 2, shapes->at(0)[1]); ASSERT_EQ(input->getShapeInfo()[2] * 2, shapes->at(0)[2]); ASSERT_EQ(input->getShapeInfo()[3] * 2, shapes->at(0)[3]); delete variableSpace; delete block; delete shapes; delete inshapes; } ////////////////////////////////////////////////////////////////////// /* TEST_F(DeclarableOpsTests1, Sum1) { float xBuff[] = {1, 2, 3, 4, 5, 6, 7, 8}; int xShape[] = {2, 4, 2, 2, 1, 0, 1, 99}; float expBuff[] = {16, 20}; int expShape[] = {2, 1, 2, 2, 1, 0, 1, 99}; const std::vector dimensions = {1,0}; auto x = NDArrayFactory::create_(xBuff, xShape); auto z = NDArrayFactory::create_(1, 2, 'c'); auto exp(expBuff, expShape); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); variableSpace->putVariable(1, z); auto block = new Context(1, variableSpace, false); // not-in-place block->fillInputs({-1}); std::vector* arguments = block->getIArguments(); *arguments = dimensions; nd4j::ops::sum sum; Nd4jStatus status = sum.execute(block); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); ASSERT_EQ(ND4J_STATUS_OK, status); ASSERT_TRUE(result->equalsTo(&exp)); delete block; delete variableSpace; } */ ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Avgpool2d_test1) { auto x = NDArrayFactory::create_('c', {bS,iD,iH,iW}); auto exp = NDArrayFactory::create('c',{bS,iD,oH,oW}); // auto z('c',{bS,iD,oH,oW}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); // variableSpace->putVariable(1, &z); auto block = new Context(1, variableSpace, false); block->fillInputs({-1}); std::vector* argI = block->getIArguments(); *argI = {kH,kW, sH,sW, pH,pW, dW,dH, 0, 0, 0}; // 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - same mode; nd4j::ops::avgpool2d pooling; Nd4jStatus status = pooling.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); ASSERT_TRUE(exp.isSameShape(result)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Avgpool2d_test2) { const int bS = 2; const int iD = 1; const int iH = 28; const int iW = 28; const int kH = 5; const int kW = 5; const int sH = 1; const int sW = 1; const int pH = 0; const int pW = 0; const int dH = 1; const int dW = 1; const int oH = (iH - kH - (kH-1)*(dH-1) + 2*pH)/sH + 1; // output height const int oW = (iW - kW - (kW-1)*(dW-1) + 2*pW)/sW + 1; // output width auto x = NDArrayFactory::create_('c', {bS,iD,iH,iW}); auto exp = NDArrayFactory::create('c',{bS,iD,oH,oW}); // auto z('c',{bS,iD,oH,oW}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); // variableSpace->putVariable(1, &z); auto block = new Context(1, variableSpace, false); block->fillInputs({-1}); std::vector* argI = block->getIArguments(); *argI = {kH,kW, sH,sW, pH,pW, dW,dH, 0, 0, 0}; // 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - same mode; nd4j::ops::avgpool2d pooling; Nd4jStatus status = pooling.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); // result->printShapeInfo(); ASSERT_TRUE(exp.isSameShape(result)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Avgpool2d_test3) { const int bS = 2; const int iD = 1; const int iH = 28; const int iW = 28; const int kH = 5; const int kW = 5; const int sH = 1; const int sW = 1; const int pH = 0; const int pW = 0; const int dH = 1; const int dW = 1; const int oH = (int) nd4j::math::nd4j_ceil(iH * 1.f / sH); const int oW = (int) nd4j::math::nd4j_ceil(iW * 1.f / sW); auto x = NDArrayFactory::create_('c', {bS,iD,iH,iW}); auto exp = NDArrayFactory::create('c',{bS,iD,oH,oW}); // auto z('c',{bS,iD,oH,oW}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); // variableSpace->putVariable(1, &z); auto block = new Context(1, variableSpace, false); block->fillInputs({-1}); std::vector* argI = block->getIArguments(); *argI = {kH,kW, sH,sW, pH,pW, dW,dH, 1, 0, 0}; // 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - same mode; nd4j::ops::avgpool2d pooling; Nd4jStatus status = pooling.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); // result->printShapeInfo(); ASSERT_TRUE(exp.isSameShape(result)); delete variableSpace; delete block; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Pnormpool2d1) { auto x = NDArrayFactory::create_('c', {bS,iD,iH,iW}); auto exp = NDArrayFactory::create('c',{bS,iD,oH,oW}); // auto z('c',{bS,iD,oH,oW}); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); // variableSpace->putVariable(1, &z); auto block = new Context(1, variableSpace, false); block->fillInputs({-1}); std::vector* argI = block->getIArguments(); *argI = {kH,kW, sH,sW, pH,pW, dW,dH, 0, 1, 0}; // 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - same mode; 9 - extraParam0 for pnorm case; nd4j::ops::pnormpool2d pooling; Nd4jStatus status = pooling.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); ASSERT_TRUE(exp.isSameShape(result)); delete variableSpace; delete block; } /*///////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, IsMax1) { float xBuff[] = {1,2,3,4,5,6,7,8,9}; Nd4jLong xShape[] = {2,3,3,3,1,0,1,99}; bool expBuff[] = {0,0,1,0,0,1,0,0,1}; ArrayOptions::setDataType(xShape, nd4j::DataType::BOOL); auto x = new NDArray(xBuff, xShape); NDArray exp(expBuff, xShape); auto variableSpace = new VariableSpace(); variableSpace->putVariable(-1, x); auto block = new Context(1, variableSpace, false); block->fillInputs({-1}); std::vector* argI = block->getIArguments(); // *argI = {1}; // dimensions argI->push_back(1); // = {1}; // dimensions nd4j::ops::ismax ismaxOp; Nd4jStatus status = ismaxOp.execute(block); ASSERT_EQ(ND4J_STATUS_OK, status); auto result = variableSpace->getVariable(block->getNodeId())->getNDArray(); result->printIndexedBuffer("IS_MAX"); ASSERT_TRUE(exp.equalsTo(result)); delete variableSpace; delete block; } */ ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, IsMax1) { NDArray x('c', {3, 3}, nd4j::DataType::FLOAT32); // NDArray exp('c', {3, 3}, nd4j::DataType::BOOL); NDArray exp('c', {3, 3}, nd4j::DataType::FLOAT32); x.linspace(1); exp.p(0, 2, true); exp.p(1, 2, true); exp.p(2, 2, true); nd4j::ops::ismax ismaxOp; auto result = ismaxOp.execute({&x}, {}, {1}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto res = result->at(0); //res->printIndexedBuffer("IS_MAX"); ASSERT_TRUE(exp.equalsTo(res)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, IsMax2) { NDArray x('c', {3, 3}, nd4j::DataType::FLOAT32); // NDArray exp('c', {3, 3}, nd4j::DataType::BOOL); NDArray exp('c', {3, 3}, nd4j::DataType::FLOAT32); x.linspace(1); //exp.p(0, 2, true); //exp.p(1, 2, true); exp.p(2, 2, true); nd4j::ops::ismax ismaxOp; auto result = ismaxOp.execute({&x}, {}, {0, 1}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto res = result->at(0); //res->printIndexedBuffer("IS_MAX"); ASSERT_TRUE(exp.equalsTo(res)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, IsMax3) { NDArray x = NDArrayFactory::create(120.f); //('c', {3, 3}, nd4j::DataType::FLOAT32); // NDArray exp('c', {3, 3}, nd4j::DataType::BOOL); NDArray exp = NDArrayFactory::create(1.f);//, nd4j::DataType::FLOAT32); //'c', {3, 3}, nd4j::DataType::FLOAT32); x.linspace(1); //exp.p(0, 2, true); //exp.p(1, 2, true); //exp.p(2, 2, true); nd4j::ops::ismax ismaxOp; auto result = ismaxOp.execute({&x}, {}, {0}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto res = result->at(0); //res->printIndexedBuffer("IS_MAX"); ASSERT_TRUE(exp.equalsTo(res)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, CompactLaunchTests1) { NDArray input('c', {2, 3, 4, 4}, nd4j::DataType::FLOAT32); NDArray weights('c', {3, 3, 5, 5}, nd4j::DataType::FLOAT32); NDArray exp('c', {2,3,8,8}, {6276.0,12831.0,19668.0,26790.0,27012.0,20703.0,14100.0,7200.0,13719.0,28023.0,42918.0,58410.0,58902.0,45105.0,30693.0,15660.0,22389.0,45696.0,69930.0,95100.0,95910.0,73386.0,49899.0,25440.0,32346.0,65970.0, 100884.0,137100.0,138276.0,105726.0,71838.0,36600.0,33726.0,68790.0,105204.0,142980.0,144156.0,110226.0,74898.0,38160.0,27555.0,56154.0,85806.0,116520.0,117474.0,89748.0,60933.0,31020.0,19917.0,40557.0,61926.0, 84030.0,84714.0,64671.0,43875.0,22320.0,10752.0,21879.0,33384.0,45270.0,45636.0,34815.0,23604.0,12000.0,7551.0,15456.0,23718.0,32340.0,32562.0,24978.0,17025.0,8700.0,16569.0,33873.0,51918.0,70710.0,71202.0, 54555.0,37143.0,18960.0,27114.0,55371.0,84780.0,115350.0,116160.0,88911.0,60474.0,30840.0,39246.0,80070.0,122484.0,166500.0,167676.0,128226.0,87138.0,44400.0,40626.0,82890.0,126804.0,172380.0,173556.0,132726.0, 90198.0,45960.0,33180.0,67629.0,103356.0,140370.0,141324.0,107973.0,73308.0,37320.0,23967.0,48807.0,74526.0,101130.0,101814.0,77721.0,52725.0,26820.0,12927.0,26304.0,40134.0,54420.0,54786.0,41790.0,28329.0,14400.0, 8826.0,18081.0,27768.0,37890.0,38112.0,29253.0,19950.0,10200.0,19419.0,39723.0,60918.0,83010.0,83502.0,64005.0,43593.0,22260.0,31839.0,65046.0,99630.0,135600.0,136410.0,104436.0,71049.0,36240.0,46146.0,94170.0, 144084.0,195900.0,197076.0,150726.0,102438.0,52200.0,47526.0,96990.0,148404.0,201780.0,202956.0,155226.0,105498.0,53760.0,38805.0,79104.0,120906.0,164220.0,165174.0,126198.0,85683.0,43620.0,28017.0,57057.0,87126.0, 118230.0,118914.0,90771.0,61575.0,31320.0,15102.0,30729.0,46884.0,63570.0,63936.0,48765.0,33054.0,16800.0,17220.0,34863.0,52932.0,71430.0,72228.0,54831.0,36996.0,18720.0,36327.0,73527.0,111606.0,150570.0,152214.0, 115521.0,77925.0,39420.0,57381.0,116112.0,176202.0,237660.0,240198.0,182250.0,122907.0,62160.0,80442.0,162738.0,246900.0,332940.0,336420.0,255198.0,172062.0,87000.0,84702.0,171318.0,259860.0,350340.0,353820.0, 268338.0,180882.0,91440.0,66867.0,135210.0,205038.0,276360.0,279042.0,211572.0,142581.0,72060.0,46845.0,94701.0,143574.0,193470.0,195306.0,148047.0,99747.0,50400.0,24576.0,49671.0,75288.0,101430.0,102372.0,77583.0, 52260.0,26400.0,22095.0,44688.0,67782.0,91380.0,92178.0,69906.0,47121.0,23820.0,46377.0,93777.0,142206.0,191670.0,193314.0,146571.0,98775.0,49920.0,72906.0,147387.0,223452.0,301110.0,303648.0,230175.0,155082.0, 78360.0,101742.0,205638.0,311700.0,419940.0,423420.0,320898.0,216162.0,109200.0,106002.0,214218.0,324660.0,437340.0,440820.0,334038.0,224982.0,113640.0,83292.0,168285.0,254988.0,343410.0,346092.0,262197.0,176556.0, 89160.0,58095.0,117351.0,177774.0,239370.0,241206.0,182697.0,122997.0,62100.0,30351.0,61296.0,92838.0,124980.0,125922.0,95358.0,64185.0,32400.0,26970.0,54513.0,82632.0,111330.0,112128.0,84981.0,57246.0,28920.0,56427.0,114027.0,172806.0,232770.0,234414.0,177621.0,119625.0,60420.0,88431.0,178662.0,270702.0,364560.0,367098.0,278100.0,187257.0,94560.0,123042.0,248538.0,376500.0,506940.0,510420.0,386598.0,260262.0,131400.0,127302.0,257118.0,389460.0,524340.0,527820.0,399738.0,269082.0,135840.0,99717.0,201360.0,304938.0,410460.0,413142.0,312822.0,210531.0,106260.0,69345.0,140001.0,211974.0,285270.0,287106.0,217347.0,146247.0,73800.0,36126.0,72921.0,110388.0,148530.0,149472.0,113133.0,76110.0,38400.0}, nd4j::DataType::FLOAT32); input.linspace(1); weights.linspace(1); weights.permutei({2,3,1,0}); nd4j::ops::deconv2d op; auto result = op.execute({&input, &weights}, {}, {5, 5, 1, 1, 0, 0, 1, 1, 0, 0}); auto z = result->at(0); // z->printShapeInfo(); // z->printBuffer(); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, CompactLaunchTests2) { Nd4jLong _expS[] = {4, 2, 3, 8, 8, 192, 64, 8, 1, 16384, 1, 99}; double _expB[] = {6276.0,12831.0,19668.0,26790.0,27012.0,20703.0,14100.0,7200.0,13719.0,28023.0,42918.0,58410.0,58902.0,45105.0,30693.0,15660.0,22389.0,45696.0,69930.0,95100.0,95910.0,73386.0,49899.0,25440.0,32346.0,65970.0,100884.0,137100.0,138276.0,105726.0,71838.0,36600.0,33726.0,68790.0,105204.0,142980.0,144156.0,110226.0,74898.0,38160.0,27555.0,56154.0,85806.0,116520.0,117474.0,89748.0,60933.0,31020.0,19917.0,40557.0,61926.0,84030.0,84714.0,64671.0,43875.0,22320.0,10752.0,21879.0,33384.0,45270.0,45636.0,34815.0,23604.0,12000.0,7551.0,15456.0,23718.0,32340.0,32562.0,24978.0,17025.0,8700.0,16569.0,33873.0,51918.0,70710.0,71202.0,54555.0,37143.0,18960.0,27114.0,55371.0,84780.0,115350.0,116160.0,88911.0,60474.0,30840.0,39246.0,80070.0,122484.0,166500.0,167676.0,128226.0,87138.0,44400.0,40626.0,82890.0,126804.0,172380.0,173556.0,132726.0,90198.0,45960.0,33180.0,67629.0,103356.0,140370.0,141324.0,107973.0,73308.0,37320.0,23967.0,48807.0,74526.0,101130.0,101814.0,77721.0,52725.0,26820.0,12927.0,26304.0,40134.0,54420.0,54786.0,41790.0,28329.0,14400.0,8826.0,18081.0,27768.0,37890.0,38112.0,29253.0,19950.0,10200.0,19419.0,39723.0,60918.0,83010.0,83502.0,64005.0,43593.0,22260.0,31839.0,65046.0,99630.0,135600.0,136410.0,104436.0,71049.0,36240.0,46146.0,94170.0,144084.0,195900.0,197076.0,150726.0,102438.0,52200.0,47526.0,96990.0,148404.0,201780.0,202956.0,155226.0,105498.0,53760.0,38805.0,79104.0,120906.0,164220.0,165174.0,126198.0,85683.0,43620.0,28017.0,57057.0,87126.0,118230.0,118914.0,90771.0,61575.0,31320.0,15102.0,30729.0,46884.0,63570.0,63936.0,48765.0,33054.0,16800.0,17220.0,34863.0,52932.0,71430.0,72228.0,54831.0,36996.0,18720.0,36327.0,73527.0,111606.0,150570.0,152214.0,115521.0,77925.0,39420.0,57381.0,116112.0,176202.0,237660.0,240198.0,182250.0,122907.0,62160.0,80442.0,162738.0,246900.0,332940.0,336420.0,255198.0,172062.0,87000.0,84702.0,171318.0,259860.0,350340.0,353820.0,268338.0,180882.0,91440.0,66867.0,135210.0,205038.0,276360.0,279042.0,211572.0,142581.0,72060.0,46845.0,94701.0,143574.0,193470.0,195306.0,148047.0,99747.0,50400.0,24576.0,49671.0,75288.0,101430.0,102372.0,77583.0,52260.0,26400.0,22095.0,44688.0,67782.0,91380.0,92178.0,69906.0,47121.0,23820.0,46377.0,93777.0,142206.0,191670.0,193314.0,146571.0,98775.0,49920.0,72906.0,147387.0,223452.0,301110.0,303648.0,230175.0,155082.0,78360.0,101742.0,205638.0,311700.0,419940.0,423420.0,320898.0,216162.0,109200.0,106002.0,214218.0,324660.0,437340.0,440820.0,334038.0,224982.0,113640.0,83292.0,168285.0,254988.0,343410.0,346092.0,262197.0,176556.0,89160.0,58095.0,117351.0,177774.0,239370.0,241206.0,182697.0,122997.0,62100.0,30351.0,61296.0,92838.0,124980.0,125922.0,95358.0,64185.0,32400.0,26970.0,54513.0,82632.0,111330.0,112128.0,84981.0,57246.0,28920.0,56427.0,114027.0,172806.0,232770.0,234414.0,177621.0,119625.0,60420.0,88431.0,178662.0,270702.0,364560.0,367098.0,278100.0,187257.0,94560.0,123042.0,248538.0,376500.0,506940.0,510420.0,386598.0,260262.0,131400.0,127302.0,257118.0,389460.0,524340.0,527820.0,399738.0,269082.0,135840.0,99717.0,201360.0,304938.0,410460.0,413142.0,312822.0,210531.0,106260.0,69345.0,140001.0,211974.0,285270.0,287106.0,217347.0,146247.0,73800.0,36126.0,72921.0,110388.0,148530.0,149472.0,113133.0,76110.0,38400.0,}; NDArray exp(_expB, _expS); auto