Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8017 Concurrent modification exception (synchronize) fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8033 Don't initialize updater in middle of writing memory crash dump Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8208 Fix shape checks for ND4J int[] creator methods Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6385 #7992 Keras import naming fixes + cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8016 Upsampling3D - add NDHWC format support Signed-off-by: AlexDBlack <blacka101@gmail.com>master
parent
7c5c84bea8
commit
fad8da878f
|
@ -386,63 +386,64 @@ public class CNN3DGradientCheckTest extends BaseDL4JTest {
|
|||
for (Activation afn : activations) {
|
||||
for (int miniBatchSize : minibatchSizes) {
|
||||
for (ConvolutionMode mode : modes) {
|
||||
for(Convolution3D.DataFormat df : Convolution3D.DataFormat.values()) {
|
||||
|
||||
int outDepth = depth * upsamplingSize[0];
|
||||
int outHeight = height * upsamplingSize[1];
|
||||
int outWidth = width * upsamplingSize[2];
|
||||
int outDepth = depth * upsamplingSize[0];
|
||||
int outHeight = height * upsamplingSize[1];
|
||||
int outWidth = width * upsamplingSize[2];
|
||||
|
||||
INDArray input = Nd4j.rand(new int[]{miniBatchSize, convNIn, depth, height, width});
|
||||
INDArray labels = Nd4j.zeros(miniBatchSize, finalNOut);
|
||||
for (int i = 0; i < miniBatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % finalNOut}, 1.0);
|
||||
}
|
||||
|
||||
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
||||
.dataType(DataType.DOUBLE)
|
||||
.updater(new NoOp()).weightInit(WeightInit.LECUN_NORMAL)
|
||||
.dist(new NormalDistribution(0, 1))
|
||||
.seed(12345)
|
||||
.list()
|
||||
.layer(0, new Convolution3D.Builder().activation(afn).kernelSize(1, 1, 1)
|
||||
.nIn(convNIn).nOut(convNOut).hasBias(false)
|
||||
.convolutionMode(mode).dataFormat(Convolution3D.DataFormat.NCDHW)
|
||||
.build())
|
||||
.layer(1, new Upsampling3D.Builder(upsamplingSize[0]).build())
|
||||
.layer(2, new DenseLayer.Builder().nOut(denseNOut).build())
|
||||
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(finalNOut).build())
|
||||
.inputPreProcessor(2,
|
||||
new Cnn3DToFeedForwardPreProcessor(outDepth, outHeight, outWidth,
|
||||
convNOut, true))
|
||||
.setInputType(InputType.convolutional3D(depth, height, width, convNIn)).build();
|
||||
|
||||
String json = conf.toJson();
|
||||
MultiLayerConfiguration c2 = MultiLayerConfiguration.fromJson(json);
|
||||
assertEquals(conf, c2);
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
||||
String msg = "Minibatch size = " + miniBatchSize + ", activationFn=" + afn
|
||||
+ ", kernel = " + Arrays.toString(upsamplingSize) + ", mode = " + mode.toString()
|
||||
+ ", input depth " + depth + ", input height " + height
|
||||
+ ", input width " + width;
|
||||
|
||||
if (PRINT_RESULTS) {
|
||||
log.info(msg);
|
||||
for (int j = 0; j < net.getnLayers(); j++) {
|
||||
log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||
INDArray input = df == Convolution3D.DataFormat.NCDHW ? Nd4j.rand(miniBatchSize, convNIn, depth, height, width) : Nd4j.rand(miniBatchSize, depth, height, width, convNIn);
