/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * Copyright (c) 2019 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include "testlayers.h" #include #include #include #include #include using namespace nd4j; class RNGTests : public testing::Test { private: //Nd4jLong *_bufferA; //Nd4jLong *_bufferB; public: long _seed = 119L; //nd4j::random::RandomBuffer *_rngA; //nd4j::random::RandomBuffer *_rngB; nd4j::graph::RandomGenerator _rngA; nd4j::graph::RandomGenerator _rngB; NDArray* nexp0 = NDArrayFactory::create_('c', {10, 10}); NDArray* nexp1 = NDArrayFactory::create_('c', {10, 10}); NDArray* nexp2 = NDArrayFactory::create_('c', {10, 10}); RNGTests() { //_bufferA = new Nd4jLong[100000]; //_bufferB = new Nd4jLong[100000]; //_rngA = (nd4j::random::RandomBuffer *) initRandom(nullptr, _seed, 100000, (Nd4jPointer) _bufferA); //_rngB = (nd4j::random::RandomBuffer *) initRandom(nullptr, _seed, 100000, (Nd4jPointer) _bufferB); _rngA.setStates(_seed, _seed); _rngB.setStates(_seed, _seed); nexp0->assign(-1.0f); nexp1->assign(-2.0f); nexp2->assign(-3.0f); } ~RNGTests() { //destroyRandom(_rngA); //destroyRandom(_rngB); //delete[] _bufferA; //delete[] _bufferB; delete nexp0; delete nexp1; delete nexp2; } }; TEST_F(RNGTests, TestSeeds_1) { RandomGenerator generator(123L, 456L); ASSERT_EQ(123, generator.rootState()); ASSERT_EQ(456, generator.nodeState()); Nd4jPointer ptr = malloc(sizeof(RandomGenerator)); memcpy(ptr, &generator, sizeof(RandomGenerator)); auto cast = reinterpret_cast(ptr); ASSERT_EQ(123, cast->rootState()); ASSERT_EQ(456, cast->nodeState()); free(ptr); } TEST_F(RNGTests, TestSeeds_2) { RandomGenerator generator(12, 13); generator.setStates(123L, 456L); ASSERT_EQ(123, generator.rootState()); ASSERT_EQ(456, generator.nodeState()); } TEST_F(RNGTests, Test_Dropout_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); x0.linspace(1); x1.linspace(1); float prob[] = {0.5f}; //x0.applyRandom(random::DropOut, _rngA, nullptr, &x0, prob); //x1.applyRandom(random::DropOut, _rngB, nullptr, &x1, prob); RandomLauncher::applyDropOut(LaunchContext::defaultContext(), _rngA, &x0, 0.5); RandomLauncher::applyDropOut(LaunchContext::defaultContext(), _rngB, &x1, 0.5); ASSERT_TRUE(x0.equalsTo(&x1)); //x0.printIndexedBuffer("Dropout"); // this check is required to ensure we're calling wrong signature ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_DropoutInverted_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); x0.linspace(1); x1.linspace(1); float prob[] = {0.5f}; //x0.template applyRandom>(_rngA, nullptr, &x0, prob); //x1.template applyRandom>(_rngB, nullptr, &x1, prob); RandomLauncher::applyInvertedDropOut(LaunchContext::defaultContext(), _rngA, &x0, 0.5); RandomLauncher::applyInvertedDropOut(LaunchContext::defaultContext(), _rngB, &x1, 0.5); ASSERT_TRUE(x0.equalsTo(&x1)); //x0.printIndexedBuffer("DropoutInverted"); // this check is required to ensure we're calling wrong signature ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_Launcher_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::applyDropOut(LaunchContext::defaultContext(), _rngA, &x0, 0.5f); RandomLauncher::applyDropOut(LaunchContext::defaultContext(), _rngB, &x1, 0.5f); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_Launcher_2) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::applyInvertedDropOut(LaunchContext::defaultContext(), _rngA, &x0, 0.5f); RandomLauncher::applyInvertedDropOut(LaunchContext::defaultContext(), _rngB, &x1, 0.5f); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_Launcher_3) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::applyAlphaDropOut(LaunchContext::defaultContext(), _rngA, &x0, 0.5f, 0.2f, 0.1f, 0.3f); RandomLauncher::applyAlphaDropOut(LaunchContext::defaultContext(), _rngB, &x1, 0.5f, 0.2f, 0.1f, 0.3f); //x1.printIndexedBuffer("x1"); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_Uniform_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillUniform(LaunchContext::defaultContext(), _rngA, &x0, 1.0f, 2.0f); RandomLauncher::fillUniform(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); for (int e = 0; e < x0.lengthOf(); e++) { float v = x0.e(e); ASSERT_TRUE(v >= 1.0f && v <= 