input = NDArrayFactory::create('c', {2, 3, 4, 4}); auto weights = NDArrayFactory::create('c', {3, 3, 5, 5}); auto z = NDArrayFactory::create('c', {2, 3, 8, 8}); input.linspace(1); weights.linspace(1); weights.permutei({2,3,1,0}); nd4j::ops::deconv2d op; auto result = op.execute({&input, &weights}, {&z}, {}, {5, 5, 1, 1, 0, 0, 1, 1, 0, 0},{}); ASSERT_EQ(ND4J_STATUS_OK, result); ASSERT_TRUE(exp.isSameShape(&z)); ASSERT_TRUE(exp.equalsTo(&z)); } //////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, batchnorm_test1) { auto input = NDArrayFactory::create('c', {2,3,2,3,2}); auto mean = NDArrayFactory::create('c', {2,3,2,3,2}); auto variance = NDArrayFactory::create('c', {2,3,2,3,2}); auto gamma = NDArrayFactory::create('c', {2,3,2,3,2}); auto beta = NDArrayFactory::create('c', {2,3,2,3,2}); auto expected = NDArrayFactory::create('c', {2,3,2,3,2}, {-0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, 0.49088821, 0.66059214, 0.83029607, 1., 1.16970393, 1.33940786, 1.50911179, 1.67881572, 1.84851965, 2.01822358, 2.18792751, 2.35763144, 2.52733537, 2.6970393 , 2.86674323, 3.03644717, 3.2061511 , 3.37585503, 3.54555896, 3.71526289, 3.88496682, 4.05467075, 4.22437468, 4.39407861, 4.56378254, 4.73348647, 4.9031904 , 5.07289433, 5.24259826, 5.41230219, 5.58200612, 5.75171005, 5.92141398, 6.09111791, 6.26082184, 6.43052577, 6.6002297 , 6.76993364, 6.93963757, 7.1093415 , 7.27904543, 7.44874936, 7.61845329, 7.78815722, 7.95786115, 8.12756508, 8.29726901, 8.46697294, 8.63667687, 8.8063808 , 8.97608473, 9.14578866, 9.31549259, 9.48519652, 9.65490045, 9.82460438, 9.99430831,10.16401224,10.33371617,10.50342011,10.67312404,10.84282797,11.0125319 ,11.18223583,11.35193976,11.52164369}); input.linspace(0.1, 0.1); mean.assign(1.); variance.assign(0.5); gamma.assign(1.2); beta.assign(1.); nd4j::ops::batchnorm op; auto results = op.execute({&input, &mean, &variance, &gamma, &beta}, {1e-5}, {1,1}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } TEST_F(DeclarableOpsTests1, batchnorm_test2) { auto input = NDArrayFactory::create('c', {2,3,1,3,1}); auto mean = NDArrayFactory::create('c', {1,3,2,1,2}); auto variance = NDArrayFactory::create('c', {2,1,2,3,2}); auto gamma = NDArrayFactory::create('c', {2,3,2,3,1}); auto beta = NDArrayFactory::create('c', {1,3,2,1,2}); auto expected = NDArrayFactory::create('c', {2,3,2,3,2}, {-0.52733537,-0.52733537,-0.35763144,-0.35763144,-0.18792751,-0.18792751, -0.52733537,-0.52733537,-0.35763144,-0.35763144,-0.18792751,-0.18792751, -0.01822358,-0.01822358, 0.15148035, 0.15148035, 0.32118428, 0.32118428, -0.01822358,-0.01822358, 0.15148035, 0.15148035, 0.32118428, 0.32118428, 0.49088821, 0.49088821, 0.66059214, 0.66059214, 0.83029607, 0.83029607, 0.49088821, 0.49088821, 0.66059214, 0.66059214, 0.83029607, 0.83029607, 1. , 1. , 1.16970393, 1.16970393, 1.33940786, 1.33940786, 1. , 1. , 1.16970393, 1.16970393, 1.33940786, 1.33940786, 1.50911179, 1.50911179, 1.67881572, 1.67881572, 1.84851965, 1.84851965, 1.50911179, 1.50911179, 1.67881572, 1.67881572, 1.84851965, 1.84851965, 2.01822358, 2.01822358, 2.18792751, 2.18792751, 2.35763144, 2.35763144, 2.01822358, 2.01822358, 2.18792751, 2.18792751, 2.35763144, 2.35763144}); input.linspace(0.1, 0.1); mean.assign(1.); variance.assign(0.5); gamma.assign(1.2); beta.assign(1.); nd4j::ops::batchnorm op; auto results = op.execute({&input, &mean, &variance, &gamma, &beta}, {1e-5}, {1,1}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } //////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, batchnorm_test3) { auto input = NDArrayFactory::create('c', {2,3,2,3,2}); auto mean = NDArrayFactory::create('c', {2,3,2}); auto variance = NDArrayFactory::create('c', {2,3,1,3,1}); auto gamma = NDArrayFactory::create('c', {1,1}); auto beta = NDArrayFactory::create('c', {1,2}); auto expected = NDArrayFactory::create('c', {2,3,2,3,2}, {-0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, 0.49088821, 0.66059214, 0.83029607, 1., 1.16970393, 1.33940786, 1.50911179, 1.67881572, 1.84851965, 2.01822358, 2.18792751, 2.35763144, 2.52733537, 2.6970393 , 2.86674323, 3.03644717, 3.2061511 , 3.37585503, 3.54555896, 3.71526289, 3.88496682, 4.05467075, 4.22437468, 4.39407861, 4.56378254, 4.73348647, 4.9031904 , 5.07289433, 5.24259826, 5.41230219, 5.58200612, 5.75171005, 5.92141398, 6.09111791, 6.26082184, 6.43052577, 6.6002297 , 6.76993364, 6.93963757, 7.1093415 , 7.27904543, 7.44874936, 7.61845329, 7.78815722, 7.95786115, 8.12756508, 8.29726901, 8.46697294, 8.63667687, 8.8063808 , 8.97608473, 9.14578866, 9.31549259, 9.48519652, 9.65490045, 9.82460438, 9.99430831,10.16401224,10.33371617,10.50342011, 10.67312404,10.84282797,11.0125319 ,11.18223583,11.35193976,11.52164369}); input.linspace(0.1, 0.1); mean.assign(1.); variance.assign(0.5); gamma.assign(1.2); beta.assign(1.); nd4j::ops::batchnorm op; auto results = op.execute({&input, &mean, &variance, &gamma, &beta}, {1e-5}, {1,1}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } //////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, batchnorm_test4) { auto input = NDArrayFactory::create('c', {3,2}); auto mean = NDArrayFactory::create('c', {2,3,2}); auto variance= NDArrayFactory::create('c', {2,3,1,3,2}); auto gamma = NDArrayFactory::create('c', {1,1}); auto beta = NDArrayFactory::create('c', {1,2}); auto expected= NDArrayFactory::create('c', {2,3,2,3,2}, {-0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428, -0.52733537,-0.35763144,-0.18792751,-0.01822358, 0.15148035, 0.32118428}); input.linspace(0.1, 0.1); mean.assign(1.); variance.assign(0.5); gamma.assign(1.2); beta.assign(1.); nd4j::ops::batchnorm op; auto results = op.execute({&input, &mean, &variance, &gamma, &beta}, {1e-5}, {1,1}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } //////////////////////////////////////////////////////////////////// // TEST_F(DeclarableOpsTests1, sru_old_test1) { // const int bS = 2; // const int K = 3; // const int N = 4; // NDArray input('c', {bS,K,N}, nd4j::DataType::DOUBLE); // NDArray weights('c', {3*K,K}, nd4j::DataType::DOUBLE); // NDArray bias('c', {1,2*K}, nd4j::DataType::DOUBLE); // NDArray init('c', {bS,K}, nd4j::DataType::DOUBLE); // NDArray mask('c', {bS,K}, nd4j::DataType::DOUBLE); // NDArray expState('c', {bS,K,N}, {0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715}, nd4j::DataType::DOUBLE); // NDArray expOut('c', {bS,K,N}, {1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656}, nd4j::DataType::DOUBLE); // input.assign(1.5); // weights.assign(0.5); // bias.assign(0.3) ; // init.assign(1.); // mask.assign(1.); // nd4j::ops::sru_old op; // auto results = op.execute({&input, &weights, &bias, &init, &mask}, {}, {}); // ASSERT_TRUE(results->size() == 2); // auto state = results->at(0); // auto output = results->at(1); // // state->printBuffer(); // // expState.printIndexedBuffer("EXP STATE"); // // state->printIndexedBuffer("OUT STATE"); // ASSERT_TRUE(expState.equalsTo(state)); // ASSERT_TRUE(expOut.equalsTo(output)); // delete results; // } ////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, sru_test1) { const int bS = 2; const int K = 3; const int N = 4; NDArray input('c', {bS,K,N}, nd4j::DataType::DOUBLE); NDArray weights('c', {3*K,K}, nd4j::DataType::DOUBLE); NDArray bias('c', {2*K}, nd4j::DataType::DOUBLE); NDArray init('c', {bS,K}, nd4j::DataType::DOUBLE); NDArray mask('c', {bS,K}, nd4j::DataType::DOUBLE); NDArray expState('c', {bS,K,N}, {1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656, 1.090533, 1.174509, 1.252403, 1.324656}, nd4j::DataType::DOUBLE); NDArray expOut('c', {bS,K,N}, {0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715}, nd4j::DataType::DOUBLE); input.assign(1.5); weights.assign(0.5); bias.assign(0.3) ; init.assign(1.); mask.assign(1.); nd4j::ops::sru op; auto results = op.execute({&input, &weights, &bias, &init, &mask}, {}, {}); ASSERT_TRUE(results->size() == 2); auto output = results->at(0); auto state = results->at(1); ASSERT_TRUE(expState.equalsTo(state)); ASSERT_TRUE(expOut.