Compare commits
26 Commits
enhance-bu
...
master
Author | SHA1 | Date |
---|---|---|
Brian Rosenberger | 1c1ec071ef | |
Brian Rosenberger | 74ad5087c1 | |
Brian Rosenberger | acae3944ec | |
Brian Rosenberger | be7cd6b930 | |
Brian Rosenberger | 99aed71ffa | |
Brian Rosenberger | 2df8ea06e0 | |
Brian Rosenberger | 090c5ab2eb | |
Brian Rosenberger | a40d5aa7cf | |
Brian Rosenberger | d2972e4f24 | |
Brian Rosenberger | 704f4860d5 | |
Brian Rosenberger | d5728cbd8e | |
Brian Rosenberger | d40c044df4 | |
Brian Rosenberger | a6c4a16d9a | |
Brian Rosenberger | 0e4be5c4d2 | |
Brian Rosenberger | f7be1e324f | |
Brian Rosenberger | 1c3496ad84 | |
Brian Rosenberger | 3ea555b645 | |
Brian Rosenberger | e11568605d | |
Brian Rosenberger | 9f0682eb75 | |
Brian Rosenberger | ca127d8b88 | |
Brian Rosenberger | deb436036b | |
Brian Rosenberger | 1f2bfb36a5 | |
Brian Rosenberger | b477b71325 | |
Brian Rosenberger | d75e0be506 | |
Brian Rosenberger | 318cafb6f0 | |
Brian Rosenberger | 24466a8fd4 |
|
@ -1,4 +1,4 @@
|
|||
FROM nvidia/cuda:11.4.3-cudnn8-devel-ubuntu20.04
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04
|
||||
|
||||
RUN apt-get update && \
|
||||
DEBIAN_FRONTEND=noninteractive apt-get install -y openjdk-11-jdk wget build-essential checkinstall zlib1g-dev libssl-dev git
|
||||
|
@ -11,5 +11,10 @@ RUN wget -nv https://github.com/Kitware/CMake/releases/download/v3.24.2/cmake-3.
|
|||
rm cmake-3.24.2-linux-x86_64.sh
|
||||
|
||||
|
||||
RUN echo "/usr/local/cuda/compat/" >> /etc/ld.so.conf.d/cuda-driver.conf
|
||||
|
||||
RUN echo "nameserver 8.8.8.8" >> /etc/resolv.conf
|
||||
|
||||
RUN ldconfig -p | grep cuda
|
||||
|
||||
|
||||
|
|
|
@ -65,7 +65,7 @@ pipeline {
|
|||
}*/
|
||||
stage('publish-linux-cpu') {
|
||||
environment {
|
||||
MAVEN = credentials('Internal Archiva')
|
||||
MAVEN = credentials('Internal_Archiva')
|
||||
OSSRH = credentials('OSSRH')
|
||||
}
|
||||
|
||||
|
@ -79,4 +79,9 @@ pipeline {
|
|||
}
|
||||
}
|
||||
}
|
||||
post {
|
||||
always {
|
||||
junit '**/build/test-results/**/*.xml'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -59,4 +59,10 @@ pipeline {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
post {
|
||||
always {
|
||||
junit '**/build/test-results/**/*.xml'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -85,4 +85,9 @@ pipeline {
|
|||
}
|
||||
}
|
||||
}
|
||||
post {
|
||||
always {
|
||||
junit '**/build/test-results/**/*.xml'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -26,7 +26,7 @@ pipeline {
|
|||
dir '.docker'
|
||||
label 'linux && docker && cuda'
|
||||
//additionalBuildArgs '--build-arg version=1.0.2'
|
||||
//args '--gpus all' --needed for test only, you can build without GPU
|
||||
args '--gpus all' //needed for test only, you can build without GPU
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -72,4 +72,10 @@ pipeline {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
post {
|
||||
always {
|
||||
junit '**/build/test-results/**/*.xml'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -36,9 +36,9 @@ import static org.junit.jupiter.api.Assertions.assertTrue;
|
|||
public class LoadBackendTests {
|
||||
|
||||
@Test
|
||||
public void loadBackend() throws ClassNotFoundException, NoSuchFieldException, IllegalAccessException {
|
||||
public void loadBackend() throws NoSuchFieldException, IllegalAccessException {
|
||||
// check if Nd4j is there
|
||||
//Logger.getLogger(LoadBackendTests.class.getName()).info("System java.library.path: " + System.getProperty("java.library.path"));
|
||||
Logger.getLogger(LoadBackendTests.class.getName()).info("System java.library.path: " + System.getProperty("java.library.path"));
|
||||
final Field sysPathsField = ClassLoader.class.getDeclaredField("sys_paths");
|
||||
sysPathsField.setAccessible(true);
|
||||
sysPathsField.set(null, null);
|
||||
|
|
|
@ -16,6 +16,7 @@ import org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop;
|
|||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.deeplearning4j.nn.weights.WeightInit;
|
||||
import org.deeplearning4j.optimize.listeners.PerformanceListener;
|
||||
import org.junit.jupiter.api.Tag;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.nd4j.linalg.activations.Activation;
|
||||
import org.nd4j.linalg.activations.impl.ActivationLReLU;
|
||||
|
@ -122,7 +123,7 @@ public class App {
|
|||
return conf;
|
||||
}
|
||||
|
||||
@Test
|
||||
@Test @Tag("long-running")
|
||||
public void runTest() throws Exception {
|
||||
App.main(null);
|
||||
}
|
||||
|
|
|
@ -37,6 +37,8 @@ import org.datavec.image.loader.NativeImageLoader;
|
|||
import org.datavec.image.recordreader.ImageRecordReader;