2.0f); } } TEST_F(RNGTests, Test_Uniform_3) { auto x0 = NDArrayFactory::create('c', {1000000}); RandomLauncher::fillUniform(LaunchContext::defaultContext(), _rngA, &x0, 1.0f, 2.0f); for (int e = 0; e < x0.lengthOf(); e++) { auto v = x0.t(e); ASSERT_TRUE(v >= 1.0 && v <= 2.0); } } TEST_F(RNGTests, Test_Bernoulli_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillBernoulli(LaunchContext::defaultContext(), _rngA, &x0, 1.0f); RandomLauncher::fillBernoulli(LaunchContext::defaultContext(), _rngB, &x1, 1.0f); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_Gaussian_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillGaussian(LaunchContext::defaultContext(), _rngA, &x0, 1.0f, 2.0f); RandomLauncher::fillGaussian(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); //x0.printIndexedBuffer("x0"); //x1.printIndexedBuffer("x1"); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_Gaussian_21) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillGaussian(LaunchContext::defaultContext(), _rngA, &x0, 0.0f, 1.0f); RandomLauncher::fillGaussian(LaunchContext::defaultContext(), _rngB, &x1, 0.0f, 1.0f); // x0.printIndexedBuffer("x0"); // x1.printIndexedBuffer("x1"); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); nd4j::ops::moments op; auto result = op.evaluate({&x0}, {}, {}); //x0.printIndexedBuffer("X0 Normal"); //x1.printIndexedBuffer("X1 Normal"); ASSERT_TRUE(result->status() == Status::OK()); auto mean = result->at(0); auto variance = result->at(1); // mean->printIndexedBuffer("Mean"); // variance->printIndexedBuffer("Variance"); ASSERT_NEAR(nd4j::math::nd4j_abs(mean->e(0)), 0.f, 0.2f); ASSERT_NEAR(variance->e(0), 1.0f, 0.2f); delete result; } #ifdef DEBUG_BUILD TEST_F(RNGTests, Test_Gaussian_22) { auto x0 = NDArrayFactory::create('c', {1000, 800}); auto x1 = NDArrayFactory::create('c', {1000, 800}); RandomLauncher::fillGaussian(nd4j::LaunchContext::defaultContext(), _rngA, &x0, 0.0f, 1.0f); RandomLauncher::fillGaussian(LaunchContext::defaultContext(), _rngB, &x1, 0.0f, 1.0f); //x0.printIndexedBuffer("x0"); //x1.printIndexedBuffer("x1"); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); nd4j::ops::moments op; auto result = op.evaluate({&x0}, {}, {}); //x0.printIndexedBuffer("X0 Normal"); //x1.printIndexedBuffer("X1 Normal"); ASSERT_TRUE(result->status() == Status::OK()); auto mean0 = result->at(0); auto variance0 = result->at(1); //mean0->printIndexedBuffer("Mean"); //variance0->printIndexedBuffer("Variance"); ASSERT_NEAR(nd4j::math::nd4j_abs(mean0->e(0)), 0.f, 1.0e-3f); ASSERT_NEAR(variance0->e(0), 1.0f, 1.e-3f); delete result; } TEST_F(RNGTests, Test_Gaussian_3) { auto x0 = NDArrayFactory::create('c', {800000}); RandomLauncher::fillGaussian(LaunchContext::defaultContext(), _rngA, &x0, 0.0, 1.0); auto mean = x0.meanNumber(); //.e(0); auto stdev = x0.varianceNumber(nd4j::variance::SummaryStatsStandardDeviation, false);//.e(0); auto meanExp = NDArrayFactory::create(0.); auto devExp = NDArrayFactory::create(1.); ASSERT_TRUE(meanExp.equalsTo(mean, 1.e-3)); ASSERT_TRUE(devExp.equalsTo(stdev, 1.e-3)); } TEST_F(RNGTests, Test_LogNormal_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillLogNormal(LaunchContext::defaultContext(), _rngA, &x0, 1.0f, 2.0f); RandomLauncher::fillLogNormal(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_Truncated_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngA, &x0, 1.0f, 2.0f); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); ASSERT_TRUE(x0.equalsTo(&x1)); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); /* Check up distribution */ auto mean = x1.reduceNumber(reduce::Mean); // mean.printIndexedBuffer("Mean 1.0"); auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation = x1.varianceNumber(variance::SummaryStatsStandardDeviation, false); //deviation /= (double)x1.lengthOf(); // deviation.printIndexedBuffer("Deviation should be 2.0"); // x1.printIndexedBuffer("Distribution TN"); } TEST_F(RNGTests, Test_Truncated_2) { auto x0 = NDArrayFactory::create('c', {1000, 1000}); auto x1 = NDArrayFactory::create('c', {1000, 1000}); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngA, &x0, 1.0f, 