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, sru_bp) { const int bS = 2; const int K = 3; const int N = 4; std::vector expGradXBuff = {-0.0259303, -0.03869125, -0.0302272, -0.02299165, -0.0259303, -0.03869125, -0.0302272, -0.02299165, -0.0259303, -0.03869125, -0.0302272, -0.02299165, -0.0259303, -0.03869125, -0.0302272, -0.02299165, -0.0259303, -0.03869125, -0.0302272, -0.02299165, -0.0259303, -0.03869125, -0.0302272, -0.02299165}; std::vector expGradWBuff = {0.42526005,0.42526005,0.42526005, 0.42526005,0.42526005,0.42526005, 0.42526005,0.42526005,0.42526005, -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, 0.42526005,0.42526005,0.42526005, 0.42526005,0.42526005,0.42526005, 0.42526005,0.42526005,0.42526005, -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.5282811 , -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215, -0.15967215}; std::vector expGradBBuff = {-0.7043748, -0.7043748, -0.7043748, -0.2128962, -0.2128962, -0.2128962}; std::vector expGradInitBuff = {1.1421, 1.1421, 1.1421, 1.1421, 1.1421, 1.1421}; std::vector stateBuff = {0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715, 0.847983, 0.874549, 0.896109, 0.913715}; auto input = NDArrayFactory::create('c', {bS,K,N}); auto weights = NDArrayFactory::create('c', {3*K,K}); auto bias = NDArrayFactory::create('c', {1,2*K}); auto init = NDArrayFactory::create('c', {bS,K}); auto mask = NDArrayFactory::create('c', {bS,K}); auto state = NDArrayFactory::create('c', {bS,K,N}, stateBuff); auto inGradCt = NDArrayFactory::create('c', {bS,K}); auto inGradH = NDArrayFactory::create('c', {bS,K,N}); auto expGradX = NDArrayFactory::create('c', {bS,K,N}, expGradXBuff); auto expGradW = NDArrayFactory::create('c', {bS,3*K,K}, expGradWBuff); auto expGradB = NDArrayFactory::create('c', {1,2*K}, expGradBBuff); auto expGradInit = NDArrayFactory::create('c', {bS,K}, expGradInitBuff); input.assign(1.5); weights.assign(0.5); bias.assign(0.3) ; mask.assign(1.); init.assign(1.); inGradCt.assign(0.5); inGradH.assign(0.5); nd4j::ops::sru_bp bp; auto resultsBP = bp.execute({&input, &weights, &bias, &init, &state, &inGradCt, &inGradH, &mask}, {}, {}); ASSERT_TRUE(resultsBP->size() == 4); auto gradX = resultsBP->at(0); auto gradW = resultsBP->at(1); auto gradB = resultsBP->at(2); auto gradInit = resultsBP->at(3); // expGradX.printBuffer("Exp GRAD"); // gradX->printBuffer("Res GRAD"); ASSERT_TRUE(expGradX.equalsTo(gradX,1e-4)); ASSERT_TRUE(expGradW.equalsTo(gradW)); ASSERT_TRUE(expGradB.equalsTo(gradB)); ASSERT_TRUE(expGradInit.equalsTo(gradInit)); delete resultsBP; } ////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, sru_bi_1) { const int bS = 2; const int K = 3; const int N = 4; NDArray input('c', {N,bS,2*K}, nd4j::DataType::DOUBLE); NDArray weights('c', {2*K,6*K}, nd4j::DataType::DOUBLE); NDArray bias('c', {4*K}, nd4j::DataType::DOUBLE); NDArray init('c', {bS,2*K}, nd4j::DataType::DOUBLE); NDArray mask('c', {bS,2*K}, nd4j::DataType::DOUBLE); NDArray expState('c', {N,bS,2*K}, {1.02857, 1.02857, 1.02857, 1.11288, 1.11288, 1.11288, 1.02857, 1.02857, 1.02857, 1.11288, 1.11288, 1.11288, 1.0569, 1.0569, 1.0569, 1.08501, 1.08501, 1.08501, 1.0569, 1.0569, 1.0569, 1.08501, 1.08501, 1.08501, 1.08501, 1.08501, 1.08501, 1.0569, 1.0569, 1.0569, 1.08501, 1.08501, 1.08501, 1.0569, 1.0569, 1.0569, 1.11288, 1.11288, 1.11288, 1.02857, 1.02857, 1.02857, 1.11288, 1.11288, 1.11288, 1.02857, 1.02857, 1.02857}); NDArray expOut('c', {N,bS,2*K}, {0.779265, 0.779265, 0.779265, 0.810752, 0.810752, 0.810752, 0.779265, 0.779265, 0.779265, 0.810752, 0.810752, 0.810752, 0.790317, 0.790317, 0.790317, 0.800804, 0.800804, 0.800804, 0.790317, 0.790317, 0.790317, 0.800804, 0.800804, 0.800804, 0.800804, 0.800804, 0.800804, 0.790317, 0.790317, 0.790317, 0.800804, 0.800804, 0.800804, 0.790317, 0.790317, 0.790317, 0.810752, 0.810752, 0.810752, 0.779265, 0.779265, 0.779265, 0.810752, 0.810752, 0.810752, 0.779265, 0.779265, 0.779265}); input.assign(1.5); weights.assign(0.5); bias.assign(0.3) ; init.assign(1.); mask.assign(1.); nd4j::ops::sru_bi op; auto results = op.execute({&input, &weights, &bias, &init, &mask}, {}, {}); ASSERT_TRUE(results->size() == 2); auto output = results->at(0); auto state = results->at(1); // state->printBuffer(); // output->printBuffer(); ASSERT_TRUE(expState.equalsTo(state)); ASSERT_TRUE(expOut.equalsTo(output)); delete results; } TEST_F(DeclarableOpsTests1, sru_bi_bp_1) { const int bS = 2; const int K = 3; const int N = 3; std::vector expGradXBuff = {0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129, 0.00408129}; std::vector expGradInitBuff = {1.05121, 1.05121, 1.05121, 1.02676, 1.02676, 1.02676, 1.05121, 1.05121, 1.05121, 1.02676, 1.02676, 1.02676}; std::vector expGradWBuff = {0.02595354,-0.090096 ,-0.00882456,0.02595354,-0.090096 ,-0.0088245, 0.02595354,-0.090096 ,-0.00882456,0.01651665,-0.0559437,-0.0084390, 0.01651665,-0.0559437,-0.00843906,0.01651665,-0.0559437,-0.00843906, 0.02595354,-0.090096 ,-0.00882456,0.02595354,-0.090096 ,-0.0088245, 0.02595354,-0.090096 ,-0.00882456,0.01651665,-0.0559437,-0.0084390, 0.01651665,-0.0559437,-0.00843906,0.01651665,-0.0559437,-0.00843906, 0.02595354,-0.090096 ,-0.00882456,0.02595354,-0.090096 ,-0.0088245, 0.02595354,-0.090096 ,-0.00882456,0.01651665,-0.0559437,-0.0084390, 0.01651665,-0.0559437,-0.00843906,0.01651665,-0.0559437,-0.00843906, 0.02595354,-0.090096 ,-0.00882456,0.02595354,-0.090096 ,-0.0088245, 0.02595354,-0.090096 ,-0.00882456,0.01651665,-0.0559437,-0.0084390, 0.01651665,-0.0559437,-0.00843906,0.01651665,-0.0559437,-0.00843906, 0.02595354,-0.090096 ,-0.00882456,0.02595354,-0.090096 ,-0.0088245, 0.02595354,-0.090096 ,-0.00882456,0.01651665,-0.0559437,-0.0084390, 0.01651665,-0.0559437,-0.00843906,0.01651665,-0.0559437,-0.00843906, 0.02595354,-0.090096 ,-0.00882456,0.02595354,-0.090096 ,-0.0088245, 0.02595354,-0.090096 ,-0.00882456,0.01651665,-0.0559437,-0.0084390, 0.01651665,-0.0559437,-0.00843906,0.01651665,-0.0559437,-0.00843906, 0.02124567,-0.0731508,-0.00868926,0.02124567,-0.0731508,-0.0086892, 0.02124567,-0.0731508,-0.00868926,0.02084955,-0.0712011,-0.0085608, 0.02084955,-0.0712011,-0.00856086,0.02084955,-0.0712011,-0.00856086, 0.02124567,-0.0731508,-0.00868926,0.02124567,-0.0731508,-0.0086892, 0.02124567,-0.0731508,-0.00868926,0.02084955,-0.0712011,-0.0085608, 0.02084955,-0.0712011,-0.00856086,0.02084955,-0.0712011,-0.00856086, 