parent
11bddb3825
commit
f49c4ea9d0
|
@ -2938,7 +2938,7 @@ bool NDArray::reshapei(const char order, const std::vector<Nd4jLong>& cshape) {
|
|||
if (numberNegativesOnes > 0)
|
||||
delete[] shape_;
|
||||
|
||||
int arrLength = 1;
|
||||
Nd4jLong arrLength = 1;
|
||||
for(const auto& item : shape)
|
||||
arrLength *= item;
|
||||
|
||||
|
|
|
@ -153,7 +153,7 @@ static void templatedSwap(void *xBuffer, void *yBuffer, Nd4jLong length) {
|
|||
auto y = reinterpret_cast<T *>(yBuffer);
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD_ARGS(schedule(static))
|
||||
for (int i = 0; i < length; ++i) {
|
||||
for (Nd4jLong i = 0; i < length; ++i) {
|
||||
auto temp = x[i];
|
||||
x[i] = y[i];
|
||||
y[i] = temp;
|
||||
|
@ -272,7 +272,7 @@ NDArray NDArray::tile(const std::vector<Nd4jLong>& reps) const {
|
|||
else {
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for(int i=0; i<resultLen; ++i) {
|
||||
for(Nd4jLong i=0; i<resultLen; ++i) {
|
||||
auto xOffset = result.getOffset(i);
|
||||
auto yOffset = shape::subArrayOffset(i, newShapeInfo, getShapeInfo());
|
||||
BUILD_SINGLE_SELECTOR(xType, this->template templatedAssign, (result.getBuffer(), xOffset, this->getBuffer(), yOffset), LIBND4J_TYPES);
|
||||
|
@ -305,15 +305,14 @@ void NDArray::tile(const std::vector<Nd4jLong>& reps, NDArray& target) const {
|
|||
}
|
||||
}
|
||||
else if(target.ordering() == 'c' && ews > 1) {
|
||||
//#pragma omp parallel for simd if(targetLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided)
|
||||
for(int i=0; i<targetLen; ++i) {
|
||||
for(Nd4jLong i=0; i<targetLen; ++i) {
|
||||
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
||||
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), templatedDoubleAssign, (target.getBuffer(), i*ews, getBuffer(), yOffset), LIBND4J_TYPES, LIBND4J_TYPES);
|
||||
}
|
||||
}
|
||||
else {
|
||||
//#pragma omp parallel for simd if(targetLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided)
|
||||
for(int i=0; i<targetLen; ++i) {
|
||||
|
||||
for(Nd4jLong i=0; i<targetLen; ++i) {
|
||||
|
||||
auto xOffset = target.getOffset(i);
|
||||
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
||||
|
@ -335,23 +334,22 @@ void NDArray::tile(NDArray& target) const {
|
|||
const auto ews = target.ews();
|
||||
const auto targetLen = target.lengthOf();
|
||||
if(target.ordering() == 'c' && ews == 1) { // ews == 1 always here
|
||||
//#pragma omp parallel for simd if(targetLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided)
|
||||
for (int i = 0; i < targetLen; ++i) {
|
||||
|
||||
for (Nd4jLong i = 0; i < targetLen; ++i) {
|
||||
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
||||
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), templatedDoubleAssign, (target.getBuffer(), i, getBuffer(), yOffset), LIBND4J_TYPES, LIBND4J_TYPES);
|
||||
}
|
||||
}
|
||||
else if(target.ordering() == 'c' && ews > 1) {
|
||||
//#pragma omp parallel for simd if(targetLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided)
|
||||
for(int i=0; i<targetLen; ++i) {
|
||||
|
||||
for(Nd4jLong i=0; i<targetLen; ++i) {
|
||||
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
||||
BUILD_DOUBLE_SELECTOR(target.dataType(), dataType(), templatedDoubleAssign, (target.getBuffer(), i*ews, getBuffer(), yOffset), LIBND4J_TYPES, LIBND4J_TYPES);
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
||||
//#pragma omp parallel for simd if(targetLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided)
|
||||
for(int i=0; i<targetLen; ++i) {
|
||||
for(Nd4jLong i=0; i<targetLen; ++i) {
|
||||