|
||||
import org.datavec.image.transform.*;
|
||||
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
|
||||
import org.deeplearning4j.datasets.iterator.ExistingDataSetIterator;
|
||||
import org.deeplearning4j.datasets.iterator.INDArrayDataSetIterator;
|
||||
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
|
||||
import org.deeplearning4j.nn.conf.GradientNormalization;
|
||||
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||||
|
@ -44,25 +46,29 @@ import org.deeplearning4j.nn.conf.layers.*;
|
|||
import org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop;
|
||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.deeplearning4j.optimize.listeners.PerformanceListener;
|
||||
import org.junit.jupiter.api.Tag;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.nd4j.evaluation.classification.Evaluation;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.dataset.DataSet;
|
||||
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
|
||||
import static net.brutex.gan.App2Config.BATCHSIZE;
|
||||
|
||||
@Slf4j
|
||||
public class App2 {
|
||||
|
||||
final int INPUT = CHANNELS*DIMENSIONS*DIMENSIONS;
|
||||
static final float COLORSPACE = 255f;
|
||||
|
||||
static final int DIMENSIONS = 28;
|
||||
static final int CHANNELS = 1;
|
||||
final int ARRAY_SIZE_PER_SAMPLE = DIMENSIONS*DIMENSIONS*CHANNELS;
|
||||
final int OUTPUT_PER_PANEL = 10;
|
||||
|
||||
|
||||
final boolean BIAS = true;
|
||||
|
||||
static final int BATCHSIZE=128;
|
||||
|
||||
|
||||
private JFrame frame2, frame;
|
||||
static final String OUTPUT_DIR = "d:/out/";
|
||||
|
@ -70,12 +76,12 @@ public class App2 {
|
|||
final static INDArray label_real = Nd4j.ones(BATCHSIZE, 1);
|
||||
final static INDArray label_fake = Nd4j.zeros(BATCHSIZE, 1);
|
||||
|
||||
@Test
|
||||
@Test @Tag("long-running")
|
||||
void runTest() throws IOException {
|
||||
Nd4j.getMemoryManager().setAutoGcWindow(15 * 1000);
|
||||
|
||||
MnistDataSetIterator mnistIter = new MnistDataSetIterator(20, 200);
|
||||
FileSplit fileSplit = new FileSplit(new File("c:/users/brian/downloads/humans2"), NativeImageLoader.getALLOWED_FORMATS());
|
||||
FileSplit fileSplit = new FileSplit(new File("c:/users/brian/downloads/humans3"), NativeImageLoader.getALLOWED_FORMATS());
|
||||
ImageTransform transform = new ColorConversionTransform(new Random(42), 7 );
|
||||
ImageTransform transform2 = new ShowImageTransform("Tester", 30);
|
||||
ImageTransform transform3 = new ResizeImageTransform(DIMENSIONS, DIMENSIONS);
|
||||
|
@ -128,12 +134,94 @@ public class App2 {
|
|||
|
||||
log.info("Generator Summary:\n{}", gen.summary());
|
||||
log.info("GAN Summary:\n{}", gan.summary());
|
||||
dis.addTrainingListeners(new PerformanceListener(10, true, "DIS"));
|
||||
gen.addTrainingListeners(new PerformanceListener(10, true, "GEN"));
|
||||
gan.addTrainingListeners(new PerformanceListener(10, true, "GAN"));
|
||||
dis.addTrainingListeners(new PerformanceListener(3, true, "DIS"));
|
||||
//gen.addTrainingListeners(new PerformanceListener(3, true, "GEN")); //is never trained separately from GAN
|
||||
gan.addTrainingListeners(new PerformanceListener(3, true, "GAN"));
|
||||
/*
|
||||
Thread vt =
|
||||
new Thread(
|
||||
new Runnable() {
|
||||
@Override
|
||||
public void run() {
|
||||
while (true) {
|
||||
visualize(0, 0, gen);
|
||||
try {
|
||||
Thread.sleep(10000);
|
||||
} catch (InterruptedException e) {
|
||||
throw new RuntimeException(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
vt.start();
|
||||
*/
|
||||
|
||||
int j = 0;
|
||||
for (int i = 0; i < 51; i++) { //epoch
|
||||
App2Display display = new App2Display();
|
||||
//Repack training data with new fake/real label. Original MNist has 10 labels, one for each digit
|
||||
DataSet data = null;
|
||||
int j =0;
|
||||
for(int i=0;i<App2Config.EPOCHS;i++) {
|
||||
log.info("Epoch {}", i);
|
||||
data = new DataSet(Nd4j.rand(BATCHSIZE, 784), label_fake);
|
||||
while (trainData.hasNext()) {
|
||||
j++;
|
||||
INDArray real = trainData.next().getFeatures();
|
||||
INDArray fakeIn = Nd4j.rand(BATCHSIZE, App2Config.INPUT);
|
||||
|
||||
INDArray fake = gan.activateSelectedLayers(0, gen.getLayers().length - 1,
|
||||
Nd4j.rand(BATCHSIZE, App2Config.INPUT));
|
||||
//sigmoid output is -1 to 1
|
||||
fake.addi(1f).divi(2f);
|
||||
|
||||
if (j % 50 == 1) {
|
||||
display.visualize(new INDArray[] {fake}, App2Config.OUTPUT_PER_PANEL, false);
|
||||
display.visualize(new INDArray[] {real}, App2Config.OUTPUT_PER_PANEL, true);
|
||||
}
|
||||
|
||||
|
||||
DataSet realSet = new DataSet(real, label_real);
|
||||