0.02124567,-0.0731508,-0.00868926,0.02124567,-0.0731508,-0.0086892, 0.02124567,-0.0731508,-0.00868926,0.02084955,-0.0712011,-0.0085608, 0.02084955,-0.0712011,-0.00856086,0.02084955,-0.0712011,-0.00856086, 0.02124567,-0.0731508,-0.00868926,0.02124567,-0.0731508,-0.0086892, 0.02124567,-0.0731508,-0.00868926,0.02084955,-0.0712011,-0.0085608, 0.02084955,-0.0712011,-0.00856086,0.02084955,-0.0712011,-0.00856086, 0.02124567,-0.0731508,-0.00868926,0.02124567,-0.0731508,-0.0086892, 0.02124567,-0.0731508,-0.00868926,0.02084955,-0.0712011,-0.0085608, 0.02084955,-0.0712011,-0.00856086,0.02084955,-0.0712011,-0.00856086, 0.02124567,-0.0731508,-0.00868926,0.02124567,-0.0731508,-0.0086892, 0.02124567,-0.0731508,-0.00868926,0.02084955,-0.0712011,-0.0085608, 0.02084955,-0.0712011,-0.00856086,0.02084955,-0.0712011,-0.00856086, 0.01671156,-0.0570699,-0.00856086,0.01671156,-0.0570699,-0.0085608, 0.01671156,-0.0570699,-0.00856086,0.02534988,-0.0880002,-0.0086892, 0.02534988,-0.0880002,-0.00868926,0.02534988,-0.0880002,-0.00868926, 0.01671156,-0.0570699,-0.00856086,0.01671156,-0.0570699,-0.0085608, 0.01671156,-0.0570699,-0.00856086,0.02534988,-0.0880002,-0.0086892, 0.02534988,-0.0880002,-0.00868926,0.02534988,-0.0880002,-0.00868926, 0.01671156,-0.0570699,-0.00856086,0.01671156,-0.0570699,-0.0085608, 0.01671156,-0.0570699,-0.00856086,0.02534988,-0.0880002,-0.0086892, 0.02534988,-0.0880002,-0.00868926,0.02534988,-0.0880002,-0.00868926, 0.01671156,-0.0570699,-0.00856086,0.01671156,-0.0570699,-0.0085608, 0.01671156,-0.0570699,-0.00856086,0.02534988,-0.0880002,-0.0086892, 0.02534988,-0.0880002,-0.00868926,0.02534988,-0.0880002,-0.00868926, 0.01671156,-0.0570699,-0.00856086,0.01671156,-0.0570699,-0.0085608, 0.01671156,-0.0570699,-0.00856086,0.02534988,-0.0880002,-0.0086892, 0.02534988,-0.0880002,-0.00868926,0.02534988,-0.0880002,-0.00868926, 0.01671156,-0.0570699,-0.00856086,0.01671156,-0.0570699,-0.0085608, 0.01671156,-0.0570699,-0.00856086,0.02534988,-0.0880002,-0.0086892, 0.02534988,-0.0880002,-0.00868926,0.02534988,-0.0880002,-0.00868926}; std::vector expGradBBuff = {-0.0734389, -0.0734389, -0.0734389, -0.0717151, -0.0717151, -0.0717151, -0.0734389, -0.0734389, -0.0734389, -0.0717151, -0.0717151, -0.0717151, -0.00869156, -0.00869156, -0.00869156, -0.00856306, -0.00856306, -0.00856306, -0.00869156, -0.00869156, -0.00869156, -0.00856306, -0.00856306, -0.00856306}; std::vector stateBuff = {1.028569, 1.028569, 1.028569, 1.112884, 1.112884, 1.112884, 1.028569, 1.028569, 1.028569, 1.112884,1.112884, 1.112884, 1.056905, 1.056905, 1.056905, 1.085009, 1.085009, 1.085009, 1.056905, 1.056905,1.056905, 1.085009, 1.085009, 1.085009, 1.085009, 1.085009, 1.085009, 1.056905, 1.056905, 1.056905,1.085009, 1.085009, 1.085009, 1.056905, 1.056905, 1.056905}; auto input = NDArrayFactory::create('c', {N,bS,2*K}); auto weights = NDArrayFactory::create('c', {2*K,6*K}); auto bias = NDArrayFactory::create('c', {4*K}); auto init = NDArrayFactory::create('c', {bS,2*K}); auto mask = NDArrayFactory::create('c', {bS,2*K}); NDArray state('c', {N,bS,2*K}, stateBuff); auto inGradCt = NDArrayFactory::create('c', {bS,2*K}); auto inGradH = NDArrayFactory::create('c', {N,bS,2*K}); NDArray gradBias('c', {bS,4*K}, expGradBBuff); NDArray expGradX('c', {N,bS,2*K}, expGradXBuff); NDArray expGradW('c', {N,2*K,6*K}, expGradWBuff); auto expGradB = NDArrayFactory::create('c', {4*K}); gradBias.reduceAlongDimension(reduce::Sum, &expGradB, {0}); // [bS, 4K] -> [4K] NDArray expGradInit('c', {bS,2*K}, expGradInitBuff); input.assign(1.5); weights.assign(0.5); bias.assign(0.3) ; mask.assign(1.); init.assign(1.); inGradCt.assign(0.5); inGradH.assign(0.5); nd4j::ops::sru_bi_bp bp; auto resultsBP = bp.execute({&input, &weights, &bias, &init, &state, &inGradCt, &inGradH, &mask}, {}, {}); ASSERT_TRUE(resultsBP->size() == 4); auto gradX = resultsBP->at(0); auto gradW = resultsBP->at(1); auto gradB = resultsBP->at(2); auto gradInit = resultsBP->at(3); ASSERT_TRUE(expGradX.equalsTo(gradX)); ASSERT_TRUE(expGradW.equalsTo(gradW)); ASSERT_TRUE(expGradB.equalsTo(gradB)); ASSERT_TRUE(expGradInit.equalsTo(gradInit)); delete resultsBP; } TEST_F(DeclarableOpsTests1, ArgMax1) { auto x = NDArrayFactory::create('c', {3, 5}); x.linspace(1); auto exp = NDArrayFactory::create('c', {3}); exp.assign(4); nd4j::ops::argmax op; auto result = op.execute({&x}, {}, {1}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, ArgMax2) { auto x = NDArrayFactory::create('c', {3, 5}); x.linspace(1); auto exp = NDArrayFactory::create('c', {5}); exp.assign(2); nd4j::ops::argmax op; auto result = op.execute({&x}, {}, {0}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, ArgMax3) { auto x = NDArrayFactory::create('c', {3, 5}); auto dim = NDArrayFactory::create('c', {1, 1}, {0.}); x.linspace(1); auto exp = NDArrayFactory::create('c', {5}); exp.assign(2); nd4j::ops::argmax op; auto result = op.execute({&x, &dim}, {}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, ArgMax4) { auto x = NDArrayFactory::create('c', {3, 5}); auto dim = NDArrayFactory::create('c', {1, 1}, {1}); x.linspace(1); auto exp = NDArrayFactory::create('c', {3}); exp.assign(4); nd4j::ops::argmax op; auto result = op.execute({&x, &dim}, {}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, ArgMax5) { auto x = NDArrayFactory::create('c', {3, 5}); auto dim = NDArrayFactory::create('c', {1, 2}, {0, 1}); x.linspace(1); auto exp = NDArrayFactory::create(14); nd4j::ops::argmax op; auto result = op.execute({&x, &dim}, {}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, ArgMax6) { auto x = NDArrayFactory::create('c', {3, 4, 5}); auto dim = NDArrayFactory::create(-1.f); x.linspace(1); nd4j::ops::argmax op; auto expected = op.execute({&x}, {}, {2}); ASSERT_EQ(Status::OK(), expected->status()); auto exp = expected->at(0); auto result = op.execute({&x, &dim}, {}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_EQ(*exp, *z); delete result; delete expected; } TEST_F(DeclarableOpsTests1, ArgMin1) { auto x = NDArrayFactory::create('c', {3, 5}); x.linspace(1); // auto exp('c', {3, 1}); auto exp = NDArrayFactory::create('c', {3}); exp.assign(0.0f); nd4j::ops::argmin op; auto result = op.execute({&x}, {}, {1}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, SquareTests1) { auto x = NDArrayFactory::create('c', {3, 5}); x.linspace(1); auto exp = NDArrayFactory::create('c', {3, 5}); exp.linspace(1); exp *= exp; nd4j::ops::square op; auto result = op.execute({&x}, {}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, OneHotTests_1) { auto indices = NDArrayFactory::create('c', {1, 4}, {0.0f, 2.0f, -1.0f, 1.0f}); auto exp = NDArrayFactory::create('c', {1, 4, 3}, {1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f}); nd4j::ops::onehot op; auto result = op.execute({&indices}, {1.0f, 0.0f}, {-1, 3}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); // z->printBuffer(); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, OneHotTests_2) { auto indices = NDArrayFactory::create('c', {2, 2}, {0.f, 2.f, 1.f, -1.f}); auto exp = NDArrayFactory::create('c', {2, 2, 3}, {1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f}); nd4j::ops::onehot op; auto result = op.execute({&indices}, {1.0f, 0.0f}, {-1, 