|
||||
auto xOffset = target.getOffset(i);
|
||||
auto yOffset = shape::subArrayOffset(i, target.getShapeInfo(), getShapeInfo());
|
||||
|
|
|
@ -39,7 +39,7 @@ void NDArray::applyTriplewiseLambda(NDArray* second, NDArray *third, const std::
|
|||
if (f == z) {
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for (int e = 0; e < _length; e++) {
|
||||
for (Nd4jLong e = 0; e < _length; e++) {
|
||||
|
||||
auto tOffset = this->getOffset(e);
|
||||
auto uOffset = second->getOffset(e);
|
||||
|
@ -50,7 +50,7 @@ void NDArray::applyTriplewiseLambda(NDArray* second, NDArray *third, const std::
|
|||
} else {
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for (int e = 0; e < _length; e++) {
|
||||
for (Nd4jLong e = 0; e < _length; e++) {
|
||||
|
||||
auto tOffset = this->getOffset(e);
|
||||
auto uOffset = second->getOffset(e);
|
||||
|
@ -104,13 +104,13 @@ void NDArray::applyPairwiseLambda(const NDArray* other, const std::function<T(T,
|
|||
if (this->ordering() == other->ordering() && this->ordering() == target->ordering() && (this->ews() == 1 && target->ews() == 1) && this->ews() == other->ews()) {
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for (int e = 0; e < _length; e++)
|
||||
for (Nd4jLong e = 0; e < _length; e++)
|
||||
z[e] = func(f[e], s[e]);
|
||||
} else {
|
||||
if (f == z) {
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for (int e = 0; e < _length; e++) {
|
||||
for (Nd4jLong e = 0; e < _length; e++) {
|
||||
|
||||
auto xOffset = this->getOffset(e);
|
||||
auto yOffset = other->getOffset(e);
|
||||
|
@ -120,7 +120,7 @@ void NDArray::applyPairwiseLambda(const NDArray* other, const std::function<T(T,
|
|||
} else {
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for (int e = 0; e < _length; e++) {
|
||||
for (Nd4jLong e = 0; e < _length; e++) {
|
||||
|
||||
auto xOffset = this->getOffset(e);
|
||||
auto yOffset = other->getOffset(e);
|
||||
|
|
|
@ -1014,21 +1014,21 @@ void flattenGeneric(Nd4jPointer *extraPointers,
|
|||
if (len < ELEMENT_THRESHOLD) {
|
||||
|
||||
PRAGMA_OMP_SIMD
|
||||
for (int i = 0; i < len; i++) {
|
||||
for (Nd4jLong i = 0; i < len; i++) {
|
||||
hZ[i * resultEleStride] = input[i * inputEleStride];
|
||||
}
|
||||
}
|
||||
else {
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for (int i = 0; i < len; i++) {
|
||||
for (Nd4jLong i = 0; i < len; i++) {
|
||||
hZ[i * resultEleStride] = input[i * inputEleStride];
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
int idx = 0;
|
||||
for(int i = 0; i < len; i++)
|
||||
for(Nd4jLong i = 0; i < len; i++)
|
||||
hZ[idx++] = input[shape::getIndexOffset(i, inputShapeInfo, len)];
|
||||
}
|
||||
}
|
||||
|
@ -1047,7 +1047,7 @@ void flattenGeneric(Nd4jPointer *extraPointers,
|
|||
if (order == 'f') {
|
||||
// 1. get c ordering coordinates
|
||||
auto cIndexCoordinates = new Nd4jLong[rank - 1];
|
||||
int divisor = 1;
|
||||
Nd4jLong divisor = 1;
|
||||
for (int dim = rank - 1; dim > 0; dim--) {
|
||||
cIndexCoordinates[dim - 1] = (i / divisor) % xShape[dim];
|
||||
divisor *= xShape[dim];
|
||||
|
@ -1056,7 +1056,7 @@ void flattenGeneric(Nd4jPointer *extraPointers,
|
|||
|
||||
// 2. convert to f ordering index
|
||||
int fIndex = 0;
|
||||
int multiplier = 1;
|
||||
Nd4jLong multiplier = 1;
|
||||
for (int dim = 1; dim <= rank - 1; dim++) {
|
||||
fIndex += cIndexCoordinates[dim - 1] * multiplier;
|
||||
multiplier *= xShape[dim];
|
||||
|
|
|
@ -301,7 +301,7 @@ void* NDArray::specialBufferWithOffset(Nd4jLong offset) const {
|
|||
// change an array by repeating it the number of times given by reps.