|
||||
INDArray labels = Nd4j.zeros(miniBatchSize, finalNOut);
|
||||
for (int i = 0; i < miniBatchSize; i++) {
|
||||
labels.putScalar(new int[]{i, i % finalNOut}, 1.0);
|
||||
}
|
||||
|
||||
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
||||
.dataType(DataType.DOUBLE)
|
||||
.updater(new NoOp()).weightInit(WeightInit.LECUN_NORMAL)
|
||||
.dist(new NormalDistribution(0, 1))
|
||||
.seed(12345)
|
||||
.list()
|
||||
.layer(0, new Convolution3D.Builder().activation(afn).kernelSize(1, 1, 1)
|
||||
.nIn(convNIn).nOut(convNOut).hasBias(false)
|
||||
.convolutionMode(mode).dataFormat(df)
|
||||
.build())
|
||||
.layer(1, new Upsampling3D.Builder(upsamplingSize[0]).dataFormat(df).build())
|
||||
.layer(2, new DenseLayer.Builder().nOut(denseNOut).build())
|
||||
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
|
||||
.activation(Activation.SOFTMAX).nOut(finalNOut).build())
|
||||
.inputPreProcessor(2,
|
||||
new Cnn3DToFeedForwardPreProcessor(outDepth, outHeight, outWidth,
|
||||
convNOut, true))
|
||||
.setInputType(InputType.convolutional3D(df, depth, height, width, convNIn)).build();
|
||||
|
||||
String json = conf.toJson();
|
||||
MultiLayerConfiguration c2 = MultiLayerConfiguration.fromJson(json);
|
||||
assertEquals(conf, c2);
|
||||
|
||||
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||||
net.init();
|
||||
|
||||
String msg = "Minibatch size = " + miniBatchSize + ", activationFn=" + afn
|
||||
+ ", kernel = " + Arrays.toString(upsamplingSize) + ", mode = " + mode.toString()
|
||||
+ ", input depth " + depth + ", input height " + height
|
||||
+ ", input width " + width;
|
||||
|
||||
if (PRINT_RESULTS) {
|
||||
log.info(msg);
|
||||
for (int j = 0; j < net.getnLayers(); j++) {
|
||||
log.info("Layer " + j + " # params: " + net.getLayer(j).numParams());
|
||||
}
|
||||
}
|
||||
|
||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS,
|
||||
DEFAULT_MAX_REL_ERROR, DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS,
|
||||
RETURN_ON_FIRST_FAILURE, input, labels);
|
||||
|
||||
assertTrue(msg, gradOK);
|
||||
|
||||
TestUtils.testModelSerialization(net);
|
||||
}
|
||||
|
||||
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS,
|
||||
DEFAULT_MAX_REL_ERROR, DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS,
|
||||
RETURN_ON_FIRST_FAILURE, input, labels);
|
||||
|
||||
assertTrue(msg, gradOK);
|
||||
|
||||
TestUtils.testModelSerialization(net);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -32,6 +32,17 @@ import java.util.Map;
|
|||
*/
|
||||
@Slf4j
|
||||
public class KerasOptimizerUtils {
|
||||
|
||||
protected static final String LR = "lr";
|
||||
protected static final String LR2 = "learning_rate";
|
||||
protected static final String EPSILON = "epsilon";
|
||||
protected static final String MOMENTUM = "momentum";
|
||||
protected static final String BETA_1 = "beta_1";
|
||||
protected static final String BETA_2 = "beta_2";
|
||||
protected static final String DECAY = "decay";
|
||||
protected static final String RHO = "rho";
|
||||
protected static final String SCHEDULE_DECAY = "schedule_decay";
|
||||
|
||||
/**
|
||||
* Map Keras optimizer to DL4J IUpdater.