3}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, OneHotTests_3) { auto indices = NDArrayFactory::create('c', {4}, {0.0f, 2.0f, -1.0f, 1.0f}); auto exp = NDArrayFactory::create('c', {4, 3}, {1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f}); nd4j::ops::onehot op; auto result = op.execute({&indices}, {1.0f, 0.0f}, {-1, 3}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); // z->printIndexedBuffer("z"); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, OneHotTests_4) { auto indices = NDArrayFactory::create('c', {4}, {0.0f, 2.0f, -1.0f, 1.0f}); auto depth = NDArrayFactory::create(3.0f); auto exp = NDArrayFactory::create('c', {4, 3}, {1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f}); nd4j::ops::onehot op; auto result = op.execute({&indices, &depth}, {1.0f, 0.0f}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, OneHotTests_5) { auto indices = NDArrayFactory::create('c', {4}, {0.0f, 2.0f, -1.0f, 1.0f}); auto depth = NDArrayFactory::create(3.0f); auto on = NDArrayFactory::create(1.0f); auto off = NDArrayFactory::create(0.0f); auto exp = NDArrayFactory::create('c', {4, 3}, {1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 0.f, 1.f, 0.f}); nd4j::ops::onehot op; auto result = op.execute({&indices, &depth, &on, &off}, {}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } TEST_F(DeclarableOpsTests1, OneHotTests_6) { auto indices = NDArrayFactory::create('c', {3}, {0., 1., 2.}); auto e = NDArrayFactory::create('c', {3, 3}, {1., 0., 0., 0., 1., 0., 0., 0., 1.}); nd4j::ops::onehot op; auto result = op.execute({&indices}, {1.0, 0.0}, {0, 3}); auto z = result->at(0); ASSERT_EQ(e, *z); delete result; } TEST_F(DeclarableOpsTests1, FillAs_1) { auto x = NDArrayFactory::create('c', {2, 2}); x.assign(117); float scalar = 119.f; nd4j::ops::fill_as op; auto result = op.execute({&x}, {scalar}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); ASSERT_TRUE(x.isSameShape(result->at(0))); ASSERT_NEAR(scalar, result->at(0)->meanNumber().e(0), 1e-5f); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, LRN1) { nd4j::ops::lrn lrn; lrn.getOpName(); } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_1) { float buff1[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12}; float buff2[] = {13,14,16,16,17,18,19,20,21,22,23,24}; float expBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,16,16,17,18,19,20,21,22,23,24}; Nd4jLong shape1[] = {2, 3, 4, 4, 1, 0, 1, 99}; Nd4jLong shape2[] = {2, 3, 4, 4, 1, 0, 1, 99}; Nd4jLong expShape[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shape2, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray input2(buff2, shape2); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input2}, {}, {0}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_2) { float buff1[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12}; float buff2[] = {13,14,16,16,17,18,19,20,21,22,23,24}; float expBuff[] = {1,2,3,4, 13, 14, 16, 16, 5,6,7,8, 17, 18, 19, 20, 9, 10, 11, 12, 21, 22, 23, 24}; Nd4jLong shape1[] = {2, 3, 4, 4, 1, 0, 1, 99}; Nd4jLong shape2[] = {2, 3, 4, 4, 1, 0, 1, 99}; Nd4jLong expShape[] = {3, 3, 2, 4, 8, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shape2, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray input2(buff2, shape2); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input2}, {}, {1}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_3) { float buff1[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12}; float buff2[] = {13,14,16,16,17,18,19,20,21,22,23,24}; float expBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,16,16,17,18,19,20,21,22,23,24}; Nd4jLong shape1[] = {2, 1, 12, 12, 1, 0, 1, 99}; Nd4jLong shape2[] = {2, 1, 12, 12, 1, 0, 1, 99}; Nd4jLong expShape[] = {3, 2, 1, 12, 12, 12, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shape2, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray input2(buff2, shape2); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input2}, {}, {0}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_4) { float buff1[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12}; float buff2[] = {13,14,16,16,17,18,19,20,21,22,23,24}; float expBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,16,16,17,18,19,20,21,22,23,24}; Nd4jLong shape1[] = {2, 1, 12, 12, 1, 0, 1, 99}; Nd4jLong shape2[] = {2, 1, 12, 12, 1, 0, 1, 99}; Nd4jLong expShape[] = {3, 1, 2, 12, 24, 12, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shape2, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray input2(buff2, shape2); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input2}, {}, {1}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_5) { float buff1[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12}; float buff2[] = {13,14,16,16,17,18,19,20,21,22,23,24}; float expBuff[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,16,16,17,18,19,20,21,22,23,24}; Nd4jLong shape1[] = {2, 12, 1, 1,1, 0, 1, 99}; Nd4jLong shape2[] = {2, 12, 1, 1,1, 0, 1, 99}; Nd4jLong expShape[] = {3, 2, 12, 1, 12, 1, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shape2, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray input2(buff2, shape2); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input2}, {}, {0}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_6) { float buff1[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12}; float buff2[] = {13,14,16,16,17,18,19,20,21,22,23,24}; float expBuff[] = {1 ,13 ,2 ,14 ,3 ,16 ,4 ,16 ,5 ,17 ,6 ,18 ,7 ,19 ,8 ,20 ,9 ,21 ,10 ,22 ,11 ,23 ,12 ,24}; Nd4jLong shape1[] = {2, 12, 1, 1, 12, 0, 1, 99}; Nd4jLong shape2[] = {2, 12, 1, 1, 12, 0, 1, 99}; Nd4jLong expShape[] = {3, 12, 2, 1, 2, 1, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(shape2, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray input2(buff2, shape2); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input2}, {}, {1}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_7) { float buff1[] = {1}; float expBuff[] = {1, 1, 1}; Nd4jLong shape1[] = {2, 1, 1, 1, 1, 0, 1, 99}; Nd4jLong expShape[] = {3, 3, 1, 1, 1, 1, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input1, &input1}, {}, {0}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_8) { float buff1[] = {1}; float expBuff[] = {1, 1, 1}; Nd4jLong shape1[] = {1, 1, 1, 0, 1, 99}; Nd4jLong expShape[] = {2, 3, 1, 1, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input1, &input1}, {}, {0}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_9) { float buff1[] = {1}; float expBuff[] = {1, 1, 1}; Nd4jLong shape1[] = {2, 1, 1, 1, 1, 0, 1, 99}; Nd4jLong expShape[] = {3, 1, 3, 1, 3, 1, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input1, &input1}, {}, {1}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Stack_10) { float buff1[] = {1}; float expBuff[] = {1, 1, 1}; Nd4jLong shape1[] = {1, 1, 1, 0, 1, 99}; Nd4jLong expShape[] = {2, 1, 3, 3, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input1, &input1}, {}, {1}); auto output = results->at(0); //expected.printShapeInfo("exp"); //output->printShapeInfo("out"); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } TEST_F(DeclarableOpsTests1, Stack_11) { float buff1[] = {1}; float expBuff[] = {1, 1, 1}; Nd4jLong shape1[] = {1, 1, 1, 0, 1, 99}; Nd4jLong