2.0f); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); ASSERT_TRUE(x0.equalsTo(&x1)); //ASSERT_FALSE(x0.equalsTo(nexp0)); //ASSERT_FALSE(x0.equalsTo(nexp1)); //ASSERT_FALSE(x0.equalsTo(nexp2)); /* Check up distribution */ auto mean = x1.reduceNumber(reduce::Mean); // mean.printIndexedBuffer("Mean 1.0"); //auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation = x1.varianceNumber(variance::SummaryStatsStandardDeviation, false); //deviation /= (double)x1.lengthOf(); // deviation.printIndexedBuffer("Deviation should be 2.0"); //x1.printIndexedBuffer("Distribution TN"); ASSERT_NEAR(mean.e(0), 1.f, 0.5); ASSERT_NEAR(deviation.e(0), 2.f, 0.5); } TEST_F(RNGTests, Test_Truncated_21) { auto x0 = NDArrayFactory::create('c', {100, 100}); auto x1 = NDArrayFactory::create('c', {100, 100}); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngA, &x0, 1.0f, 2.0f); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); ASSERT_TRUE(x0.equalsTo(&x1)); auto mean0 = x0.reduceNumber(reduce::Mean); // mean0.printIndexedBuffer("0Mean 1.0"); //auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation0 = x0.varianceNumber(variance::SummaryStatsStandardDeviation, false); // deviation0.printIndexedBuffer("0Deviation should be 2.0"); //ASSERT_FALSE(x0.equalsTo(nexp0)); //ASSERT_FALSE(x0.equalsTo(nexp1)); //ASSERT_FALSE(x0.equalsTo(nexp2)); /* Check up distribution */ auto mean = x1.reduceNumber(reduce::Mean); // mean.printIndexedBuffer("Mean 1.0"); //auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation = x1.varianceNumber(variance::SummaryStatsStandardDeviation, false); //deviation /= (double)x1.lengthOf(); // deviation.printIndexedBuffer("Deviation should be 2.0"); //x1.printIndexedBuffer("Distribution TN"); ASSERT_NEAR(mean.e(0), 1.f, 0.002); ASSERT_NEAR(deviation.e(0), 2.f, 0.5); nd4j::ops::moments op; auto result = op.evaluate({&x0}, {}, {}, {}, {}, false); // result->at(0)->printBuffer("MEAN"); // result->at(1)->printBuffer("VARIANCE"); delete result; nd4j::ops::reduce_min minOp; nd4j::ops::reduce_max maxOp; auto minRes = minOp.evaluate({&x1}, {}, {}, {}); auto maxRes = maxOp.evaluate({&x0}, {}, {}, {}); // minRes->at(0)->printBuffer("MIN for Truncated"); // maxRes->at(0)->printBuffer("MAX for Truncated"); delete minRes; delete maxRes; } TEST_F(RNGTests, Test_Truncated_22) { auto x0 = NDArrayFactory::create('c', {100, 100}); auto x1 = NDArrayFactory::create('c', {100, 100}); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngA, &x0, 2.0f, 4.0f); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngB, &x1, 2.0f, 4.0f); ASSERT_TRUE(x0.equalsTo(&x1)); auto mean0 = x0.reduceNumber(reduce::Mean); // mean0.printIndexedBuffer("0Mean 2.0"); //auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation0 = x0.varianceNumber(variance::SummaryStatsStandardDeviation, false); // deviation0.printIndexedBuffer("0Deviation should be 4.0"); //ASSERT_FALSE(x0.equalsTo(nexp0)); //ASSERT_FALSE(x0.equalsTo(nexp1)); //ASSERT_FALSE(x0.equalsTo(nexp2)); /* Check up distribution */ auto mean = x1.reduceNumber(reduce::Mean); // mean.printIndexedBuffer("Mean 2.0"); //auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation = x1.varianceNumber(variance::SummaryStatsStandardDeviation, false); //deviation /= (double)x1.lengthOf(); // deviation.printIndexedBuffer("Deviation should be 4.0"); //x1.printIndexedBuffer("Distribution TN"); ASSERT_NEAR(mean.e(0), 2.f, 0.01); ASSERT_NEAR(deviation.e(0), 4.f, 0.52); nd4j::ops::moments op; auto result = op.evaluate({&x0}, {}, {}, {}, {}, false); // result->at(0)->printBuffer("MEAN"); // result->at(1)->printBuffer("VARIANCE"); delete result; nd4j::ops::reduce_min minOp; nd4j::ops::reduce_max maxOp; auto minRes = minOp.evaluate({&x1}, {}, {}, {}); auto maxRes = maxOp.evaluate({&x0}, {}, {}, {}); // minRes->at(0)->printBuffer("MIN for Truncated2"); // maxRes->at(0)->printBuffer("MAX for Truncated2"); delete minRes; delete maxRes; } TEST_F(RNGTests, Test_Truncated_23) { auto x0 = NDArrayFactory::create('c', {1000, 1000}); auto x1 = NDArrayFactory::create('c', {1000, 1000}); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngA, &x0, 0.0f, 1.0f); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngB, &x1, 0.0f, 1.0f); ASSERT_TRUE(x0.equalsTo(&x1)); auto mean0 = x0.reduceNumber(reduce::Mean); // mean0.printIndexedBuffer("0Mean 2.0"); //auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation0 = x0.varianceNumber(variance::SummaryStatsStandardDeviation, false); // deviation0.printIndexedBuffer("0Deviation should be 4.0"); //ASSERT_FALSE(x0.equalsTo(nexp0)); //ASSERT_FALSE(x0.equalsTo(nexp1)); //ASSERT_FALSE(x0.equalsTo(nexp2)); /* Check up distribution */ auto mean = x1.reduceNumber(reduce::Mean); // mean.printIndexedBuffer("Mean 2.0"); //auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation = x1.varianceNumber(variance::SummaryStatsStandardDeviation, false); //deviation /= (double)x1.lengthOf(); // deviation.printIndexedBuffer("Deviation should be 4.0"); //x1.printIndexedBuffer("Distribution TN"); ASSERT_NEAR(mean.e(0), 0.f, 0.01); ASSERT_NEAR(deviation.e(0), 1.f, 0.5); nd4j::ops::moments op; auto result = op.evaluate({&x0}); // result->at(0)->printBuffer("MEAN"); // result->at(1)->printBuffer("VARIANCE"); delete result; nd4j::ops::reduce_min minOp; nd4j::ops::reduce_max maxOp; auto minRes = minOp.evaluate({&x1}, {}, {}, {}); auto maxRes = maxOp.evaluate({&x0}, {}, {}, {}); // minRes->at(0)->printBuffer("MIN for Truncated3"); // maxRes->at(0)->printBuffer("MAX for Truncated3"); delete minRes; delete maxRes; } TEST_F(RNGTests, Test_Truncated_3) { auto x0 = NDArrayFactory::create('c', {2000, 2000}); auto x1 = NDArrayFactory::create('c', {2000, 2000}); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngA, &x0, 1.0f, 2.0f); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); ASSERT_TRUE(x0.equalsTo(&x1)); // Check up distribution auto mean = x1.reduceNumber(reduce::Mean); // mean.printIndexedBuffer("Mean 1.0"); //auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation = x1.varianceNumber(variance::SummaryStatsStandardDeviation, false); ASSERT_NEAR(mean.e(0), 1.f, 0.001); ASSERT_NEAR(deviation.e(0), 2.f, 0.3); } #endif TEST_F(RNGTests, Test_Binomial_1) { auto x0 = NDArrayFactory::create('c', {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillBinomial(LaunchContext::defaultContext(), _rngA, &x0, 3, 2.0f); RandomLauncher::fillBinomial(LaunchContext::defaultContext(), _rngB, &x1, 3, 2.0f); ASSERT_TRUE(x0.equalsTo(&x1)); //nexp2->printIndexedBuffer("nexp2"); //x0.printIndexedBuffer("x0"); ASSERT_FALSE(x0.equalsTo(nexp0)); ASSERT_FALSE(x0.equalsTo(nexp1)); ASSERT_FALSE(x0.equalsTo(nexp2)); } TEST_F(RNGTests, Test_Uniform_2) { auto input = NDArrayFactory::create('c', {1, 2}, {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillUniform(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); auto op = new nd4j::ops::LegacyRandomOp(0); auto result = op->execute(_rngA, {&input}, {1.0f, 2.0f}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(x1.isSameShape(z)); ASSERT_TRUE(x1.equalsTo(z)); delete op; delete result; } TEST_F(RNGTests, Test_Gaussian_2) { auto input = NDArrayFactory::create('c', {1, 2}, {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillGaussian(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); auto op = new nd4j::ops::LegacyRandomOp(random::GaussianDistribution); auto result = op->execute(_rngA, {&input}, {1.0f, 2.0f}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(x1.isSameShape(z)); ASSERT_TRUE(x1.equalsTo(z)); delete op; delete result; } TEST_F(RNGTests, Test_LogNorm_2) { auto input = NDArrayFactory::create('c', {1, 2}, {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillLogNormal(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); auto op = new nd4j::ops::LegacyRandomOp(random::LogNormalDistribution); auto result = op->execute(_rngA, {&input}, {1.0f, 2.0f}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(x1.isSameShape(z)); ASSERT_TRUE(x1.equalsTo(z)); delete op; delete result; } TEST_F(RNGTests, Test_TruncatedNorm_2) { auto input = NDArrayFactory::create('c', {1, 2}, {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillTruncatedNormal(LaunchContext::defaultContext(), _rngB, &x1, 1.0f, 2.0f); auto op = new nd4j::ops::LegacyRandomOp(random::TruncatedNormalDistribution); auto result = op->execute(_rngA, {&input}, {1.0f, 2.0f}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(x1.isSameShape(z)); ASSERT_TRUE(x1.equalsTo(z)); delete