|
||||
NDArray NDArray::tile(const std::vector<Nd4jLong>& reps) const {
|
||||
int dim = reps.size();
|
||||
int product = 1;
|
||||
Nd4jLong product = 1;
|
||||
for(const auto& item : reps)
|
||||
product *= item;
|
||||
if(product == 0)
|
||||
|
|
|
@ -670,7 +670,7 @@ void cnpy::npy_save(std::string fname,
|
|||
fwrite(&header[0],sizeof(char),header.size(),fp);
|
||||
}
|
||||
|
||||
unsigned int nels = 1;
|
||||
unsigned long long nels = 1;
|
||||
for(int i = 0;i < ndims;i++) nels *= shape[i];
|
||||
|
||||
fwrite(data,sizeof(T),nels,fp);
|
||||
|
|
|
@ -64,14 +64,14 @@ namespace nd4j {
|
|||
auto longPtr = reinterpret_cast<Nd4jLong *>(rawPtr);
|
||||
auto charPtr = reinterpret_cast<char *>(longPtr + length + 1);
|
||||
auto offsets = new Nd4jLong[length+1];
|
||||
for (int e = 0; e <= length; e++) {
|
||||
for (Nd4jLong e = 0; e <= length; e++) {
|
||||
auto o = longPtr[e];
|
||||
// FIXME: BE vs LE on partials
|
||||
//auto v = canKeep ? o : BitwiseUtils::swap_bytes<Nd4jLong>(o);
|
||||
offsets[e] = o;
|
||||
}
|
||||
|
||||
for (int e = 0; e < length; e++) {
|
||||
for (Nd4jLong e = 0; e < length; e++) {
|
||||
auto start = offsets[e];
|
||||
auto end = offsets[e+1];
|
||||
auto len = end - start;
|
||||
|
|
|
@ -492,7 +492,7 @@ namespace shape {
|
|||
|
||||
//find the length of the elements we
|
||||
//are iterating over
|
||||
int len = 1;
|
||||
Nd4jLong len = 1;
|
||||
//left over index cursor for initializing elements
|
||||
int leftOverIndex = 0;
|
||||
for(int i = 0; i < rank; i++) {
|
||||
|
@ -669,7 +669,7 @@ namespace shape {
|
|||
|
||||
//find the length of the elements we
|
||||
//are iterating over
|
||||
int len = 1;
|
||||
Nd4jLong len = 1;
|
||||
//left over index cursor for initializing elements
|
||||
int leftOverIndex = 0;
|
||||
for(int i = 0; i < rank; i++) {
|
||||
|
@ -787,7 +787,7 @@ namespace shape {
|
|||
Nd4jLong *ret2 = shape::sliceOfShapeBuffer(sliceIndex, permuted);
|
||||
Nd4jLong tensorLength = shape::prodLong(tensorShape,tadRank);
|
||||
|
||||
int compLength = shape::isVector(ret2) ? shape::length(ret2) : shape::prod(tensorShape,tadRank);
|
||||
Nd4jLong compLength = shape::isVector(ret2) ? shape::length(ret2) : shape::prodLong(tensorShape,tadRank);
|
||||
// int temp;
|
||||
// const bool isLikeVector = shape::isLikeVector(ret2, temp);
|
||||
|
||||
|
|
|
@ -75,7 +75,7 @@ std::vector<Nd4jLong> ShapeUtils::evalShapeForTensorDot(const Nd4jLong* aShapeIn
|
|||
permutBt = axesB;
|
||||
permutBt.insert(permutBt.end(), list_B.begin(), list_B.end());
|
||||
|
||||
int n2 = 1;
|
||||
Nd4jLong n2 = 1;
|
||||
for (int i = 0; i < axeAsize; i++)
|
||||
n2 *= aShapeInfo[axesA[i] + 1];
|
||||
shapeAt = {-1, n2};
|
||||
|
@ -86,7 +86,7 @@ std::vector<Nd4jLong> ShapeUtils::evalShapeForTensorDot(const Nd4jLong* aShapeIn
|
|||
oldShapeA[i] = aShapeInfo[list_A[i] + 1];
|
||||
|
||||
|
||||
int n3 = 1;
|
||||
Nd4jLong n3 = 1;
|
||||
for (int i = 0; i < axeBsize; i++)
|
||||
n3 *= bShapeInfo[axesB[i] + 1];
|
||||
shapeBt = {n3, -1};
|
||||
|
@ -553,7 +553,7 @@ std::vector<int> ShapeUtils::getDimsWithSameShape(const NDArray& max, const NDAr
|
|||
Nd4jLong* ShapeUtils::evalTileShapeInfo(const NDArray& arr, const std::vector<Nd4jLong>& reps, nd4j::memory::Workspace* workspace) {
|
||||
// check whether reps contains at least one zero (then throw exception) or whether all elements in reps are unities (then simply reshape or do nothing)
|
||||
int repsSize = reps.size();
|
||||
int product = 1;
|
||||
Nd4jLong product = 1;
|
||||
for(const auto& item : reps)
|
||||
product *= item;
|
||||