|
||||
*
|
||||
|
@ -55,11 +66,11 @@ public class KerasOptimizerUtils {
|
|||
|
||||
switch (optimizerName) {
|
||||
case "Adam": {
|
||||
double lr = (double) optimizerParameters.get("lr");
|
||||
double beta1 = (double) optimizerParameters.get("beta_1");
|
||||
double beta2 = (double) optimizerParameters.get("beta_2");
|
||||
double epsilon = (double) optimizerParameters.get("epsilon");
|
||||
double decay = (double) optimizerParameters.get("decay");
|
||||
double lr = (double) (optimizerParameters.containsKey(LR) ? optimizerParameters.get(LR) : optimizerParameters.get(LR2));
|
||||
double beta1 = (double) optimizerParameters.get(BETA_1);
|
||||
double beta2 = (double) optimizerParameters.get(BETA_2);
|
||||
double epsilon = (double) optimizerParameters.get(EPSILON);
|
||||
double decay = (double) optimizerParameters.get(DECAY);
|
||||
|
||||
dl4jOptimizer = new Adam.Builder()
|
||||
.beta1(beta1).beta2(beta2)
|
||||
|
@ -69,9 +80,9 @@ public class KerasOptimizerUtils {
|
|||
break;
|
||||
}
|
||||
case "Adadelta": {
|
||||
double rho = (double) optimizerParameters.get("rho");
|
||||
double epsilon = (double) optimizerParameters.get("epsilon");
|
||||
// double decay = (double) optimizerParameters.get("decay"); No decay in DL4J Adadelta
|
||||
double rho = (double) optimizerParameters.get(RHO);
|
||||
double epsilon = (double) optimizerParameters.get(EPSILON);
|
||||
// double decay = (double) optimizerParameters.get(DECAY); No decay in DL4J Adadelta
|
||||
|
||||
dl4jOptimizer = new AdaDelta.Builder()
|
||||
.epsilon(epsilon).rho(rho)
|
||||
|
@ -79,9 +90,9 @@ public class KerasOptimizerUtils {
|
|||
break;
|
||||
}
|
||||
case "Adgrad": {
|
||||
double lr = (double) optimizerParameters.get("lr");
|
||||
double epsilon = (double) optimizerParameters.get("epsilon");
|
||||
double decay = (double) optimizerParameters.get("decay");
|
||||
double lr = (double) (optimizerParameters.containsKey(LR) ? optimizerParameters.get(LR) : optimizerParameters.get(LR2));
|
||||
double epsilon = (double) optimizerParameters.get(EPSILON);
|
||||
double decay = (double) optimizerParameters.get(DECAY);
|
||||
|
||||
dl4jOptimizer = new AdaGrad.Builder()
|
||||
.epsilon(epsilon).learningRate(lr)
|
||||
|
@ -90,20 +101,20 @@ public class KerasOptimizerUtils {
|
|||
break;
|
||||
}
|
||||
case "Adamax": {
|
||||
double lr = (double) optimizerParameters.get("lr");
|
||||
double beta1 = (double) optimizerParameters.get("beta_1");
|
||||
double beta2 = (double) optimizerParameters.get("beta_2");
|
||||
double epsilon = (double) optimizerParameters.get("epsilon");
|
||||
double lr = (double) (optimizerParameters.containsKey(LR) ? optimizerParameters.get(LR) : optimizerParameters.get(LR2));
|
||||
double beta1 = (double) optimizerParameters.get(BETA_1);
|
||||
double beta2 = (double) optimizerParameters.get(BETA_2);
|
||||
double epsilon = (double) optimizerParameters.get(EPSILON);
|
||||
|
||||
dl4jOptimizer = new AdaMax(lr, beta1, beta2, epsilon);
|
||||
break;
|
||||
}
|
||||
case "Nadam": {
|
||||
double lr = (double) optimizerParameters.get("lr");
|
||||
double beta1 = (double) optimizerParameters.get("beta_1");
|
||||
double beta2 = (double) optimizerParameters.get("beta_2");
|
||||
double epsilon = (double) optimizerParameters.get("epsilon");
|
||||
double scheduleDecay = (double) optimizerParameters.get("schedule_decay");
|
||||
double lr = (double) (optimizerParameters.containsKey(LR) ? optimizerParameters.get(LR) : optimizerParameters.get(LR2));
|
||||