op; delete result; } TEST_F(RNGTests, Test_Binomial_2) { auto input = NDArrayFactory::create('c', {1, 2}, {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillBinomial(LaunchContext::defaultContext(), _rngB, &x1, 3, 0.5f); auto op = new nd4j::ops::LegacyRandomOp(random::BinomialDistributionEx); auto result = op->execute(_rngA, {&input}, {0.5f}, {3}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(x1.isSameShape(z)); ASSERT_TRUE(x1.equalsTo(z)); delete op; delete result; } TEST_F(RNGTests, Test_Bernoulli_2) { auto input = NDArrayFactory::create('c', {1, 2}, {10, 10}); auto x1 = NDArrayFactory::create('c', {10, 10}); RandomLauncher::fillBernoulli(LaunchContext::defaultContext(), _rngB, &x1, 0.5f); auto op = new nd4j::ops::LegacyRandomOp(random::BernoulliDistribution); auto result = op->execute(_rngA, {&input}, {0.5f}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(x1.isSameShape(z)); ASSERT_TRUE(x1.equalsTo(z)); delete op; delete result; } TEST_F(RNGTests, Test_GaussianDistribution_1) { auto x = NDArrayFactory::create('c', {2}, {10, 10}); auto exp0 = NDArrayFactory::create('c', {10, 10}); nd4j::ops::random_normal op; auto result = op.evaluate({&x}, {0.0, 1.0f}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(exp0.isSameShape(z)); ASSERT_FALSE(exp0.equalsTo(z)); ASSERT_FALSE(nexp0->equalsTo(z)); ASSERT_FALSE(nexp1->equalsTo(z)); ASSERT_FALSE(nexp2->equalsTo(z)); delete result; } TEST_F(RNGTests, Test_BernoulliDistribution_1) { auto x = NDArrayFactory::create('c', {2}, {10, 10}); auto exp0 = NDArrayFactory::create('c', {10, 10}); nd4j::ops::random_bernoulli op; auto result = op.evaluate({&x}, {0.5f}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_FALSE(exp0.equalsTo(z)); ASSERT_FALSE(nexp0->equalsTo(z)); ASSERT_FALSE(nexp1->equalsTo(z)); ASSERT_FALSE(nexp2->equalsTo(z)); delete result; } TEST_F(RNGTests, Test_ExponentialDistribution_1) { auto x = NDArrayFactory::create('c', {2}, {10, 10}); auto exp0 = NDArrayFactory::create('c', {10, 10}); nd4j::ops::random_exponential op; auto result = op.evaluate({&x}, {0.25f}, {0}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(exp0.isSameShape(z)); ASSERT_FALSE(exp0.equalsTo(z)); ASSERT_FALSE(nexp0->equalsTo(z)); ASSERT_FALSE(nexp1->equalsTo(z)); ASSERT_FALSE(nexp2->equalsTo(z)); delete result; } TEST_F(RNGTests, Test_ExponentialDistribution_2) { auto x = NDArrayFactory::create('c', {2}, {10, 10}); auto y = NDArrayFactory::create('c', {10, 10}); auto exp0 = NDArrayFactory::create('c', {10, 10}); y.assign(1.0); nd4j::ops::random_exponential op; auto result = op.evaluate({&x, &y}, {0.25f}, {0}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(exp0.isSameShape(z)); ASSERT_FALSE(exp0.equalsTo(z)); ASSERT_FALSE(nexp0->equalsTo(z)); ASSERT_FALSE(nexp1->equalsTo(z)); ASSERT_FALSE(nexp2->equalsTo(z)); delete result; } TEST_F(RNGTests, Test_PoissonDistribution_1) { auto x = NDArrayFactory::create('c', {1}, {10}); auto la = NDArrayFactory::create('c', {2, 3}); auto exp0 = NDArrayFactory::create('c', {10, 2, 3}); la.linspace(1.0); nd4j::ops::random_poisson op; auto result = op.evaluate({&x, &la}, {}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); // z->printIndexedBuffer("Poisson distribution"); ASSERT_TRUE(exp0.isSameShape(z)); ASSERT_FALSE(exp0.equalsTo(z)); delete result; } TEST_F(RNGTests, Test_GammaDistribution_1) { auto x = NDArrayFactory::create('c', {1}, {10}); auto al = NDArrayFactory::create('c', {2, 3}); auto exp0 = NDArrayFactory::create('c', {10, 2, 3}); al.linspace(1.0); nd4j::ops::random_gamma op; auto result = op.evaluate({&x, &al}, {}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); // z->printIndexedBuffer("Gamma distribution"); ASSERT_TRUE(exp0.isSameShape(z)); ASSERT_FALSE(exp0.equalsTo(z)); delete result; } TEST_F(RNGTests, Test_GammaDistribution_2) { auto x = NDArrayFactory::create('c', {1}, {10}); auto al = NDArrayFactory::create('c', {2, 3}); auto be = NDArrayFactory::create('c', {2, 3}); auto exp0 = NDArrayFactory::create('c', {10, 2, 3}); al.linspace(1.0); be.assign(1.0); nd4j::ops::random_gamma op; auto result = op.evaluate({&x, &al, &be}, {}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); // z->printIndexedBuffer("Gamma