if(product == 0)
|
||||
|
|
|
@ -127,7 +127,7 @@ namespace shape {
|
|||
|
||||
ND4J_EXPORT _CUDA_HD int tadIndexForLinear(int linearIndex, int tadLength);
|
||||
|
||||
ND4J_EXPORT _CUDA_HD int tadLength(Nd4jLong *shapeInfo, int *dimension, int dimensionLength);
|
||||
ND4J_EXPORT _CUDA_HD Nd4jLong tadLength(Nd4jLong *shapeInfo, int *dimension, int dimensionLength);
|
||||
|
||||
ND4J_EXPORT _CUDA_HD bool canReshape(const int oldRank, Nd4jLong* oldShape, const int newRank, Nd4jLong* newShape, bool isFOrder);
|
||||
|
||||
|
@ -856,8 +856,6 @@ namespace shape {
|
|||
* Returns the prod of the data
|
||||
* up to the given length
|
||||
*/
|
||||
ND4J_EXPORT _CUDA_HD int prod(Nd4jLong *data, int length);
|
||||
|
||||
ND4J_EXPORT _CUDA_HD Nd4jLong prodLong(const Nd4jLong *data, int length);
|
||||
|
||||
/**
|
||||
|
@ -1055,12 +1053,12 @@ __device__ INLINEDEF Nd4jLong *cuMalloc(Nd4jLong *buffer, long size) {
|
|||
* Length of a tad given
|
||||
* the shape information
|
||||
*/
|
||||
INLINEDEF _CUDA_HD int tadLength(Nd4jLong *shapeInfo, int *dimension, int dimensionLength) {
|
||||
INLINEDEF _CUDA_HD Nd4jLong tadLength(Nd4jLong *shapeInfo, int *dimension, int dimensionLength) {
|
||||
if(dimensionLength == 1) {
|
||||
return shape::shapeOf(shapeInfo)[dimension[0]];
|
||||
}
|
||||
else {
|
||||
int ret = 1;
|
||||
Nd4jLong ret = 1;
|
||||
for(int i = 0; i < shape::rank(shapeInfo); i++) {
|
||||
for(int j = 0; j < dimensionLength; j++) {
|
||||
if(i == dimension[j])
|
||||
|
@ -1307,7 +1305,7 @@ __device__ INLINEDEF Nd4jLong *cuMalloc(Nd4jLong *buffer, long size) {
|
|||
traceNew(6);
|
||||
|
||||
Nd4jLong *stride = new Nd4jLong[dimensions];
|
||||
int st = startNum;
|
||||
Nd4jLong st = startNum;
|
||||
for (int j = 0; j < rank; j++) {
|
||||
stride[j] = st;
|
||||
st *= shape[j];
|
||||
|
@ -1326,7 +1324,7 @@ __device__ INLINEDEF Nd4jLong *cuMalloc(Nd4jLong *buffer, long size) {
|
|||
|
||||
//int dimensions = rank;
|
||||
|
||||
int st = startNum;
|
||||
Nd4jLong st = startNum;
|
||||
for (int j = 0; j < rank; j++) {
|
||||
ret[j] = st;
|
||||
st *= shape[j];
|
||||
|
@ -1361,7 +1359,7 @@ __device__ INLINEDEF Nd4jLong *cuMalloc(Nd4jLong *buffer, long size) {
|
|||
|
||||
// }
|
||||
|
||||
int st = startNum;
|
||||
Nd4jLong st = startNum;
|
||||
for (int j = rank - 1; j >= 0; j--) {
|
||||
stride[j] = st;
|
||||
st *= shape[j];
|
||||
|
@ -1383,7 +1381,7 @@ __device__ INLINEDEF Nd4jLong *cuMalloc(Nd4jLong *buffer, long size) {
|
|||
|
||||
// }
|
||||
|
||||
int st = startNum;
|
||||
Nd4jLong st = startNum;
|
||||
for (int j = rank - 1; j >= 0; j--) {
|
||||
ret[j] = st;
|
||||
st *= shape[j];
|
||||
|
@ -1513,8 +1511,8 @@ __device__ INLINEDEF Nd4jLong *cuMalloc(Nd4jLong *buffer, long size) {
|
|||
int oldnd;
|
||||
Nd4jLong *oldDims = shape::copyOf(rank, shape);
|
||||
Nd4jLong *oldStrides = shape::copyOf(rank, stride);
|
||||
int np, op, last_stride;
|
||||
int oldStart, oldStop, ok, newStart, newStop, nk;
|
||||
Nd4jLong np, op, last_stride;
|
||||
Nd4jLong oldStart, oldStop, ok, newStart, newStop, nk;
|
||||
|
||||
traceNew(10);
|
||||
|
||||
|
@ -2042,13 +2040,12 @@ template <typename T>
|
|||
* @return
|
||||
*/
|
||||
INLINEDEF _CUDA_HD char getOrder(int length, Nd4jLong *shape, Nd4jLong *stride, int elementStride) {
|
||||
int sd = -1;
|
||||
Nd4jLong sd = 1;
|
||||
int dim = -1;
|
||||
int i = -1;
|
||||
int cContiguous = 1;
|
||||
int isFortran = 1;
|
||||
|
||||
sd = 1;
|
||||
for (i = length - 1; i >= 0; --i) {
|
||||
dim = shape[i];
|
||||
|
||||
|
@ -2235,7 +2232,7 @@ template <typename T>
|
|||
|