DataSet fakeSet = new DataSet(fake, label_fake);
|
||||
|
||||
//start next round if there are not enough images left to have a full batchsize dataset
|
||||
if(real.length() < ARRAY_SIZE_PER_SAMPLE*BATCHSIZE) {
|
||||
log.warn("Your total number of input images is not a multiple of {}, "
|
||||
+ "thus skipping {} images to make it fit", BATCHSIZE, real.length()/ARRAY_SIZE_PER_SAMPLE);
|
||||
break;
|
||||
}
|
||||
//if(real.length()/BATCHSIZE!=784) break;
|
||||
data = DataSet.merge(Arrays.asList(data, realSet, fakeSet));
|
||||
|
||||
}
|
||||
//fit the discriminator
|
||||
dis.fit(data);
|
||||
dis.fit(data);
|
||||
// Update the discriminator in the GAN network
|
||||
updateGan(gen, dis, gan);
|
||||
|
||||
//reset the training data and fit the complete GAN
|
||||
if (trainData.resetSupported()) {
|
||||
trainData.reset();
|
||||
} else {
|
||||
log.error("Trainingdata {} does not support reset.", trainData.toString());
|
||||
}
|
||||
gan.fit(new DataSet(Nd4j.rand(BATCHSIZE, App2Config.INPUT), label_real));
|
||||
|
||||
if (trainData.resetSupported()) {
|
||||
trainData.reset();
|
||||
} else {
|
||||
log.error("Trainingdata {} does not support reset.", trainData.toString());
|
||||
}
|
||||
|
||||
log.info("Updated GAN's generator from gen.");
|
||||
updateGen(gen, gan);
|
||||
gen.save(new File("mnist-mlp-generator.dlj"));
|
||||
}
|
||||
//vt.stop();
|
||||
|
||||
/*
|
||||
int j;
|
||||
for (int i = 0; i < App2Config.EPOCHS; i++) { //epoch
|
||||
j=0;
|
||||
while (trainData.hasNext()) {
|
||||
j++;
|
||||
DataSet next = trainData.next();
|
||||
|
@ -211,122 +299,25 @@ public class App2 {
|
|||
log.info("Updated GAN's generator from gen.");
|
||||
gen.save(new File("mnist-mlp-generator.dlj"));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
private static JFrame visualize(INDArray[] samples, int batchElements, JFrame frame, boolean isOrig) {
|
||||
if (isOrig) {
|
||||
frame.setTitle("Viz Original");
|
||||
} else {
|
||||
frame.setTitle("Generated");
|
||||
}
|
||||
|
||||
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
|
||||
frame.setLayout(new BorderLayout());
|
||||
|
||||
JPanel panelx = new JPanel();
|
||||
|
||||
panelx.setLayout(new GridLayout(4, 4, 8, 8));
|
||||
for (INDArray sample : samples) {
|
||||
for(int i = 0; i<batchElements; i++) {
|
||||
panelx.add(getImage(sample, i, isOrig));
|
||||
}
|
||||
}
|
||||
frame.add(panelx, BorderLayout.CENTER);
|
||||
frame.setVisible(true);
|
||||
|
||||
frame.revalidate();
|
||||
frame.setMinimumSize(new Dimension(300, 20));
|
||||
frame.pack();
|
||||
return frame;
|
||||
}
|
||||
|
||||
|
||||
private static JLabel getImage(INDArray tensor, int batchElement, boolean isOrig) {
|
||||
final BufferedImage bi;
|
||||
if(CHANNELS >1) {
|
||||
bi = new BufferedImage(DIMENSIONS, DIMENSIONS, BufferedImage.TYPE_INT_RGB); //need to change here based on channels
|
||||
} else {
|
||||
bi = new BufferedImage(DIMENSIONS, DIMENSIONS, BufferedImage.TYPE_BYTE_GRAY); //need to change here based on channels
|
||||
}
|
||||
final int imageSize = DIMENSIONS * DIMENSIONS;
|
||||
final int offset = batchElement * imageSize;
|
||||
int pxl = offset * CHANNELS; //where to start in the INDArray
|
||||
|
||||
//Image in NCHW - channels first format
|
||||
for (int c = 0; c < CHANNELS; c++) { //step through the num channels for each pixel
|
||||
for (int y = 0; y < DIMENSIONS; y++) { // step through the columns x
|
||||
for (int x = 0; x < DIMENSIONS; x++) { //step through the rows y
|
||||
float f_pxl = tensor.getFloat(pxl) * COLORSPACE;
|
||||
if(isOrig) log.trace("'{}.' Image (x,y,c): ({}, {}, {}) with INDArray with index {} and value '{}'", batchElement, x, y, c, pxl, f_pxl);
|
||||
bi.getRaster().setSample(x, y, c, f_pxl);
|
||||
pxl++; //next item in INDArray
|
||||
}
|
||||
}
|
||||
}
|
||||
ImageIcon orig = new ImageIcon(bi);
|
||||
Image imageScaled = orig.getImage().getScaledInstance((4 * DIMENSIONS), (4 * DIMENSIONS), Image.SCALE_DEFAULT);
|
||||
ImageIcon scaled = new ImageIcon(imageScaled);
|
||||
if(! isOrig) saveImage(imageScaled, batchElement, isOrig);
|
||||
return new JLabel(scaled);
|
||||
*/
|
||||
|
||||
}
|
||||
|
||||
private static void saveImage(Image image, int batchElement, boolean isOrig) {
|
||||
String outputDirectory = OUTPUT_DIR; // Set the output directory where the images will be saved
|
||||
|
||||
try {
|
||||
// Save the images to disk
|
||||
saveImage(image, outputDirectory, UUID.randomUUID().toString()+".png");
|
||||
|
||||
log.debug("Images saved successfully.");
|
||||
} catch (IOException e) {
|
||||
log.error("Error saving the images: {}", e.getMessage());
|
||||
}
|