double beta1 = (double) optimizerParameters.get(BETA_1);
|
||||
double beta2 = (double) optimizerParameters.get(BETA_2);
|
||||
double epsilon = (double) optimizerParameters.get(EPSILON);
|
||||
double scheduleDecay = (double) optimizerParameters.get(SCHEDULE_DECAY);
|
||||
|
||||
dl4jOptimizer = new Nadam.Builder()
|
||||
.beta1(beta1).beta2(beta2)
|
||||
|
@ -114,15 +125,10 @@ public class KerasOptimizerUtils {
|
|||
break;
|
||||
}
|
||||
case "SGD": {
|
||||
double lr = (double) optimizerParameters.get("lr");
|
||||
double momentum = 0.0;
|
||||
try {
|
||||
momentum = (double) optimizerParameters.get("epsilon");
|
||||
} catch (Exception e) {
|
||||
log.warn("couldn't read momentum parameter");
|
||||
}
|
||||
double lr = (double) (optimizerParameters.containsKey(LR) ? optimizerParameters.get(LR) : optimizerParameters.get(LR2));
|
||||
double momentum = (double) (optimizerParameters.containsKey(EPSILON) ? optimizerParameters.get(EPSILON) : optimizerParameters.get(MOMENTUM));
|
||||
|
||||
double decay = (double) optimizerParameters.get("decay");
|
||||
double decay = (double) optimizerParameters.get(DECAY);
|
||||
|
||||
dl4jOptimizer = new Nesterovs.Builder()
|
||||
.momentum(momentum).learningRate(lr)
|
||||
|
@ -131,10 +137,10 @@ public class KerasOptimizerUtils {
|
|||
break;
|
||||
}
|
||||
case "RMSprop": {
|
||||
double lr = (double) optimizerParameters.get("lr");
|
||||
double rho = (double) optimizerParameters.get("rho");
|
||||
double epsilon = (double) optimizerParameters.get("epsilon");
|
||||
double decay = (double) optimizerParameters.get("decay");
|
||||
double lr = (double) (optimizerParameters.containsKey(LR) ? optimizerParameters.get(LR) : optimizerParameters.get(LR2));
|
||||
double rho = (double) optimizerParameters.get(RHO);
|
||||
double epsilon = (double) optimizerParameters.get(EPSILON);
|
||||
double decay = (double) optimizerParameters.get(DECAY);
|
||||
|
||||
dl4jOptimizer = new RmsProp.Builder()
|
||||
.epsilon(epsilon).rmsDecay(rho).learningRate(lr)
|
||||
|
|
|
@ -45,10 +45,14 @@ import java.util.Map;
|
|||
public class Upsampling3D extends BaseUpsamplingLayer {
|
||||
|
||||
protected int[] size;
|
||||
protected Convolution3D.DataFormat dataFormat = Convolution3D.DataFormat.NCDHW; //Default to NCDHW for 1.0.0-beta4 and earlier, when no config existed (NCDHW only)
|
||||
|
||||
protected Upsampling3D(UpsamplingBuilder builder) {
|
||||
|
||||
|
||||
protected Upsampling3D(Builder builder) {
|
||||
super(builder);
|
||||
this.size = builder.size;
|
||||
this.dataFormat = builder.dataFormat;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -124,10 +128,32 @@ public class Upsampling3D extends BaseUpsamplingLayer {
|
|||
@NoArgsConstructor
|
||||
public static class Builder extends UpsamplingBuilder<Builder> {
|
||||
|
||||
protected Convolution3D.DataFormat dataFormat = Convolution3D.DataFormat.NCDHW;
|
||||
|
||||
/**
|
||||
* @param size Upsampling layer size (most common value: 2)
|
||||
*/
|
||||
public Builder(int size) {
|
||||
super(new int[] {size, size, size});
|
||||
}
|
||||
|
||||
/**
|
||||
* @param dataFormat Data format - see {@link Convolution3D.DataFormat} for more details
|
||||
* @param size Upsampling layer size (most common value: 2)
|
||||
*/
|
||||
public Builder(@NonNull Convolution3D.DataFormat dataFormat, int size){
|
||||
super(new int[]{size, size, size});
|
||||
this.dataFormat = dataFormat;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the DataFormat. See {@link Convolution3D.DataFormat} for more details