distribution"); ASSERT_TRUE(exp0.isSameShape(z)); ASSERT_FALSE(exp0.equalsTo(z)); delete result; } TEST_F(RNGTests, Test_GammaDistribution_3) { auto x = NDArrayFactory::create('c', {1}, {10}); auto al = NDArrayFactory::create('c', {3, 1}); auto be = NDArrayFactory::create('c', {1, 2}); auto exp0 = NDArrayFactory::create('c', {10, 3, 2}); al.linspace(1.0); be.assign(2.0); nd4j::ops::random_gamma op; auto result = op.evaluate({&x, &al, &be}, {}, {}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); // z->printIndexedBuffer("Gamma distribution"); ASSERT_TRUE(exp0.isSameShape(z)); ASSERT_FALSE(exp0.equalsTo(z)); delete result; } TEST_F(RNGTests, Test_UniformDistribution_04) { auto x = NDArrayFactory::create('c', {1}, {10}); auto al = NDArrayFactory::create(1); auto be = NDArrayFactory::create(20); auto exp0 = NDArrayFactory::create('c', {10}); nd4j::ops::randomuniform op; auto result = op.evaluate({&x, &al, &be}, {}, {DataType::INT32}); ASSERT_EQ(Status::OK(), result->status()); auto z = result->at(0); ASSERT_TRUE(exp0.isSameShape(z)); ASSERT_FALSE(exp0.equalsTo(z)); delete result; } namespace nd4j { namespace tests { static void fillList(Nd4jLong seed, int numberOfArrays, std::vector &shape, std::vector &list, nd4j::graph::RandomGenerator *rng) { rng->setSeed((int) seed); for (int i = 0; i < numberOfArrays; i++) { auto arrayI = NDArrayFactory::create(shape); auto arrayR = NDArrayFactory::create_('c', shape); auto min = NDArrayFactory::create(0.0); auto max = NDArrayFactory::create(1.0); nd4j::ops::randomuniform op; op.execute(*rng, {&arrayI, &min, &max}, {arrayR}, {}, {DataType::DOUBLE}, {}, {}, false); list.emplace_back(arrayR); } }; } } TEST_F(RNGTests, Test_Reproducibility_1) { Nd4jLong seed = 123; std::vector shape = {32, 3, 28, 28}; nd4j::graph::RandomGenerator rng; std::vector expList; nd4j::tests::fillList(seed, 10, shape, expList, &rng); for (int e = 0; e < 2; e++) { std::vector trialList; nd4j::tests::fillList(seed, 10, shape, trialList, &rng); for (int a = 0; a < expList.size(); a++) { auto arrayE = expList[a]; auto arrayT = trialList[a]; bool t = arrayE->equalsTo(arrayT); if (!t) { // nd4j_printf("Failed at iteration [%i] for array [%i]\n", e, a); ASSERT_TRUE(false); } delete arrayT; } } for (auto v: expList) delete v; } #ifndef DEBUG_BUILD TEST_F(RNGTests, Test_Reproducibility_2) { Nd4jLong seed = 123; std::vector shape = {32, 3, 64, 64}; nd4j::graph::RandomGenerator rng; std::vector expList; nd4j::tests::fillList(seed, 10, shape, expList, &rng); for (int e = 0; e < 2; e++) { std::vector trialList; nd4j::tests::fillList(seed, 10, shape, trialList, &rng); for (int a = 0; a < expList.size(); a++) { auto arrayE = expList[a]; auto arrayT = trialList[a]; bool t = arrayE->equalsTo(arrayT); if (!t) { // nd4j_printf("Failed at iteration [%i] for array [%i]\n", e, a); for (Nd4jLong f = 0; f < arrayE->lengthOf(); f++) { double x = arrayE->e(f); double y = arrayT->e(f); if (nd4j::math::nd4j_re(x, y) > 0.1) { // nd4j_printf("E[%lld] %f != T[%lld] %f\n", (long long) f, (float) x, (long long) f, (float) y); throw std::runtime_error("boom"); } } // just breaker, since test failed ASSERT_TRUE(false); } delete arrayT; } } for (auto v: expList) delete v; } TEST_F(RNGTests, Test_Uniform_4) { auto x1 = NDArrayFactory::create('c', {1000000}); RandomLauncher::fillUniform(LaunchContext::defaultContext(), _rngB, &x1, 1.0, 2.0); /* Check up distribution */ auto mean = x1.reduceNumber(reduce::Mean); // mean.printIndexedBuffer("Mean should be 1.5"); auto sumA = x1 - mean; //.reduceNumber(reduce::Sum); auto deviation = x1.varianceNumber(variance::SummaryStatsVariance, false); //deviation /= (double)x1.lengthOf(); // deviation.printIndexedBuffer("Deviation should be 1/12 (0.083333)"); ASSERT_NEAR(mean.e(0), 1.5, 1e-3); ASSERT_NEAR(1/12., deviation.e(0), 1e-3); } #endif TEST_F(RNGTests, test_choice_1) { auto x = NDArrayFactory::linspace(0, 10, 11); auto prob = NDArrayFactory::valueOf({11}, 1.0/11, 'c'); auto z = NDArrayFactory::create('c', {1000}); RandomGenerator rng(119, 256); NativeOpExecutioner::execRandom(nd4j::LaunchContext ::defaultContext(), random::Choice, &rng, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), prob->buffer(), prob->shapeInfo(), prob->specialBuffer(), prob->specialShapeInfo(), z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), nullptr); // z.printIndexedBuffer("z"); delete x; delete prob; } TEST_F(RNGTests, test_uniform_119) { auto x = NDArrayFactory::create('c', {2}, {1, 5}); auto z = NDArrayFactory::create('c', {1, 5}); nd4j::ops::randomuniform op; auto status = op.execute({&x}, {&z}, {1.0, 2.0}, {}, {}); ASSERT_EQ(Status::OK(), status); } TEST_F(RNGTests, test_multinomial_1) { NDArray probs('f', { 3, 3 }, { 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3 }, nd4j::DataType::FLOAT32); NDArray expected('f', { 3, 3 }, { 0, 1, 2, 2, 0, 0, 1, 2, 1 }, nd4j::DataType::INT64); NDArray output('f', { 3, 3 }, nd4j::DataType::INT64); NDArray samples('f', { 1 }, { 3 }, nd4j::DataType::INT32); nd4j::ops::random_multinomial op; RandomGenerator rng(1234, 1234); ASSERT_EQ(Status::OK(), op.execute(rng, { &probs, &samples }, { &output }, {}, { 0, INT64}, {}, {}, false) ); ASSERT_TRUE(expected.isSameShape(output)); ASSERT_TRUE(expected.equalsTo(output)); NDArray probsZ('c', { 1, 3 }, { 0.3, 0.3, 0.3 }, nd4j::DataType::FLOAT32); NDArray expectedZ('c', { 3, 3 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0 }, nd4j::DataType::INT64); auto result = op.evaluate({ &probsZ, &samples }, { }, { 1, INT64 }); auto outputZ = result->at(0); ASSERT_EQ(Status::OK(), result->status()); ASSERT_TRUE(expectedZ.isSameShape(outputZ)); ASSERT_TRUE(expectedZ.equalsTo(outputZ)); delete result; } TEST_F(RNGTests, test_multinomial_2) { NDArray samples('c', { 1 }, { 20 }, nd4j::DataType::INT32); NDArray probs('c', { 3, 5 }, { 0.2, 0.3, 0.5, 0.3, 0.5, 0.2, 0.5, 0.2, 0.3, 0.35, 0.25, 0.3, 0.25, 0.25, 0.5 }, nd4j::DataType::FLOAT32); NDArray expected('c', { 3, 20 }, { 0, 2, 0, 2, 0, 4, 2, 0, 1, 2, 0, 2, 3, 0, 0, 2, 4, 4, 1, 0, 2, 3, 2, 3, 0, 1, 3, 1, 1, 1, 2, 4, 3, 3, 1, 4, 4, 2, 0, 0, 3, 3, 3, 0, 0, 2, 2, 3, 3, 0, 0, 2, 3, 4, 2, 2, 3, 2, 1, 2 }, nd4j::DataType::INT64); NDArray output('c', { 3, 20 }, nd4j::DataType::INT64); nd4j::ops::random_multinomial op; RandomGenerator rng(1234, 1234); ASSERT_EQ(Status::OK(), op.execute(rng, { &probs, &samples }, { &output }, {}, { 0, INT64 }, {}, {}, false)); ASSERT_TRUE(expected.isSameShape(output)); ASSERT_TRUE(expected.equalsTo(output)); NDArray probs2('c', { 5, 3 }, { 0.2, 0.3, 0.5, 0.3, 0.5, 0.2, 0.5, 0.2, 0.3, 0.35, 0.25, 0.3, 0.25, 0.25, 0.5 }, nd4j::DataType::FLOAT32); NDArray expected2('c', { 20, 3 }, { 0, 2, 3, 2, 3, 3, 0, 2, 3, 2, 3, 0, 0, 0, 0, 4, 1, 2, 2, 3, 2, 3, 1, 3, 1, 1, 3, 2, 1, 0, 0, 2, 0, 2, 4, 2, 3, 3, 3, 0, 3, 4, 0, 1, 2, 2, 0, 2, 4, 4, 0, 4, 2, 2, 1, 0, 1, 0, 0, 2 }, nd4j::DataType::INT64); NDArray output2('c', { 20, 3 }, nd4j::DataType::INT64); rng.setStates(1234, 1234); ASSERT_EQ(Status::OK(), op.execute(rng, { &probs2, &samples }, { &output2 }, {}, { 1, INT64 }, {}, {}, false)); ASSERT_TRUE(expected2.isSameShape(output2)); ASSERT_TRUE(expected2.equalsTo(output2)); } TEST_F(RNGTests, test_multinomial_3) { NDArray probs('c', { 4, 3 }, { 0.3, 0.3, 0.4, 0.3, 0.4, 0.3, 0.3, 0.3, 0.4, 0.4, 0.3, 0.3 }, nd4j::DataType::FLOAT32); NDArray expected('c', { 4, 5 }, nd4j::DataType::INT64); NDArray output('c', { 4, 5 }, nd4j::DataType::INT64); NDArray samples('c', { 1 }, { 5 }, nd4j::DataType::INT32); RandomGenerator rng(1234, 1234); nd4j::ops::random_multinomial op; ASSERT_EQ(Status::OK(), op.execute(rng, { &probs, &samples }, { &expected }, {}, { 0, INT64 }, {}, {}, false)); rng.setStates(1234, 1234); ASSERT_EQ(Status::OK(), op.execute(rng, { &probs, &samples }, { &output }, {}, { 0, INT64 }, {}, {}, false)); ASSERT_TRUE(expected.isSameShape(output)); ASSERT_TRUE(expected.equalsTo(output)); } TEST_F(RNGTests, test_multinomial_4) { NDArray probs('c', { 3, 4 }, { 0.3, 0.3, 0.4, 0.3, 0.4, 0.3, 0.3, 0.3, 0.4, 0.4, 0.3, 0.3 }, nd4j::DataType::FLOAT32); NDArray expected('c', { 5, 4 }, nd4j::DataType::INT64); NDArray output('c', { 5, 4 }, nd4j::DataType::INT64); NDArray samples('c', { 1 }, { 5 }, nd4j::DataType::INT32); RandomGenerator rng(1234, 1234); nd4j::ops::random_multinomial op; ASSERT_EQ(Status::OK(), op.execute(rng, { &probs, &samples }, { &expected }, {}, { 1, INT64 }, {}, {}, false)); rng.setStates(1234, 1234); ASSERT_EQ(Status::OK(), op.execute(rng, { &probs, &samples }, { &output }, {}, { 1, INT64 }, {}, {}, false)); ASSERT_TRUE(expected.isSameShape(output)); ASSERT_TRUE(expected.equalsTo(output)); } TEST_F(RNGTests, test_multinomial_5) { // multinomial as binomial if 2 classes used int batchValue = 1; int ClassValue = 2; int Samples = 100000; NDArray samples('c', { 1 }, { 1.