||||
INLINEDEF _CUDA_HD int oneDimEqualToLength(Nd4jLong *shape, int rank) {
|
||||
for(int i = 0; i < rank; i++) {
|
||||
if(shape[i] == shape::prod(shape,rank))
|
||||
if(shape[i] == shape::prodLong(shape,rank))
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -3103,11 +3100,11 @@ INLINEDEF _CUDA_HD bool haveSameShapeAndStrides(const Nd4jLong *shapeInfo1, cons
|
|||
if(shape::isVector(shape,rank)) {
|
||||
//return total length for row vectors
|
||||
if(dimensionLength == 1 && shape[0] == 1) {
|
||||
return shape::prod(shape,rank);
|
||||
return shape::prodLong(shape,rank);
|
||||
}
|
||||
}
|
||||
else if(rank == dimensionLength)
|
||||
return shape::prod(shape,rank);
|
||||
return shape::prodLong(shape,rank);
|
||||
int absSelta = nd4j::math::nd4j_abs<int>(rank - dimensionLength);
|
||||
traceNew(27);
|
||||
auto ret2 = shape::removeIndex<Nd4jLong>(shape, dimension, rank, dimensionLength);
|
||||
|
@ -3554,18 +3551,6 @@ INLINEDEF _CUDA_HD bool haveSameShapeAndStrides(const Nd4jLong *shapeInfo1, cons
|
|||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the prod of the data
|
||||
* up to the given length
|
||||
*/
|
||||
INLINEDEF _CUDA_HD int prod(Nd4jLong *data, int length) {
|
||||
int prod = 1;
|
||||
for (int i = 0; i < length; i++) {
|
||||
prod *= data[i];
|
||||
}
|
||||
|
||||
return prod;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the prod of the data
|
||||
|
@ -3956,7 +3941,7 @@ INLINEDEF _CUDA_H bool reshapeC(const int oldRank, const Nd4jLong* oldShapeInfo,
|
|||
Nd4jLong* newStrides = shape::stride(newShapeInfo);
|
||||
const Nd4jLong* oldShape = shape::shapeOf(const_cast<Nd4jLong*>(oldShapeInfo));
|
||||
const Nd4jLong* oldStrides = shape::stride(const_cast<Nd4jLong*>(oldShapeInfo));
|
||||
int oldStart(0), oldStop(1), newStart(0), newStop(1), newDim, oldDim;
|
||||
Nd4jLong oldStart(0), oldStop(1), newStart(0), newStop(1), newDim, oldDim;
|
||||
|
||||
while (newStart < newRank && oldStart < oldRank) {
|
||||
|
||||
|
@ -3995,11 +3980,11 @@ INLINEDEF _CUDA_H bool reshapeC(const int oldRank, const Nd4jLong* oldShapeInfo,
|
|||
|
||||
|
||||
INLINEDEF _CUDA_H bool canReshape(const int oldRank, Nd4jLong* oldShape, const int newRank, Nd4jLong* newShapeOf, bool isFOrder) {
|
||||
int oldnd;
|
||||
Nd4jLong oldnd;
|
||||
Nd4jLong* oldDims = shape::copyOf(oldRank, shape::shapeOf(oldShape));
|
||||
Nd4jLong* oldStrides = shape::copyOf(oldRank, shape::stride(oldShape));
|
||||
int np, op, last_stride;
|
||||
int oldStart, oldStop, ok, newStart, newStop, nk;
|
||||
Nd4jLong np, op, last_stride;
|
||||
Nd4jLong oldStart, oldStop, ok, newStart, newStop, nk;
|
||||
auto newStrides = new Nd4jLong[newRank];
|
||||
oldnd = 0;
|
||||
|
||||
|
|
|
@ -229,7 +229,7 @@ CUSTOM_OP_IMPL(deconv2d_bp, 3, 2, false, 0, 9) {
|
|||
// ----- calculation of gradB ----- //
|
||||
if(gradB) {
|
||||
if(gradB->rankOf() == 2)
|
||||
gradB = new NDArray(gradB->reshape(gradB->ordering(), {(int)gradB->lengthOf()}));
|
||||
gradB = new NDArray(gradB->reshape(gradB->ordering(), {gradB->lengthOf()}));
|
||||
gradO->reduceAlongDimension(reduce::Sum, gradB, {0, 2, 3}); // sum over bS, oH, oW
|
||||
if(gradB != OUTPUT_VARIABLE(2))
|
||||
delete gradB;
|
||||
|
|
|
@ -53,7 +53,7 @@ namespace nd4j {
|
|||
// now let's build subarrays
|
||||
int cnt = 0;
|
||||
std::vector<Nd4jLong> indices(2 * array->rankOf(), 0);
|
||||
for (int e = 0; e < sizes->lengthOf(); e++) {
|
||||
for (Nd4jLong e = 0; e < sizes->lengthOf(); e++) {
|
||||
int c_size = sizes->e<int>(e);
|
||||
|
||||