||||
}
|
||||
private static void saveImage(Image image, String outputDirectory, String fileName) throws IOException {
|
||||
File directory = new File(outputDirectory);
|
||||
if (!directory.exists()) {
|
||||
directory.mkdir();
|
||||
}
|
||||
|
||||
File outputFile = new File(directory, fileName);
|
||||
ImageIO.write(imageToBufferedImage(image), "png", outputFile);
|
||||
}
|
||||
|
||||
public static BufferedImage imageToBufferedImage(Image image) {
|
||||
if (image instanceof BufferedImage) {
|
||||
return (BufferedImage) image;
|
||||
}
|
||||
|
||||
// Create a buffered image with the same dimensions and transparency as the original image
|
||||
BufferedImage bufferedImage;
|
||||
if (CHANNELS > 1) {
|
||||
bufferedImage =
|
||||
new BufferedImage(
|
||||
image.getWidth(null), image.getHeight(null), BufferedImage.TYPE_INT_ARGB);
|
||||
} else {
|
||||
bufferedImage =
|
||||
new BufferedImage(
|
||||
image.getWidth(null), image.getHeight(null), BufferedImage.TYPE_BYTE_GRAY);
|
||||
}
|
||||
|
||||
// Draw the original image onto the buffered image
|
||||
Graphics2D g2d = bufferedImage.createGraphics();
|
||||
g2d.drawImage(image, 0, 0, null);
|
||||
g2d.dispose();
|
||||
|
||||
return bufferedImage;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
private static void updateGen(MultiLayerNetwork gen, MultiLayerNetwork gan) {
|
||||
for (int i = 0; i < gen.getLayers().length; i++) {
|
||||
gen.getLayer(i).setParams(gan.getLayer(i).getParams());
|
||||
|
@ -340,4 +331,41 @@ public class App2 {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
@Test
|
||||
void testDiskriminator() throws IOException {
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(App2Config.discriminator());
|
||||
net.init();
|
||||
net.addTrainingListeners(new PerformanceListener(10, true, "DIS"));
|
||||
DataSetIterator trainData = new MnistDataSetIterator(BATCHSIZE, true, 42);
|
||||
|
||||
DataSet data = null;
|
||||
for(int i=0;i<App2Config.EPOCHS;i++) {
|
||||
log.info("Epoch {}", i);
|
||||
data = new DataSet(Nd4j.rand(BATCHSIZE, 784), label_fake);
|
||||
while (trainData.hasNext()) {
|
||||
INDArray real = trainData.next().getFeatures();
|
||||
long[] l = new long[]{BATCHSIZE, real.length() / BATCHSIZE};
|
||||
INDArray fake = Nd4j.rand(l );
|
||||
|
||||
DataSet realSet = new DataSet(real, label_real);
|
||||
DataSet fakeSet = new DataSet(fake, label_fake);
|
||||
if(real.length()/BATCHSIZE!=784) break;
|
||||
data = DataSet.merge(Arrays.asList(data, realSet, fakeSet));
|
||||
|
||||
}
|
||||
net.fit(data);
|
||||
trainData.reset();
|
||||
}
|
||||
|
||||
long[] l = new long[]{BATCHSIZE, 784};
|
||||
INDArray fake = Nd4j.rand(l );
|
||||
DataSet fakeSet = new DataSet(fake, label_fake);
|
||||
data = DataSet.merge(Arrays.asList(data, fakeSet));
|
||||
ExistingDataSetIterator iter = new ExistingDataSetIterator(data);
|
||||
Evaluation eval = net.evaluate(iter);
|
||||
log.info( "\n" + eval.confusionMatrix());
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -36,10 +36,17 @@ import org.nd4j.linalg.lossfunctions.LossFunctions;
|
|||
public class App2Config {
|
||||
|
||||
public static final int INPUT = 100;
|
||||
public static final int BATCHSIZE=150;
|
||||
public static final int X_DIM = 28;
|
||||
public static final int y_DIM = 28;
|
||||
public static final int Y_DIM = 28;
|
||||
public static final int CHANNELS = 1;
|
||||
public static final int EPOCHS = 50;
|
||||
public static final IUpdater UPDATER = Adam.builder().learningRate(0.0002).beta1(0.5).build();
|
||||
public static final IUpdater UPDATER_DIS = Adam.builder().learningRate(0.02).beta1(0.5).build();
|
||||
public static final boolean SHOW_GENERATED = true;
|
||||
public static final float COLORSPACE = 255f;
|
||||
|
||||
final static int OUTPUT_PER_PANEL = 10;
|
||||
|
||||
static LayerConfiguration[] genLayerConfig() {
|
||||
return new LayerConfiguration[] {
|
||||
|
@ -158,7 +165,7 @@ public class App2Config {
|
|||
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
|
||||
.gradientNormalizationThreshold(100)
|
||||
.seed(42)
|
||||
.updater(UPDATER)
|
||||
.updater(UPDATER_DIS)
|
||||
.weightInit(WeightInit.XAVIER)
|
||||
// .weightNoise(new WeightNoise(new NormalDistribution(0.5, 0.5)))
|
||||
.weightNoise(null)
|
||||
|
|
|
@ -0,0 +1,160 @@
|
|||
/*
|
||||
*
|
||||
* ******************************************************************************
|
||||
* *
|
||||
* * This program and the accompanying materials are made available under the
|
||||
* * terms of the Apache License, Version 2.0 which is available at
|
||||
* * https://www.apache.org/licenses/LICENSE-2.0.