expShape[] = {2, 3, 1, 1, 1, 0, 1, 99}; ArrayOptions::setDataType(shape1, nd4j::DataType::FLOAT32); ArrayOptions::setDataType(expShape, nd4j::DataType::FLOAT32); NDArray input1(buff1, shape1); NDArray expected(expBuff, expShape); nd4j::ops::stack op; auto results = op.execute({&input1, &input1, &input1}, {}, {}); auto output = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(output)); ASSERT_TRUE(expected.equalsTo(output)); delete results; } TEST_F(DeclarableOpsTests1, Test_Range_Integer_1) { auto exp = NDArrayFactory::create('c', {4}); exp.linspace(1); nd4j::ops::range op; auto result = op.execute({}, {}, {1, 5, 1}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); ASSERT_EQ(1, result->size()); auto array = result->at(0); // array->printIndexedBuffer("Range integer 1"); ASSERT_TRUE(exp.isSameShape(array)); ASSERT_TRUE(exp.equalsTo(array)); delete result; } TEST_F(DeclarableOpsTests1, Test_Range_Integer_2) { auto exp = NDArrayFactory::create('c', {4}); exp.linspace(1); auto start = NDArrayFactory::create('c', {1, 1}); auto stop = NDArrayFactory::create('c', {1, 1}); auto step = NDArrayFactory::create('c', {1, 1}); start.p(0, 1.f); stop.p(0, 5.f); step.p(0, 1.f); nd4j::ops::range op; auto result = op.execute({&start, &stop, &step}, {}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); ASSERT_EQ(1, result->size()); auto array = result->at(0); ASSERT_TRUE(exp.isSameShape(array)); ASSERT_TRUE(exp.equalsTo(array)); delete result; } TEST_F(DeclarableOpsTests1, Test_Range_Integer_3) { auto exp = NDArrayFactory::create('c', {4}); exp.linspace(1); nd4j::ops::range op; auto result = op.execute({}, {1.f, 5.f, 1.f}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); ASSERT_EQ(1, result->size()); auto array = result->at(0); ASSERT_TRUE(exp.isSameShape(array)); ASSERT_TRUE(exp.equalsTo(array)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, softmax_test1) { auto input = NDArrayFactory::create('c', {3, 3}, {-1, 1, -2, 2, -3, 3, -4, 4, 5}); auto expOutput = NDArrayFactory::create('c', {3, 3}, {1.14195199e-01, 8.43794734e-01, 4.20100661e-02, 2.68454951e-01, 1.80883523e-03, 7.29736214e-01, 9.02116571e-05, 2.68917160e-01, 7.30992629e-01}); nd4j::ops::softmax op; auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE); auto z = results->at(0); ASSERT_EQ(Status::OK(), results->status()); ASSERT_TRUE(expOutput.isSameShape(z)); ASSERT_TRUE(expOutput.equalsTo(z)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, softmax_test2) { auto input = NDArrayFactory::create('c', {3, 3, 3}, {-1, 1, -2, 2, -3, 3, -4, 4, -5,5 ,-6,6, -7,7, -8,8, -9,9, -10,10, -11,11, -12,12, -13,13, 14}); auto expOutput = NDArrayFactory::create('c', {3, 3, 3}, {4.73142e-02,4.73847e-02,6.69062e-03, 9.50330e-01,8.67881e-04,9.92976e-01, 2.35563e-03,9.51747e-01,3.33106e-04, 4.74259e-02,2.26032e-06,4.74259e-02, 2.91395e-07,9.99998e-01,3.94360e-08, 9.52574e-01,1.12535e-07,9.52574e-01, 7.58256e-10,4.74259e-02,1.22325e-11, 1.00000e+00,1.32293e-11,1.19203e-01, 3.77513e-11,9.52574e-01,8.80797e-01}); nd4j::ops::softmax op; auto results = op.execute({&input}, {}, {1}, {}, false, nd4j::DataType::DOUBLE); auto z = results->at(0); ASSERT_EQ(Status::OK(), results->status()); ASSERT_TRUE(expOutput.isSameShape(z)); ASSERT_TRUE(expOutput.equalsTo(z)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, softmax_test3) { auto input = NDArrayFactory::create('c', {3, 3, 3}, {-1, 1, -2, 2, -3, 3, -4, 4, -5,5 ,-6,6, -7,7, -8,8, -9,9, -10,10, -11,11, -12,12, -13,13, 14}); auto expOutput = NDArrayFactory::create('c', {3, 3, 3}, {2.47262e-03,1.23395e-04,3.35350e-04, 1.23395e-04,4.53979e-05,1.23395e-04, 6.14417e-06,1.23395e-04,5.56530e-09, 9.97527e-01,1.12521e-07,9.99665e-01, 1.52281e-08,9.99955e-01,2.06090e-09, 9.99994e-01,2.78912e-10,6.69285e-03, 3.05146e-07,9.99876e-01,4.13855e-08, 9.99877e-01,5.60254e-09,9.99877e-01, 7.58251e-10,9.99877e-01,9.93307e-01}); nd4j::ops::softmax op; auto results = op.execute({&input}, {}, {0}, {}, false, nd4j::DataType::DOUBLE); auto z = results->at(0); ASSERT_EQ(Status::OK(), results->status()); ASSERT_TRUE(expOutput.isSameShape(z)); ASSERT_TRUE(expOutput.equalsTo(z)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, softmax_test4) { auto input = NDArrayFactory::create('c', {1, 5}, {-1, 1, -2, 2, 3}); auto expOutput = NDArrayFactory::create('c', {1, 5}, {0.01198,0.08855,0.00441,0.24072,0.65434}); nd4j::ops::softmax op; auto results = op.execute({&input}, {}, {1}, {}, false, nd4j::DataType::DOUBLE); auto z = results->at(0); ASSERT_EQ(Status::OK(), results->status()); ASSERT_TRUE(expOutput.isSameShape(z)); ASSERT_TRUE(expOutput.equalsTo(z)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, softmax_test5) { auto input = NDArrayFactory::create('c', {1, 5}, {-1, 1, -2, 2, 3}); auto expOutput = NDArrayFactory::create('c', {1, 5}, {1,1,1,1,1}); nd4j::ops::softmax op; auto results = op.execute({&input}, {}, {0}, {}, false, nd4j::DataType::DOUBLE); auto z = results->at(0); ASSERT_EQ(Status::OK(), results->status()); ASSERT_TRUE(expOutput.isSameShape(z)); ASSERT_TRUE(expOutput.equalsTo(z)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, softmax_test6) { auto input = NDArrayFactory::create('c', {5, 1}, {-1, 1, -2, 2, 3}); auto expOutput = NDArrayFactory::create('c', {5, 1}, {0.01198,0.08855,0.00441,0.24072,0.65434}); nd4j::ops::softmax op; auto results = op.execute({&input}, {}, {0}, {}, false, nd4j::DataType::DOUBLE); auto z = results->at(0); ASSERT_EQ(Status::OK(), results->status()); ASSERT_TRUE(expOutput.isSameShape(z)); ASSERT_TRUE(expOutput.equalsTo(z)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, softmax_test7) { auto input = NDArrayFactory::create('c', {5, 1}, {-1, 1, -2, 2, 3}); auto expOutput = NDArrayFactory::create('c', {5, 1}, {1,1,1,1,1}); nd4j::ops::softmax op; auto results = op.execute({&input}, {}, {1}, {}, false, nd4j::DataType::DOUBLE); auto z = results->at(0); ASSERT_EQ(Status::OK(), results->status()); ASSERT_TRUE(expOutput.isSameShape(z)); ASSERT_TRUE(expOutput.equalsTo(z)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, softmax_test8) { auto input = NDArrayFactory::create('c', {5}, {-1, 1, -2, 2, 3}); auto expOutput = NDArrayFactory::create('c', {5}, {0.01198,0.08855,0.00441,0.24072,0.65434}); nd4j::ops::softmax op; auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE); auto z = results->at(0); ASSERT_EQ(Status::OK(), results->status()); ASSERT_TRUE(expOutput.isSameShape(z)); ASSERT_TRUE(expOutput.equalsTo(z)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Test_Stack_Edge_1) { float inBuff[] = {1.0f, 2.0f, 3.0f}; float expBuff[] = {1.0f, 2.0f, 3.0f}; auto input = NDArrayFactory::create(inBuff, 'c', {1, 3}); auto exp = NDArrayFactory::create(expBuff, 'c', {1, 1, 3}); nd4j::ops::stack op; auto result = op.execute({&input}, {}, {0}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Test_Stack_Edge_2) { float inBuff[] = {1.0f, 2.0f, 3.0f}; float expBuff[] = {1.0f, 2.0f, 3.0f}; auto input = NDArrayFactory::create(inBuff, 'c', {1, 1, 3}); auto exp = NDArrayFactory::create(expBuff, 'c', {1, 1, 1, 3}); nd4j::ops::stack op; auto result = op.execute({&input}, {}, {0}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Test_Stack_Edge_3) { float inBuff[] = {1.0f, 2.0f, 3.0f}; float expBuff[] = {1.0f, 2.0f, 3.0f}; auto input = NDArrayFactory::create(inBuff, 'c', {1, 3}); auto exp = NDArrayFactory::create(expBuff, 'c', {1, 1, 3}); nd4j::ops::stack op; auto result = op.execute({&input}, {}, {1}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z = result->at(0); //z->printShapeInfo(); ASSERT_TRUE(exp.isSameShape(z)); ASSERT_TRUE(exp.equalsTo(z)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_1 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {24., 23., 22., 21., 20., 19., 18., 17., 16., 15., 14., 13., 12., 11., 10., 9., 8., 7., 6., 5., 4., 3., 2., 1.