REQUIRE_TRUE(c_size > 0, 0, "Slice size should have postive value, but got %i instead", c_size);
|
||||
|
|
|
@ -42,10 +42,10 @@ CONFIGURABLE_OP_IMPL(betainc, 3, 1, false, 0, 0) {
|
|||
|
||||
REQUIRE_TRUE(a->isSameShape(b) && a->isSameShape(x), 0, "CONFIGURABLE_OP betainc: all three input arrays must have the same shapes, bit got a=%s, b=%s and x=%s instead !", ShapeUtils::shapeAsString(a).c_str(), ShapeUtils::shapeAsString(b).c_str(), ShapeUtils::shapeAsString(x).c_str());
|
||||
|
||||
int arrLen = a->lengthOf();
|
||||
Nd4jLong arrLen = a->lengthOf();
|
||||
|
||||
// FIXME: this stuff should be single op call. No sense rolling over couple of arrays twice
|
||||
for(int i = 0; i < arrLen; ++i ) {
|
||||
for(Nd4jLong i = 0; i < arrLen; ++i ) {
|
||||
REQUIRE_TRUE(a->e<float>(i) > 0.f, 0, "BETAINC op: arrays a array must contain only elements > 0 !");
|
||||
REQUIRE_TRUE(b->e<float>(i) > 0.f, 0, "BETAINC op: arrays b array must contain only elements > 0 !");
|
||||
REQUIRE_TRUE(0.f <= x->e<float>(i) && x->e<float>(i) <= 1.f, 0, "BETAINC op: all elements of x array must be within [0, 1] range!");
|
||||
|
|
|
@ -35,7 +35,7 @@ CONFIGURABLE_OP_IMPL(polygamma, 2, 1, false, 0, 0) {
|
|||
|
||||
REQUIRE_TRUE(n->isSameShape(x), 0, "POLYGAMMA op: two input arrays n and x must have the same shapes, but got n=%s and x=%s instead !", ShapeUtils::shapeAsString(n).c_str(), ShapeUtils::shapeAsString(x).c_str());
|
||||
|
||||
int arrLen = n->lengthOf();
|
||||
Nd4jLong arrLen = n->lengthOf();
|
||||
// FIXME: this shit should be single op call, not a loop!
|
||||
auto nPositive = n->reduceNumber(nd4j::reduce::IsPositive, nullptr);
|
||||
auto xPositive = x->reduceNumber(nd4j::reduce::IsPositive, nullptr);
|
||||
|
|
|
@ -46,7 +46,7 @@ namespace ops {
|
|||
int pos = 0;
|
||||
std::vector<Nd4jLong> indices(2 * input->rankOf());
|
||||
|
||||
for (int e = 0; e < sizes->lengthOf(); e++) {
|
||||
for (Nd4jLong e = 0; e < sizes->lengthOf(); e++) {
|
||||
int c_size = sizes->e<int>(e);
|
||||
|
||||
for (int d = 0; d < input->rankOf(); d++) {
|
||||
|
@ -103,7 +103,7 @@ namespace ops {
|
|||
|
||||
auto length = sizes->lengthOf();
|
||||
int pos = 0;
|
||||
for (int e = 0; e < length; e++) {
|
||||
for (Nd4jLong e = 0; e < length; e++) {
|
||||
int c_size = sizes->e<int>(e);
|
||||
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ namespace nd4j {
|
|||
REQUIRE_TRUE(v >= 0 && v < input->rankOf(), 0, "Tear dimensions should be non-negative values, and lower then input rank. Got %i instead", v);
|
||||
|
||||
auto tads = input->allTensorsAlongDimension(dims);
|
||||
for (int e = 0; e < tads->size(); e++) {
|
||||
for (Nd4jLong e = 0; e < tads->size(); e++) {
|
||||
auto outE = OUTPUT_VARIABLE(e);
|
||||
outE->assign(tads->at(e));
|
||||
|
||||
|
@ -62,7 +62,7 @@ namespace nd4j {
|
|||
auto numTads = tadPack.numberOfTads();
|
||||
|
||||
auto result = SHAPELIST();
|
||||
for (int e = 0; e < numTads; e++) {
|
||||
for (Nd4jLong e = 0; e < numTads; e++) {
|
||||
auto newShape = ConstantShapeHelper::getInstance()->createShapeInfo(block.dataType(), shape::order(inShape), shape::rank(tadPack.primaryShapeInfo()), shape::shapeOf(tadPack.primaryShapeInfo()));
|
||||
result->push_back(newShape);
|
||||
}
|
||||
|
|
|
@ -34,10 +34,10 @@ namespace nd4j {
|
|||
|
||||
REQUIRE_TRUE(x->isSameShape(q), 0, "ZETA op: two input arrays must have the same shapes, bot got x=%s and q=%s !", ShapeUtils::shapeAsString(x).c_str(), ShapeUtils::shapeAsString(q).c_str());
|
||||
|
||||
int arrLen = x->lengthOf();
|
||||
Nd4jLong arrLen = x->lengthOf();
|
||||
|
||||
// FIXME: this should NOT be loop.