|
||||
* *
|
||||
* * See the NOTICE file distributed with this work for additional
|
||||
* * information regarding copyright ownership.
|
||||
* * Unless required by applicable law or agreed to in writing, software
|
||||
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* * License for the specific language governing permissions and limitations
|
||||
* * under the License.
|
||||
* *
|
||||
* * SPDX-License-Identifier: Apache-2.0
|
||||
* *****************************************************************************
|
||||
*
|
||||
*/
|
||||
|
||||
package net.brutex.gan;
|
||||
|
||||
import com.google.inject.Singleton;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
|
||||
import javax.imageio.ImageIO;
|
||||
import javax.swing.*;
|
||||
import java.awt.*;
|
||||
import java.awt.color.ColorSpace;
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import java.util.UUID;
|
||||
|
||||
import static net.brutex.gan.App2.OUTPUT_DIR;
|
||||
import static net.brutex.gan.App2Config.*;
|
||||
@Slf4j
|
||||
@Singleton
|
||||
public class App2Display {
|
||||
|
||||
private final JFrame frame = new JFrame();
|
||||
private final App2GUI display = new App2GUI();
|
||||
|
||||
private final JPanel real_panel;
|
||||
private final JPanel fake_panel;
|
||||
|
||||
|
||||
public App2Display() {
|
||||
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
|
||||
frame.setContentPane(display.getOverall_panel());
|
||||
frame.setMinimumSize(new Dimension(300, 20));
|
||||
frame.pack();
|
||||
frame.setVisible(true);
|
||||
real_panel = display.getReal_panel();
|
||||
fake_panel = display.getGen_panel();
|
||||
real_panel.setLayout(new GridLayout(4, 4, 8, 8));
|
||||
fake_panel.setLayout(new GridLayout(4, 4, 8, 8));
|
||||
}
|
||||
|
||||
public void visualize(INDArray[] samples, int batchElements, boolean isOrig) {
|
||||
for (INDArray sample : samples) {
|
||||
for(int i = 0; i<batchElements; i++) {
|
||||
final Image img = this.getImage(sample, i, isOrig);
|
||||
final ImageIcon icon = new ImageIcon(img);
|
||||
if(isOrig) {
|
||||
if(real_panel.getComponents().length>=OUTPUT_PER_PANEL) {
|
||||
real_panel.remove(0);
|
||||
}
|
||||
real_panel.add(new JLabel(icon));
|
||||
} else {
|
||||
if(fake_panel.getComponents().length>=OUTPUT_PER_PANEL) {
|
||||
fake_panel.remove(0);
|
||||
}
|
||||
fake_panel.add(new JLabel(icon));
|
||||
}
|
||||
}
|
||||
}
|
||||
frame.pack();
|
||||
frame.repaint();
|
||||
}
|
||||
|
||||
public Image getImage(INDArray tensor, int batchElement, boolean isOrig) {
|
||||
final BufferedImage bi;
|
||||
if(CHANNELS >1) {
|
||||
bi = new BufferedImage(X_DIM, Y_DIM, BufferedImage.TYPE_INT_RGB); //need to change here based on channels
|
||||
} else {
|
||||
bi = new BufferedImage(X_DIM, Y_DIM, BufferedImage.TYPE_BYTE_GRAY); //need to change here based on channels
|
||||
}
|
||||
final int imageSize = X_DIM * Y_DIM;
|
||||
final int offset = batchElement * imageSize;
|
||||
int pxl = offset * CHANNELS; //where to start in the INDArray
|
||||
|
||||
//Image in NCHW - channels first format
|
||||
for (int c = 0; c < CHANNELS; c++) { //step through the num channels for each pixel
|
||||
for (int y = 0; y < X_DIM; y++) { // step through the columns x
|
||||
for (int x = 0; x < Y_DIM; x++) { //step through the rows y
|
||||
float f_pxl = tensor.getFloat(pxl) * COLORSPACE;
|
||||
if(isOrig) log.trace("'{}.'{} Image (x,y,c): ({}, {}, {}) with INDArray with index {} and value '{}'", batchElement, isOrig ? "Real" : "Fake", x, y, c, pxl, f_pxl);
|
||||
bi.getRaster().setSample(x, y, c, f_pxl);
|
||||
pxl++; //next item in INDArray
|
||||
}
|
||||
}
|
||||
}
|
||||
ImageIcon orig = new ImageIcon(bi);
|
||||
Image imageScaled = orig.getImage().getScaledInstance((4 * X_DIM), (4 * Y_DIM), Image.SCALE_DEFAULT);
|
||||
ImageIcon scaled = new ImageIcon(imageScaled);
|
||||
//if(! isOrig) saveImage(imageScaled, batchElement, isOrig);
|
||||
return imageScaled;
|
||||
|
||||
}
|
||||
|
||||
private static void saveImage(Image image, int batchElement, boolean isOrig) {
|
||||
String outputDirectory = OUTPUT_DIR; // Set the output directory where the images will be saved
|
||||
|
||||
try {
|
||||
// Save the images to disk
|
||||
saveImage(image, outputDirectory, UUID.randomUUID().toString()+".png");
|
||||
|
||||
log.debug("Images saved successfully.");
|
||||
} catch (IOException e) {
|
||||
log.error("Error saving the images: {}", e.getMessage());
|
||||
}
|
||||
}
|
||||
private static void saveImage(Image image, String outputDirectory, String fileName) throws IOException {
|
||||
File directory = new File(outputDirectory);
|
||||
if (!directory.exists()) {
