RL4J refac: Added some observation transform classes (#7958)

* Added observation classes and tests

Signed-off-by: unknown <aboulang2002@yahoo.com>

* Now uses DataSetPreProcessors

Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com>

* CompositeDataSetPreProcessor can now stop processing on empty dataset; Some DataSetPreProcessors moving from RL4J to ND4J

Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com>

* Did requested minor changes

Signed-off-by: Alexandre Boulanger <Alexandre.Boulanger@ia.ca>
Signed-off-by: Alexandre Boulanger <aboulang2002@yahoo.com>
master
Alexandre Boulanger 2019-07-19 20:28:20 -04:00 committed by Alex Black
parent 9bb11d5b06
commit ee6aae268f
19 changed files with 1565 additions and 1 deletions

View File

@ -16,6 +16,7 @@
package org.nd4j.linalg.dataset.api.preprocessor; package org.nd4j.linalg.dataset.api.preprocessor;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.dataset.api.DataSet; import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
import org.nd4j.linalg.dataset.api.MultiDataSet; import org.nd4j.linalg.dataset.api.MultiDataSet;
@ -29,19 +30,35 @@ import org.nd4j.linalg.dataset.api.MultiDataSetPreProcessor;
*/ */
public class CompositeDataSetPreProcessor implements DataSetPreProcessor { public class CompositeDataSetPreProcessor implements DataSetPreProcessor {
private final boolean stopOnEmptyDataSet;
private DataSetPreProcessor[] preProcessors; private DataSetPreProcessor[] preProcessors;
/** /**
* @param preProcessors Preprocessors to apply. They will be applied in this order * @param preProcessors Preprocessors to apply. They will be applied in this order
*/ */
public CompositeDataSetPreProcessor(DataSetPreProcessor... preProcessors){ public CompositeDataSetPreProcessor(DataSetPreProcessor... preProcessors) {
this(false, preProcessors);
}
public CompositeDataSetPreProcessor(boolean stopOnEmptyDataSet, DataSetPreProcessor... preProcessors){
this.stopOnEmptyDataSet = stopOnEmptyDataSet;
this.preProcessors = preProcessors; this.preProcessors = preProcessors;
} }
@Override @Override
public void preProcess(DataSet dataSet) { public void preProcess(DataSet dataSet) {
Preconditions.checkNotNull(dataSet, "Encountered null dataSet");
if(stopOnEmptyDataSet && dataSet.isEmpty()) {
return;
}
for(DataSetPreProcessor p : preProcessors){ for(DataSetPreProcessor p : preProcessors){
p.preProcess(dataSet); p.preProcess(dataSet);
if(stopOnEmptyDataSet && dataSet.isEmpty()) {
return;
}
} }
} }
} }

View File

@ -0,0 +1,105 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.dataset.api.preprocessor;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
import org.nd4j.linalg.factory.Nd4j;
/**
* The CropAndResizeDataSetPreProcessor will crop and resize the processed dataset.
* NOTE: The data format must be NHWC
*
* @author Alexandre Boulanger
*/
public class CropAndResizeDataSetPreProcessor implements DataSetPreProcessor {
public enum ResizeMethod {
Bilinear,
NearestNeighbor
}
private final long[] resizedShape;
private final INDArray indices;
private final INDArray resize;
private final INDArray boxes;
private final int method;
/**
*
* @param originalHeight Height of the input datasets
* @param originalWidth Width of the input datasets
* @param cropYStart y coord of the starting point on the input datasets
* @param cropXStart x coord of the starting point on the input datasets
* @param resizedHeight Height of the output dataset
* @param resizedWidth Width of the output dataset
* @param numChannels
* @param resizeMethod
*/
public CropAndResizeDataSetPreProcessor(int originalHeight, int originalWidth, int cropYStart, int cropXStart, int resizedHeight, int resizedWidth, int numChannels, ResizeMethod resizeMethod) {
Preconditions.checkArgument(originalHeight > 0, "originalHeight must be greater than 0, got %s", originalHeight);
Preconditions.checkArgument(originalWidth > 0, "originalWidth must be greater than 0, got %s", originalWidth);
Preconditions.checkArgument(cropYStart >= 0, "cropYStart must be greater or equal to 0, got %s", cropYStart);
Preconditions.checkArgument(cropXStart >= 0, "cropXStart must be greater or equal to 0, got %s", cropXStart);
Preconditions.checkArgument(resizedHeight > 0, "resizedHeight must be greater than 0, got %s", resizedHeight);
Preconditions.checkArgument(resizedWidth > 0, "resizedWidth must be greater than 0, got %s", resizedWidth);
Preconditions.checkArgument(numChannels > 0, "numChannels must be greater than 0, got %s", numChannels);
resizedShape = new long[] { 1, resizedHeight, resizedWidth, numChannels };
boxes = Nd4j.create(new float[] {
(float)cropYStart / (float)originalHeight,
(float)cropXStart / (float)originalWidth,
(float)(cropYStart + resizedHeight) / (float)originalHeight,
(float)(cropXStart + resizedWidth) / (float)originalWidth
}, new long[] { 1, 4 }, DataType.FLOAT);
indices = Nd4j.create(new int[] { 0 }, new long[] { 1, 1 }, DataType.INT);
resize = Nd4j.create(new int[] { resizedHeight, resizedWidth }, new long[] { 1, 2 }, DataType.INT);
method = resizeMethod == ResizeMethod.Bilinear ? 0 : 1;
}
/**
* NOTE: The data format must be NHWC
*/
@Override
public void preProcess(DataSet dataSet) {
Preconditions.checkNotNull(dataSet, "Encountered null dataSet");
if(dataSet.isEmpty()) {
return;
}
INDArray input = dataSet.getFeatures();
INDArray output = Nd4j.create(LongShapeDescriptor.fromShape(resizedShape, input.dataType()), false);
CustomOp op = DynamicCustomOp.builder("crop_and_resize")
.addInputs(input, boxes, indices, resize)
.addIntegerArguments(method)
.addOutputs(output)
.build();
Nd4j.getExecutioner().exec(op);
dataSet.setFeatures(output);
}
}