|
||||
*/
|
||||
public Builder dataFormat(@NonNull Convolution3D.DataFormat dataFormat){
|
||||
this.dataFormat = dataFormat;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Upsampling size as int, so same upsampling size is used for depth, width and height
|
||||
*
|
||||
|
|
|
@ -2896,7 +2896,7 @@ public class ComputationGraph implements Serializable, Model, NeuralNetwork {
|
|||
solver.getOptimizer().setUpdaterComputationGraph(new ComputationGraphUpdater(this));
|
||||
}
|
||||
if(solver != null) {
|
||||
return solver.getOptimizer().getComputationGraphUpdater();
|
||||
return solver.getOptimizer().getComputationGraphUpdater(initializeIfAbsent);
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
|
|
@ -67,18 +67,36 @@ public class Upsampling3D extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
|
||||
assertInputSet(true);
|
||||
|
||||
boolean ncdhw = layerConf().getDataFormat() == org.deeplearning4j.nn.conf.layers.Convolution3D.DataFormat.NCDHW;
|
||||
// FIXME: int cast
|
||||
// Assumes NCDHW order
|
||||
int miniBatch = (int) input.size(0);
|
||||
int inChannels = (int) input.size(1);
|
||||
int inD = (int) input.size(2);
|
||||
int inH = (int) input.size(3);
|
||||
int inW = (int) input.size(4);
|
||||
int inChannels, inD, inH, inW;
|
||||
int[] intArgs;
|
||||
if(ncdhw){
|
||||
inChannels = (int) input.size(1);
|
||||
inD = (int) input.size(2);
|
||||
inH = (int) input.size(3);
|
||||
inW = (int) input.size(4);
|
||||
intArgs = new int[] {1}; // 1 is channels first
|
||||
} else {
|
||||
inD = (int) input.size(1);
|
||||
inH = (int) input.size(2);
|
||||
inW = (int) input.size(3);
|
||||
inChannels = (int) input.size(4);
|
||||
intArgs = new int[] {0}; // 0 is channels last
|
||||
}
|
||||
|
||||
int[] intArgs = new int[] {1}; // 1 is channels first
|
||||
|
||||
INDArray reshapedEpsilon = workspaceMgr.createUninitialized(
|
||||
ArrayType.ACTIVATION_GRAD, epsilon.dataType(), new long[]{miniBatch, inChannels, inD, inH, inW}, 'c');
|
||||
|
||||
INDArray epsOut;
|
||||
if(ncdhw){
|
||||
epsOut = workspaceMgr.createUninitialized(
|
||||
ArrayType.ACTIVATION_GRAD, epsilon.dataType(), new long[]{miniBatch, inChannels, inD, inH, inW}, 'c');
|
||||
} else {
|
||||
epsOut = workspaceMgr.createUninitialized(
|
||||
ArrayType.ACTIVATION_GRAD, epsilon.dataType(), new long[]{miniBatch, inD, inH, inW, inChannels}, 'c');
|
||||
}
|
||||
|
||||
|
||||
Gradient gradient = new DefaultGradient();
|
||||
|
@ -86,13 +104,13 @@ public class Upsampling3D extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
CustomOp op = DynamicCustomOp.builder("upsampling3d_bp")
|
||||
.addIntegerArguments(intArgs)
|
||||
.addInputs(input, epsilon)
|
||||
.addOutputs(reshapedEpsilon)
|
||||
.addOutputs(epsOut)
|
||||
.callInplace(false)
|
||||
.build();
|
||||
Nd4j.getExecutioner().exec(op);
|
||||
|
||||
reshapedEpsilon = backpropDropOutIfPresent(reshapedEpsilon);
|
||||
return new Pair<>(gradient, reshapedEpsilon);
|
||||
epsOut = backpropDropOutIfPresent(epsOut);
|
||||
return new Pair<>(gradient, epsOut);
|
||||
}
|
||||
|
||||
protected int[] getSize() {
|
||||
|
@ -115,32 +133,51 @@ public class Upsampling3D extends AbstractLayer<org.deeplearning4j.nn.conf.layer
|
|||
return preOutput;
|
||||
}
|
||||
|
||||
long miniBatch = (int) input.size(0);
|
||||
long inChannels = (int) input.size(1);
|
||||
long inD = (int) input.size(2);
|
||||
long inH = (int) input.size(3);
|
||||
long inW = (int) input.size(4);
|
||||
|