|
||||
directory.mkdir();
|
||||
}
|
||||
|
||||
File outputFile = new File(directory, fileName);
|
||||
ImageIO.write(imageToBufferedImage(image), "png", outputFile);
|
||||
}
|
||||
|
||||
public static BufferedImage imageToBufferedImage(Image image) {
|
||||
if (image instanceof BufferedImage) {
|
||||
return (BufferedImage) image;
|
||||
}
|
||||
|
||||
// Create a buffered image with the same dimensions and transparency as the original image
|
||||
BufferedImage bufferedImage;
|
||||
if (CHANNELS > 1) {
|
||||
bufferedImage =
|
||||
new BufferedImage(
|
||||
image.getWidth(null), image.getHeight(null), BufferedImage.TYPE_INT_ARGB);
|
||||
} else {
|
||||
bufferedImage =
|
||||
new BufferedImage(
|
||||
image.getWidth(null), image.getHeight(null), BufferedImage.TYPE_BYTE_GRAY);
|
||||
}
|
||||
|
||||
// Draw the original image onto the buffered image
|
||||
Graphics2D g2d = bufferedImage.createGraphics();
|
||||
g2d.drawImage(image, 0, 0, null);
|
||||
g2d.dispose();
|
||||
|
||||
return bufferedImage;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,61 @@
|
|||
package net.brutex.gan;
|
||||
|
||||
import javax.swing.JPanel;
|
||||
import javax.swing.JSplitPane;
|
||||
import javax.swing.JLabel;
|
||||
import java.awt.BorderLayout;
|
||||
|
||||
public class App2GUI extends JPanel {
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
private static final long serialVersionUID = 1L;
|
||||
private JPanel overall_panel;
|
||||
private JPanel real_panel;
|
||||
private JPanel gen_panel;
|
||||
|
||||
/**
|
||||
* Create the panel.
|
||||
*/
|
||||
public App2GUI() {
|
||||
|
||||
overall_panel = new JPanel();
|
||||
add(overall_panel);
|
||||
|
||||
JSplitPane splitPane = new JSplitPane();
|
||||
overall_panel.add(splitPane);
|
||||
|
||||
JPanel p1 = new JPanel();
|
||||
splitPane.setLeftComponent(p1);
|
||||
p1.setLayout(new BorderLayout(0, 0));
|
||||
|
||||
JLabel lblNewLabel = new JLabel("Generator");
|
||||
p1.add(lblNewLabel, BorderLayout.NORTH);
|
||||
|
||||
gen_panel = new JPanel();
|
||||
p1.add(gen_panel, BorderLayout.SOUTH);
|
||||
|
||||
JPanel p2 = new JPanel();
|
||||
splitPane.setRightComponent(p2);
|
||||
p2.setLayout(new BorderLayout(0, 0));
|
||||
|
||||
JLabel lblNewLabel_1 = new JLabel("Real");
|
||||
p2.add(lblNewLabel_1, BorderLayout.NORTH);
|
||||
|
||||
real_panel = new JPanel();
|
||||
p2.add(real_panel, BorderLayout.SOUTH);
|
||||
|
||||
}
|
||||
|
||||
|
||||
public JPanel getOverall_panel() {
|
||||
return overall_panel;
|
||||
}
|
||||
public JPanel getReal_panel() {
|
||||
return real_panel;
|
||||
}
|
||||
public JPanel getGen_panel() {
|
||||
return gen_panel;
|
||||
}
|
||||
}
|
|
@ -31,6 +31,7 @@ import org.deeplearning4j.nn.conf.layers.DropoutLayer;
|
|||
import org.deeplearning4j.nn.conf.layers.OutputLayer;
|
||||
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||||
import org.deeplearning4j.nn.weights.WeightInit;
|
||||
import org.junit.jupiter.api.Tag;
|
||||
import org.junit.jupiter.api.Test;
|
||||
import org.nd4j.linalg.activations.Activation;
|
||||
import org.nd4j.linalg.activations.impl.ActivationLReLU;
|
||||
|
@ -100,7 +101,7 @@ public class MnistSimpleGAN {
|
|||
|
||||
return new MultiLayerNetwork(discConf);
|
||||
}
|
||||
@Test
|
||||
@Test @Tag("long-running")
|
||||
public void runTest() throws Exception {
|
||||
main(null);
|
||||
}
|
||||
|
|
|
@ -20,7 +20,7 @@ ext {
|
|||
|
||||
def javacv = [version:"1.5.7"]
|
||||
def opencv = [version: "4.5.5"]
|
||||
def leptonica = [version: "1.82.0"]
|
||||
def leptonica = [version: "1.83.0"] //fix, only in javacpp 1.5.9
|
||||
def junit = [version: "5.9.1"]
|
||||
|
||||
def flatbuffers = [version: "1.10.0"]
|
||||
|
@ -118,7 +118,8 @@ dependencies {
|
|||
api "org.bytedeco:javacv:${javacv.version}"
|
||||
api "org.bytedeco:opencv:${opencv.version}-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:openblas:${openblas.version}-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:leptonica-platform:${leptonica.version}-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:leptonica-platform:${leptonica.version}-1.5.9"
|
||||
api "org.bytedeco:leptonica:${leptonica.version}-1.5.9"
|
||||
api "org.bytedeco:hdf5-platform:${hdf5.version}-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:hdf5:${hdf5.version}-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:hdf5:${hdf5.version}-${javacpp.presetsVersion}:${javacppPlatform}"
|
||||
|
@ -129,6 +130,7 @@ dependencies {
|
|||