|
||||
for(int i = 0; i < arrLen; ++i ) {
|
||||
for(Nd4jLong i = 0; i < arrLen; ++i ) {
|
||||
REQUIRE_TRUE(x->e<float>(i) > 1.f, 0, "ZETA op: all elements of x array must be > 1 !");
|
||||
REQUIRE_TRUE(q->e<float>(i) > 0.f, 0, "ZETA op: all elements of q array must be > 0 !");
|
||||
}
|
||||
|
|
|
@ -54,14 +54,14 @@ namespace nd4j {
|
|||
int e2 = e;
|
||||
for (; e < (int) arguments->size(); e++) {
|
||||
if (arguments->at(e) == -1){
|
||||
long shapeLength = 1;
|
||||
Nd4jLong shapeLength = 1;
|
||||
for(; e2 < e; e2++){
|
||||
shapeLength *= arguments->at(e2);
|
||||
}
|
||||
for(e2 = e + 1; e2 < arguments->size(); e2++){
|
||||
shapeLength *= arguments->at(e2);
|
||||
}
|
||||
long realShape = x->lengthOf() / shapeLength;
|
||||
Nd4jLong realShape = x->lengthOf() / shapeLength;
|
||||
shapeNew.push_back(realShape);
|
||||
}
|
||||
else{
|
||||
|
@ -109,16 +109,15 @@ namespace nd4j {
|
|||
for (int e = 0; e < (int) s->lengthOf(); e++) {
|
||||
auto dim = s->e<Nd4jLong >(e);
|
||||
if (dim == -1){
|
||||
long shapeLength = 1;
|
||||
Nd4jLong shapeLength = 1;
|
||||
for(int e2 = 0; e2 < e; e2++){
|
||||
shapeLength *= s->e<Nd4jLong>(e2);
|
||||
}
|
||||
for(int e2 = e + 1; e2 < (int) s->lengthOf(); e2++){
|
||||
REQUIRE_TRUE(s->e<Nd4jLong>(e2) != -1, 0, "Reshape : Only one unknown dimension (-1) is allowed.");
|
||||
shapeLength *=
|
||||
s->e<Nd4jLong>(e2);
|
||||
shapeLength *= s->e<Nd4jLong>(e2);
|
||||
}
|
||||
long realShape = x->lengthOf() / shapeLength;
|
||||
Nd4jLong realShape = x->lengthOf() / shapeLength;
|
||||
shapeNew[e] = realShape;
|
||||
}
|
||||
else{
|
||||
|
@ -187,7 +186,7 @@ namespace nd4j {
|
|||
for (; e < (int) arguments->size(); e++) {
|
||||
if ((int) arguments->at(e) == -1){
|
||||
|
||||
long shapeLength = 1;
|
||||
Nd4jLong shapeLength = 1;
|
||||
for(; e2 < e; e2 ++){
|
||||
shapeLength *= arguments->at(e2);
|
||||
}
|
||||
|
@ -201,7 +200,7 @@ namespace nd4j {
|
|||
shapeNew.push_back(0);
|
||||
} else {
|
||||
//Standard case
|
||||
long realShape = shape::length(inp) / shapeLength;
|
||||
Nd4jLong realShape = shape::length(inp) / shapeLength;
|
||||
shapeNew.push_back(realShape);
|
||||
}
|
||||
}
|
||||
|
@ -240,7 +239,7 @@ namespace nd4j {
|
|||
for (int e = 0; e < (int) y->lengthOf(); e++) {
|
||||
auto dim = y->e<Nd4jLong>(e);
|
||||
if (dim == -1){
|
||||
long shapeLength = 1;
|
||||
Nd4jLong shapeLength = 1;
|
||||
for(int e2 = 0; e2 < e; e2++){
|
||||
shapeLength *= y->e<Nd4jLong>(e2);
|
||||
}
|
||||
|
@ -253,7 +252,7 @@ namespace nd4j {
|
|||
//Edge case for empty:
|
||||
shapeNew[e] = 0;
|
||||
} else {
|
||||
long realShape = shape::length(inp) / shapeLength;
|
||||
Nd4jLong realShape = shape::length(inp) / shapeLength;
|
||||
shapeNew[e] = realShape;
|
||||
}
|
||||
}else {
|
||||
|
|
|
@ -41,7 +41,7 @@ namespace nd4j {
|
|||
}
|
||||
else if (block.width() > 1) {
|
||||
auto a = INPUT_VARIABLE(1);
|
||||
for (int e = 0; e < a->lengthOf(); e++) {
|
||||
for (Nd4jLong e = 0; e < a->lengthOf(); e++) {
|
||||
int _a = a->e<int>(e);
|
||||
|
||||
if (_a < 0)
|
||||
|
|
|
@ -31,14 +31,14 @@ namespace nd4j {
|
|||
|
||||
if(isStrictlyIncreasing) {
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD_REDUCTION(+:sum)
|
||||
for (int i = 0; i < length - 1; i++) {