||||
boolean ncdhw = layerConf().getDataFormat() == org.deeplearning4j.nn.conf.layers.Convolution3D.DataFormat.NCDHW;
|
||||
// FIXME: int cast
|
||||
int miniBatch = (int) input.size(0);
|
||||
int inChannels, inD, inH, inW;
|
||||
int[] intArgs;
|
||||
int[] size = getSize();
|
||||
if(ncdhw){
|
||||
inChannels = (int) input.size(1);
|
||||
inD = (int) input.size(2);
|
||||
inH = (int) input.size(3);
|
||||
inW = (int) input.size(4);
|
||||
intArgs = new int[] {size[0], size[1], size[2], 1}; // 1 is channels first
|
||||
} else {
|
||||
inD = (int) input.size(1);
|
||||
inH = (int) input.size(2);
|
||||
inW = (int) input.size(3);
|
||||
inChannels = (int) input.size(4);
|
||||
intArgs = new int[] {size[0], size[1], size[2], 0}; // 0 is channels last
|
||||
}
|
||||
|
||||
|
||||
long outD = inD * size[0];
|
||||
long outH = inH * size[1];
|
||||
long outW = inW * size[2];
|
||||
|
||||
int[] intArgs = new int[] {size[0], size[1], size[2], 1}; // 1 is channels first
|
||||
INDArray output;
|
||||
if(ncdhw){
|
||||
output = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS,
|
||||
input.dataType(), new long[]{miniBatch, inChannels, outD, outH, outW}, 'c');
|
||||
} else {
|
||||
output = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS,
|
||||
input.dataType(), new long[]{miniBatch, outD, outH, outW, inChannels}, 'c');
|
||||
}
|
||||
|
||||
INDArray reshapedOutput = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS,
|
||||
input.dataType(), new long[]{miniBatch, inChannels, outD, outH, outW}, 'c');
|
||||
|
||||
|
||||
CustomOp upsampling = DynamicCustomOp.builder("upsampling3d")
|
||||
.addIntegerArguments(intArgs)
|
||||
.addInputs(input)
|
||||
.addOutputs(reshapedOutput)
|
||||
.addOutputs(output)
|
||||
.callInplace(false)
|
||||
.build();
|
||||
Nd4j.getExecutioner().exec(upsampling);
|
||||
|
||||
return reshapedOutput;
|
||||
return output;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -3172,7 +3172,7 @@ public class MultiLayerNetwork implements Serializable, Classifier, Layer, Neura
|
|||
}
|
||||
}
|
||||
if(solver != null) {
|
||||
return solver.getOptimizer().getUpdater();
|
||||
return solver.getOptimizer().getUpdater(initializeIfReq);
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
|
|
@ -42,8 +42,12 @@ public interface ConvexOptimizer extends Serializable {
|
|||
|
||||
Updater getUpdater();
|
||||
|
||||
Updater getUpdater(boolean initializeIfReq);
|
||||
|
||||
ComputationGraphUpdater getComputationGraphUpdater();
|
||||
|
||||
ComputationGraphUpdater getComputationGraphUpdater(boolean initializeIfReq);
|
||||
|
||||
void setUpdater(Updater updater);
|
||||
|
||||
void setUpdaterComputationGraph(ComputationGraphUpdater updater);
|
||||
|
|
|
@ -115,7 +115,12 @@ public abstract class BaseOptimizer implements ConvexOptimizer {
|
|||
|
||||
@Override
|
||||
public Updater getUpdater() {
|
||||
if (updater == null) {
|
||||
return getUpdater(true);
|
||||
}
|
||||
|
||||
@Override
|
||||
public Updater getUpdater(boolean initializeIfReq) {
|
||||
if (updater == null && initializeIfReq) {
|
||||
updater = UpdaterCreator.getUpdater(model);
|
||||
}
|
||||
return updater;
|
||||
|
@ -130,7 +135,12 @@ public abstract class BaseOptimizer implements ConvexOptimizer {
|
|||
|
||||
@Override
|
||||
public ComputationGraphUpdater getComputationGraphUpdater() {
|
||||
if (computationGraphUpdater == null && model instanceof ComputationGraph) {
|
||||
return getComputationGraphUpdater(true);
|
||||
}
|
||||
|
||||