}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {0,1,2}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_2 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {}, {}, true); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(&input)); ASSERT_TRUE(expected.equalsTo(&input)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_3 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {12., 11., 10., 9., 8., 7., 6., 5., 4., 3., 2., 1., 24., 23., 22., 21., 20., 19., 18., 17., 16., 15., 14., 13.}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {1,2}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); // result->printBuffer(); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_4 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {16,15,14,13,20,19,18,17,24,23,22,21,4,3,2,1,8,7,6,5,12,11,10,9,}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {0,2}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); // result->printBuffer(); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_5 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {21., 22., 23., 24., 17., 18., 19., 20., 13., 14., 15., 16., 9., 10., 11., 12., 5., 6., 7., 8., 1., 2., 3., 4.}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {0,1}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } //////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_6 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {4., 3., 2., 1., 8., 7., 6., 5., 12., 11., 10., 9., 16., 15., 14., 13., 20., 19., 18., 17., 24., 23., 22., 21.}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {2}, {}, true); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); // result->printBuffer(); ASSERT_TRUE(expected.isSameShapeStrict(&input)); ASSERT_TRUE(expected.equalsTo(&input)); delete results; } //////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_7 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {9., 10., 11., 12., 5., 6., 7., 8., 1., 2., 3., 4., 21., 22., 23., 24., 17., 18., 19., 20., 13., 14., 15., 16.}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {1}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); // result->printBuffer(); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_8 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {12., 11., 10., 9., 8., 7., 6., 5., 4., 3., 2., 1., 24., 23., 22., 21., 20., 19., 18., 17., 16., 15., 14., 13.}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {2,1}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); // result->printBuffer(); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } //////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_9 ) { float inBuff[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}; float expBuff[] = {13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.}; Nd4jLong shapeInfo[] = {3, 2, 3, 4, 12, 4, 1, 0, 1, 99}; ArrayOptions::setDataType(shapeInfo, nd4j::DataType::FLOAT32); NDArray input(inBuff, shapeInfo); NDArray expected(expBuff, shapeInfo); NDArray output(shapeInfo); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {0}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } TEST_F(DeclarableOpsTests1, Reverse_10 ) { auto x = NDArrayFactory::create('c', {4, 3}, {1.5375735, 0.1592365, 0.09966054, 0.677872, 1.144433, -1.0355669, 0.48456487, -0.67863184, 0.85020787, 0.13950661, 0.20998026, -1.1660044}); auto i = NDArrayFactory::create('c', {1}, {-1}); auto e = NDArrayFactory::create('c', {4, 3}, {0.09966054, 0.1592365, 1.5375735, -1.0355669, 1.144433, 0.677872,0.85020787, -0.67863184, 0.48456487, -1.1660044, 0.20998026, 0.13950661}); nd4j::ops::reverse op; auto result = op.execute({&x, &i}, {}, {}, {}, false, nd4j::DataType::DOUBLE); auto z = result->at(0); ASSERT_TRUE(e.isSameShape(z)); ASSERT_TRUE(e.equalsTo(z)); delete result; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_11 ) { auto input = NDArrayFactory::create('c', {2,3,4}); auto expected = NDArrayFactory::create('c', {2,3,4}, {24., 23., 22., 21., 20., 19., 18., 17., 16., 15., 14., 13., 12., 11., 10., 9., 8., 7., 6., 5., 4., 3., 2., 1.}); input.linspace(1); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {0, 1, 2}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_12 ) { auto input = NDArrayFactory::create({0.f, 1.f, 2.f, 3.f, 4.f}); auto expected = NDArrayFactory::create({4.f, 3.f, 2.f, 1.f, 0.f}); //input.linspace(1); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {0}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); //result->printIndexedBuffer("Result reverse"); //expected.printIndexedBuffer("Expected reverse"); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_13 ) { auto input = NDArrayFactory::create({0.f, 1.f, 2.f, 3.f, 4.f}); auto expected = NDArrayFactory::create({4.f, 3.f, 2.f, 1.f, 0.f}); //input.linspace(1); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {-1}); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } ////////////////////////////////////////////////////////////////////// TEST_F(DeclarableOpsTests1, Reverse_14 ) { auto input = NDArrayFactory::create({0.f, 1.f, 2.f, 3.f, 4.f}); auto expected = NDArrayFactory::create({0.f, 1.f, 2.f, 3.f, 4.f}); //input.linspace(1); nd4j::ops::reverse op; auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE); ASSERT_EQ(ND4J_STATUS_OK, results->status()); auto result = results->at(0); ASSERT_TRUE(expected.isSameShapeStrict(result)); ASSERT_TRUE(expected.equalsTo(result)); delete results; } TEST_F(DeclarableOpsTests1, Test_Expose_1) { auto input0 = NDArrayFactory::create('c', {2, 3}, {1, 2, 3, 6, 5, 4}); auto input1 = NDArrayFactory::create('c', {2, 3}, {3, 2, 1, 4, 5, 6}); nd4j::ops::expose op; auto result = op.execute({&input0, &input1}, {}, {}); ASSERT_EQ(ND4J_STATUS_OK, result->status()); auto z0 = result->at(0); auto z1 = result->at(1); ASSERT_TRUE(input0.equalsTo(z0)); ASSERT_TRUE(input1.equalsTo(z1)); delete result; } TEST_F(DeclarableOpsTests1, Test_Expose_2) { auto list = new NDArrayList(0, true); auto var = new Variable(nullptr, "arraylist", -1, 0); var->setNDArrayList(list); VariableSpace variableSpace; variableSpace.putVariable(-1, var); variableSpace.trackList(list); Context block(1, &variableSpace); block.pickInput(-1); nd4j::ops::expose op; auto result = op.execute(&block); ASSERT_EQ(ND4J_STATUS_OK, result); ASSERT_TRUE(variableSpace.hasVariable(1)); auto var1 = variableSpace.getVariable(1); ASSERT_EQ(var->variableType(), var1->variableType()); auto list1 = var1->getNDArrayList(); ASSERT_TRUE(list == list1); } TEST_F(DeclarableOpsTests1, Test_Release) { auto x = NDArrayFactory::create('c', {8, 8}); // x.printShapeInfo("x shape"); }