api "org.bytedeco:cuda:${cuda.version}-${cudnn.version}-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:cuda-platform-redist:${cuda.version}-${cudnn.version}-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:mkl-dnn:0.21.5-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:mkl:2022.0-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:tensorflow:${tensorflow.version}-${javacpp.presetsVersion}"
|
||||
api "org.bytedeco:cpython:${cpython.version}-${javacpp.presetsVersion}:${javacppPlatform}"
|
||||
api "org.bytedeco:numpy:${numpy.version}-${javacpp.presetsVersion}:${javacppPlatform}"
|
||||
|
|
|
@ -28,7 +28,8 @@ dependencies {
|
|||
implementation "org.bytedeco:javacv"
|
||||
implementation "org.bytedeco:opencv"
|
||||
implementation group: "org.bytedeco", name: "opencv", classifier: buildTarget
|
||||
implementation "org.bytedeco:leptonica-platform"
|
||||
//implementation "org.bytedeco:leptonica-platform"
|
||||
implementation group: "org.bytedeco", name: "leptonica", classifier: buildTarget
|
||||
implementation "org.bytedeco:hdf5-platform"
|
||||
|
||||
implementation "commons-io:commons-io"
|
||||
|
|
|
@ -46,7 +46,7 @@ import java.nio.ByteOrder;
|
|||
import org.bytedeco.leptonica.*;
|
||||
import org.bytedeco.opencv.opencv_core.*;
|
||||
|
||||
import static org.bytedeco.leptonica.global.lept.*;
|
||||
import static org.bytedeco.leptonica.global.leptonica.*;
|
||||
import static org.bytedeco.opencv.global.opencv_core.*;
|
||||
import static org.bytedeco.opencv.global.opencv_imgcodecs.*;
|
||||
import static org.bytedeco.opencv.global.opencv_imgproc.*;
|
||||
|
|
|
@ -52,10 +52,9 @@ import java.io.InputStream;
|
|||
import java.lang.reflect.Field;
|
||||
import java.nio.file.Path;
|
||||
import java.util.Random;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
import static org.bytedeco.leptonica.global.lept.*;
|
||||
import static org.bytedeco.leptonica.global.leptonica.*;
|
||||
import static org.bytedeco.opencv.global.opencv_core.*;
|
||||
import static org.junit.jupiter.api.Assertions.*;
|
||||
|
||||
|
|
|
@ -78,7 +78,7 @@ class dnnTest {
|
|||
* DenseLayer.Builder().nIn(X_DIM*Y_DIM).nOut(X_DIM*Y_DIM*CHANNELS).activation(Activation.TANH)
|
||||
*/
|
||||
NeuralNetConfiguration network =
|
||||
NN.net()
|
||||
NN.nn()
|
||||
.seed(42)
|
||||
.updater(Adam.builder().learningRate(0.0002).beta1(0.5).build())
|
||||
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
|
||||
|
|
|
@ -31,7 +31,7 @@ dependencies {
|
|||
implementation projects.cavisDnn.cavisDnnData.cavisDnnDataDatasets
|
||||
implementation projects.cavisDnn.cavisDnnData.cavisDnnDataDatavecIterators
|
||||
implementation projects.cavisDnn.cavisDnnData.cavisDnnDataUtilityIterators
|
||||
implementation "org.apache.hadoop:hadoop-common:3.2.0"
|
||||
implementation "org.apache.hadoop:hadoop-common:3.2.4"
|
||||
implementation "com.fasterxml.jackson.dataformat:jackson-dataformat-yaml"
|
||||
implementation projects.cavisDatavec.cavisDatavecApi
|
||||
implementation projects.cavisDatavec.cavisDatavecSpark.cavisDatavecSparkCore
|
||||
|
|
|
@ -52,8 +52,8 @@ buildscript {
|
|||
classpath platform(project(":cavis-common-platform"))
|
||||
classpath group: "org.bytedeco", name: "openblas"
|
||||
classpath group: "org.bytedeco", name: "openblas", classifier: "${javacppPlatform}"
|
||||
classpath group: "org.bytedeco", name:"mkl-dnn"
|
||||
classpath group: "org.bytedeco", name:"mkl-dnn", classifier: "${javacppPlatform}"
|
||||
classpath group: "org.bytedeco", name:"mkl"
|
||||
classpath group: "org.bytedeco", name:"mkl", classifier: "${javacppPlatform}"
|
||||
classpath group: "org.bytedeco", name: "javacpp"
|
||||
classpath group: "org.bytedeco", name: "javacpp", classifier: "${javacppPlatform}"
|
||||
}
|
||||
|
@ -64,7 +64,7 @@ buildscript {
|
|||
|
||||
plugins {
|
||||
id 'java-library'
|
||||
id 'org.bytedeco.gradle-javacpp-build' version "1.5.9"
|
||||
id 'org.bytedeco.gradle-javacpp-build' version "1.5.7"
|
||||
id 'maven-publish'
|
||||
id 'signing'
|
||||
}
|
||||
|
@ -336,11 +336,12 @@ chipList.each { thisChip ->
|
|||
&& !project.getProperty("skip-native").equals("true") && !VISUAL_STUDIO_INSTALL_DIR.isEmpty()) {
|
||||
def proc = ["cmd.exe", "/c", "${VISUAL_STUDIO_VCVARS_CMD} > nul && where.exe cl.exe"].execute()
|
||||
def outp = proc.text
|
||||
def cl = outp.replace("\\", "\\\\").trim()
|
||||
def cl = "\"" + outp.replace("\\", "\\\\").trim() + "\""
|
||||
def currentCompiler = ""
|
||||
doFirst{
|
||||
currentCompiler = System.getProperty("org.bytedeco.javacpp.platform.compiler")
|
||||
System.setProperty("org.bytedeco.javacpp.platform.compiler", cl)
|
||||
System.setProperty("platform.compiler.cpp11", cl)
|
||||
logger.quiet("Task ${thisTask.name} overrides compiler '${currentCompiler}' with '${cl}'.")