@Override
|
||||
public ComputationGraphUpdater getComputationGraphUpdater(boolean initializIfReq) {
|
||||
if (computationGraphUpdater == null && model instanceof ComputationGraph && initializIfReq) {
|
||||
computationGraphUpdater = new ComputationGraphUpdater((ComputationGraph) model);
|
||||
}
|
||||
return computationGraphUpdater;
|
||||
|
|
|
@ -205,7 +205,7 @@ public class CrashReportingUtil {
|
|||
StringBuilder sb = genericMemoryStatus();
|
||||
|
||||
int bytesPerElement;
|
||||
switch (Nd4j.dataType()){
|
||||
switch (isMLN ? mln.params().dataType() : cg.params().dataType()){
|
||||
case DOUBLE:
|
||||
bytesPerElement = 8;
|
||||
break;
|
||||
|
|
|
@ -200,7 +200,7 @@ public class TrainModule implements UIModule {
|
|||
* List training sessions
|
||||
* @return HTML list of training sessions
|
||||
*/
|
||||
private Result listSessions() {
|
||||
private synchronized Result listSessions() {
|
||||
StringBuilder sb = new StringBuilder("<!DOCTYPE html>\n" +
|
||||
"<html lang=\"en\">\n" +
|
||||
"<head>\n" +
|
||||
|
@ -464,7 +464,7 @@ public class TrainModule implements UIModule {
|
|||
* @param sessionId session ID
|
||||
* @return info for session as JSON
|
||||
*/
|
||||
private Result sessionInfoForSession(String sessionId) {
|
||||
private synchronized Result sessionInfoForSession(String sessionId) {
|
||||
|
||||
Map<String, Object> dataEachSession = new HashMap<>();
|
||||
StatsStorage ss = knownSessionIDs.get(sessionId);
|
||||
|
@ -475,7 +475,7 @@ public class TrainModule implements UIModule {
|
|||
return Results.ok(asJson(dataEachSession)).as("application/json");
|
||||
}
|
||||
|
||||
private Result setSession(String newSessionID) {
|
||||
private synchronized Result setSession(String newSessionID) {
|
||||
if (knownSessionIDs.containsKey(newSessionID)) {
|
||||
currentSessionID = newSessionID;
|
||||
currentWorkerIdx = 0;
|
||||
|
@ -567,7 +567,7 @@ public class TrainModule implements UIModule {
|
|||
return getOverviewDataForSession(currentSessionID);
|
||||
}
|
||||
|
||||
private Result getOverviewDataForSession(String sessionId) {
|
||||
private synchronized Result getOverviewDataForSession(String sessionId) {
|
||||
Long lastUpdateTime = getLastUpdateTime(sessionId);
|
||||
I18N i18N = getI18N(sessionId);
|
||||
|
||||
|
|
|
@ -20,6 +20,8 @@ function selectStdevChart(fieldName) {
|
|||
$("#stdevGradients").removeAttr("class");
|
||||
$("#stdevUpdates").attr("class", "active");
|
||||
}
|
||||
|
||||
renderOverviewPage(false);
|
||||
}
|
||||
|
||||
/* ---------- Render page ---------- */
|
||||
|
|
|
@ -5207,7 +5207,7 @@ public class Nd4j {
|
|||
*/
|
||||
public static void checkShapeValues(int... shape) {
|
||||
for (int e: shape) {
|
||||
if (e < 1)
|
||||
if (e < 0)
|
||||
throw new ND4JIllegalStateException("Invalid shape: Requested INDArray shape " + Arrays.toString(shape)
|
||||
+ " contains dimension size values < 0 (all dimensions must be 0 or more)");
|
||||
}
|
||||
|
|
|
@ -256,6 +256,7 @@ public class EmptyTests extends BaseNd4jTest {
|
|||
assertArrayEquals(new long[]{0}, Nd4j.zeros(0).shape());
|
||||
assertArrayEquals(new long[]{0,0}, Nd4j.zeros(0,0).shape());
|
||||
assertArrayEquals(new long[]{0,0,0}, Nd4j.zeros(0,0,0).shape());
|
||||
assertArrayEquals(new long[]{0,0,0}, Nd4j.zeros(new int[]{0,0,0}, 'f').shape());
|
||||
assertArrayEquals(new long[]{0}, Nd4j.zeros(0L).shape());
|
||||
assertArrayEquals(new long[]{0}, Nd4j.zeros(dt, 0L).shape());
|
||||
|
||||
|
|
Loading…
Reference in New Issue