*Samples }, nd4j::DataType::INT32); NDArray probs('c', { ClassValue, batchValue }, { 1.0, 1.0 }, nd4j::DataType::FLOAT32); nd4j::ops::random_multinomial op; NDArray output('c', { Samples, batchValue }, nd4j::DataType::INT64); RandomGenerator rng(1234, 1234); ASSERT_EQ(Status::OK(), op.execute(rng, { &probs, &samples }, { &output }, {}, { 1 }, {}, {}, false)); auto deviation = output.varianceNumber(variance::SummaryStatsStandardDeviation, false); auto mean = output.meanNumber(); // printf("Var: %f Mean: %f \n", deviation.e(0), mean.e(0)); // theoretical values for binomial ASSERT_NEAR(0.5, deviation.e(0), 4e-3); // 1000000 3e-3); ASSERT_NEAR(0.5, mean.e(0), 4e-3); // 1000000 3e-3); for (int i = 0; i < output.lengthOf(); i++) { auto value = output.e(i); ASSERT_TRUE(value >= 0 && value < ClassValue); } auto resultR = op.evaluate({ &probs, &samples }, { }, { 1 }); auto outputR = resultR->at(0); ASSERT_EQ(Status::OK(), resultR->status()); deviation = outputR->varianceNumber(variance::SummaryStatsStandardDeviation, false); mean = outputR->meanNumber(); // printf("Random seed - Var: %f Mean: %f \n", deviation.e(0), mean.e(0)); ASSERT_NEAR(0.5, deviation.e(0), 45e-3); // 1000000 35e-3); ASSERT_NEAR(0.5, mean.e(0), 45e-3); // 1000000 35e-3); for (int i = 0; i < outputR->lengthOf(); i++) { auto value = outputR->e(i); ASSERT_TRUE(value >= 0 && value < ClassValue); } delete resultR; } TEST_F(RNGTests, test_multinomial_6) { int batchValue = 1; int ClassValue = 5; int Samples = 100000; NDArray samples('c', { 1 }, { 1. * Samples }, nd4j::DataType::INT32); nd4j::ops::random_multinomial op; NDArray probExpect('c', { ClassValue }, { 0.058, 0.096, 0.1576, 0.2598, 0.4287 }, nd4j::DataType::DOUBLE); // without seed NDArray probsR('c', { batchValue, ClassValue }, { 1., 1.5, 2., 2.5, 3. }, nd4j::DataType::FLOAT32); auto resultR = op.evaluate({ &probsR, &samples }, { }, { 0 }); auto outputR = resultR->at(0); ASSERT_EQ(Status::OK(), resultR->status()); NDArray countsR('c', { ClassValue }, { 0, 0, 0, 0, 0 }, nd4j::DataType::DOUBLE); for (int i = 0; i < outputR->lengthOf(); i++) { auto value = outputR->e(i); ASSERT_TRUE(value >= 0 && value < ClassValue); double* z = countsR.bufferAsT(); z[value] += 1; } for (int i = 0; i < countsR.lengthOf(); i++) { auto c = countsR.e(i); auto p = probExpect.e(i); // printf("Get freq : %f Expect freq: %f \n", c / Samples, p); ASSERT_NEAR((c / Samples), p, 45e-3); // 1000000 35e-3); } auto deviation = outputR->varianceNumber(variance::SummaryStatsStandardDeviation, false); auto mean = outputR->meanNumber(); // printf("Var: %f Mean: %f \n", deviation.e(0), mean.e(0)); ASSERT_NEAR(1.2175, deviation.e(0), 45e-3); // 1000000 35e-3); ASSERT_NEAR(2.906, mean.e(0), 45e-3); // 1000000 35e-3); delete resultR; RandomGenerator rng(1234, 1234); NDArray probs('c', { batchValue, ClassValue }, { 1., 1.5, 2., 2.5, 3. }, nd4j::DataType::FLOAT32); NDArray output('c', { batchValue, Samples }, nd4j::DataType::INT64); ASSERT_EQ(Status::OK(), op.execute(rng, { &probs, &samples }, { &output }, {}, { 0, INT64 }, {}, {}, false)); NDArray counts('c', { ClassValue }, { 0, 0, 0, 0, 0 }, nd4j::DataType::DOUBLE); for (int i = 0; i < output.lengthOf(); i++) { auto value = output.e(i); ASSERT_TRUE(value >= 0 && value < ClassValue); double* z = counts.bufferAsT(); z[value] += 1; } for (int i = 0; i < counts.lengthOf(); i++) { auto c = counts.e(i); auto p = probExpect.e(i); // printf("Get freq : %f Expect freq: %f \n", c / Samples, p); ASSERT_NEAR((c / Samples), p, 4e-3); // 1000000 3e-3); } deviation = output.varianceNumber(variance::SummaryStatsStandardDeviation, false); mean = output.meanNumber(); // printf("Var: %f Mean: %f \n", deviation.e(0), mean.e(0)); ASSERT_NEAR(1.2175, deviation.e(0), 5e-3); // 1000000 3e-3); ASSERT_NEAR(2.906, mean.e(0), 5e-3); // 1000000 3e-3); }