|
||||
for (Nd4jLong i = 0; i < length - 1; i++) {
|
||||
auto val0 = input->t<T>(i);
|
||||
auto val1 = input->t<T>(i + 1);
|
||||
sum += val0 >= val1 ? -1 : 0;
|
||||
}
|
||||
} else {
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD_REDUCTION(+:sum)
|
||||
for (int i = 0; i < length - 1; i++) {
|
||||
for (Nd4jLong i = 0; i < length - 1; i++) {
|
||||
auto val0 = input->t<T>(i);
|
||||
auto val1 = input->t<T>(i + 1);
|
||||
sum += val0 > val1 ? -1 : 0;
|
||||
|
|
|
@ -39,7 +39,7 @@ void crossBatched(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray
|
|||
int tads = tadsA->size();
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for (int e = 0; e < tads; e++) {
|
||||
for (Nd4jLong e = 0; e < tads; e++) {
|
||||
auto a_ = tadsA->at(e);
|
||||
auto b_ = tadsB->at(e);
|
||||
auto o_ = tadsO->at(e);
|
||||
|
|
|
@ -43,7 +43,7 @@ static void triuBP_(nd4j::LaunchContext * context, const NDArray& input, const N
|
|||
int dLen = dOdI.lengthOf();
|
||||
|
||||
PRAGMA_OMP_PARALLEL_FOR_IF(dLen > Environment::getInstance()->elementwiseThreshold())
|
||||
for(int i = 0; i < dLen; ++i) {
|
||||
for(Nd4jLong i = 0; i < dLen; ++i) {
|
||||
if(dOdI.t<T>(i) != static_cast<T>(0.f))
|
||||
dOdI.t<T>(i) = static_cast<T>(1.f);
|
||||
}
|
||||
|
|
|
@ -94,7 +94,7 @@ namespace nd4j {
|
|||
//indices->printIndexedBuffer("indices");
|
||||
|
||||
std::vector<int> dims(indices->lengthOf());
|
||||
for (int e = 0; e < indices->lengthOf(); e++) {
|
||||
for (Nd4jLong e = 0; e < indices->lengthOf(); e++) {
|
||||
// lol otherwise we segfault on macOS
|
||||
int f = indices->e<int>(e);
|
||||
dims[e] = f >= 0 ? f : f += x->rankOf();
|
||||
|
|
|
@ -66,17 +66,17 @@ void SpecialMethods<T>::concatCpuGeneric(const std::vector<NDArray*>& inArrs, ND
|
|||
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
||||
for (uint r = 0; r < numOfArrs; r++) {
|
||||
|
||||
const uint arrLen = inArrs[r]->lengthOf();
|
||||
const Nd4jLong arrLen = inArrs[r]->lengthOf();
|
||||
const uint xEws = (arrLen == 1) ? 1 : inArrs[r]->stridesOf()[nonUnityDim[r]];
|
||||
|
||||
T *z = outBuff + zOffset[r];
|
||||
T *x = inArrs[r]->bufferAsT<T>();
|
||||
|
||||
if(outEws == 1 && xEws == 1)
|
||||
for (uint e = 0; e < arrLen; e++)
|
||||
for (Nd4jLong e = 0; e < arrLen; e++)
|
||||
z[e] = x[e];
|
||||
else
|
||||
for (uint e = 0; e < arrLen; e++)
|
||||
for (Nd4jLong e = 0; e < arrLen; e++)
|
||||
z[e * outEws] = x[e * xEws];
|
||||
}
|
||||
return;
|
||||
|
|
|
@ -382,7 +382,7 @@ TEST_F(LegacyOpsTests, Test_IsMax_1) {
|
|||
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), extra, nullptr, nullptr);
|
||||
|
||||
// z.printIndexedBuffer("z");
|
||||
for (int e = 0; e < z.lengthOf(); e++) {
|
||||
for (Nd4jLong e = 0; e < z.lengthOf(); e++) {
|
||||
ASSERT_TRUE(z.e<double>(e) >= 0);
|
||||
}
|
||||
}
|
||||
|
@ -402,7 +402,7 @@ TEST_F(LegacyOpsTests, Test_IsMax_2) {
|
|||
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), extra, nullptr, nullptr);
|
||||
|
||||
// z.printIndexedBuffer("z");
|
||||
for (int e = 0; e < z.lengthOf(); e++) {
|
||||
for (Nd4jLong e = 0; e < z.lengthOf(); e++) {
|
||||
if (e >= z.lengthOf() / 2)
|
||||
ASSERT_TRUE(z.e<bool>(e));
|
||||
else
|
||||
|
|
Loading…
Reference in New Issue