|
||||
}
|
||||
doLast {
|
||||
|
|
|
@ -102,16 +102,18 @@ ENDIF()
|
|||
|
||||
IF(${SD_EXTENSION} MATCHES "avx2")
|
||||
message("Extension AVX2 enabled.")
|
||||
set(ARCH_TUNE "${ARCH_TUNE} -mmmx -msse -msse2 -msse3 -msse4.1 -msse4.2 -mavx -mavx2 -mfma -mf16c -mprefetchwt1 -DSD_F16C=true -DF_AVX2=true")
|
||||
#-mmmx -msse -msse2 -msse3 -msse4.1 -msse4.2 -mavx -mavx2 -mfma -mf16c -mprefetchwt1
|
||||
set(ARCH_TUNE "${ARCH_TUNE} -DSD_F16C=true -DF_AVX2=true")
|
||||
ELSEIF(${SD_EXTENSION} MATCHES "avx512")
|
||||
message("Extension AVX512 enabled.")
|
||||
# we need to set flag here, that we can use hardware f16 conversion + tell that cpu features should be tracked
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mmmx -msse -msse2 -msse3 -msse4.1 -msse4.2 -mavx -mavx2 -mfma -mf16c -mavx512f -mavx512vl -mavx512bw -mavx512dq -mavx512cd -mbmi -mbmi2 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves -DSD_F16C=true -DF_AVX512=true")
|
||||
#-mmmx -msse -msse2 -msse3 -msse4.1 -msse4.2 -mavx -mavx2 -mfma -mf16c -mavx512f -mavx512vl -mavx512bw -mavx512dq -mavx512cd -mbmi -mbmi2 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves
|
||||
set(ARCH_TUNE "${ARCH_TUNE} -DSD_F16C=true -DF_AVX512=true")
|
||||
ENDIF()
|
||||
|
||||
if (NOT WIN32)
|
||||
# we don't want this definition for msvc
|
||||
set(ARCH_TUNE "-march=${SD_ARCH} -mtune=${ARCH_TYPE}")
|
||||
set(ARCH_TUNE "${ARCH_TUNE} -march=${SD_ARCH} -mtune=${ARCH_TYPE}")
|
||||
endif()
|
||||
|
||||
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang" AND SD_X86_BUILD)
|
||||
|
|
|
@ -28,7 +28,7 @@ dependencies {
|
|||
implementation group: "org.bytedeco", name: "tensorflow"
|
||||
testRuntimeOnly group: "org.bytedeco", name: "tensorflow", classifier: buildTarget
|
||||
if(buildTarget.contains("windows") || buildTarget.contains("linux")) {
|
||||
testRuntimeOnly group: "org.bytedeco", name: "tensorflow", classifier: "${buildTarget}-gpu"
|
||||
testRuntimeOnly group: "org.bytedeco", name: 'tensorflow', classifier: "${buildTarget}-gpu", version: ''
|
||||
}
|
||||
implementation "commons-io:commons-io"
|
||||
implementation "com.google.code.gson:gson"
|
||||
|
|
|
@ -87,7 +87,7 @@ ext {
|
|||
cudaTestRuntime group: "org.bytedeco", name: "openblas", classifier: buildTarget
|
||||
cudaTestRuntime group: "org.bytedeco", name: "cuda"
|
||||
cudaTestRuntime group: "org.bytedeco", name: "cuda", classifier: buildTarget
|
||||
cudaTestRuntime group: "org.bytedeco", name: "cuda", classifier: "${buildTarget}-redist"
|
||||
//cudaTestRuntime group: "org.bytedeco", name: "cuda", classifier: "${buildTarget}-redist"
|
||||
cudaTestRuntime (project( path: ":cavis-native:cavis-native-lib", configuration: "cudaSupportRuntimeElements"))
|
||||
/*
|
||||
cudaTestRuntime(project(":cavis-native:cavis-native-lib")) {
|
||||
|
|
Loading…
Reference in New Issue