View File

@ -0,0 +1,87 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.dataset.api.preprocessor;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
/**
* The PermuteDataSetPreProcessor will rearrange the dimensions.
* There are two pre-defined permutation types:
* - from NCHW to NHWC
* - from NHWC to NCHW
*
* Or, pass the new order to the ctor. For example PermuteDataSetPreProcessor(1, 2, 0) will rearrange the middle dimension first, the last one in the middle and the first one last.
*
* @author Alexandre Boulanger
*/
public class PermuteDataSetPreProcessor implements DataSetPreProcessor {
private final PermutationTypes permutationType;
private final int[] rearrange;
public enum PermutationTypes { NCHWtoNHWC, NHWCtoNCHW, Custom }
public PermuteDataSetPreProcessor(PermutationTypes permutationType) {
Preconditions.checkArgument(permutationType != PermutationTypes.Custom, "Use the ctor PermuteDataSetPreProcessor(int... rearrange) for custom permutations.");
this.permutationType = permutationType;
rearrange = null;
}
/**
* @param rearrange The new order. For example PermuteDataSetPreProcessor(1, 2, 0) will rearrange the middle dimension first, the last one in the middle and the first one last.
*/
public PermuteDataSetPreProcessor(int... rearrange) {
this.permutationType = PermutationTypes.Custom;
this.rearrange = rearrange;
}
@Override
public void preProcess(DataSet dataSet) {
Preconditions.checkNotNull(dataSet, "Encountered null dataSet");
if(dataSet.isEmpty()) {
return;
}
INDArray input = dataSet.getFeatures();
INDArray output;
switch (permutationType) {
case NCHWtoNHWC:
output = input.permute(0, 2, 3, 1);
break;
case NHWCtoNCHW:
output = input.permute(0, 3, 1, 2);
break;
case Custom:
output = input.permute(rearrange);
break;
default:
output = input;
break;
}
dataSet.setFeatures(output);
}
}

View File

@ -0,0 +1,70 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.dataset.api.preprocessor;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
import org.nd4j.linalg.factory.Nd4j;
/**
* The RGBtoGrayscaleDataSetPreProcessor will turn a DataSet of a RGB image into a grayscale one.
* NOTE: Expects data format to be NCHW. After processing, the channel dimension is eliminated. (NCHW -> NHW)
*
* @author Alexandre Boulanger
*/
public class RGBtoGrayscaleDataSetPreProcessor implements DataSetPreProcessor {
private static final float RED_RATIO = 0.3f;
private static final float GREEN_RATIO = 0.59f;
private static final float BLUE_RATIO = 0.11f;
@Override
public void preProcess(DataSet dataSet) {
Preconditions.checkNotNull(dataSet, "Encountered null dataSet");
if(dataSet.isEmpty()) {
return;
}
INDArray originalFeatures = dataSet.getFeatures();
long[] originalShape = originalFeatures.shape();
// result shape is NHW
INDArray result = Nd4j.create(originalShape[0], originalShape[2], originalShape[3]);
for(long n = 0, numExamples = originalShape[0]; n < numExamples; ++n) {
// Extract channels
INDArray itemFeatures = originalFeatures.slice(n, 0); // shape is CHW
INDArray R = itemFeatures.slice(0, 0); // shape is HW
INDArray G = itemFeatures.slice(1, 0);
INDArray B = itemFeatures.slice(2, 0);
// Convert
R.muli(RED_RATIO);
G.muli(GREEN_RATIO);
B.muli(BLUE_RATIO);
R.addi(G).addi(B);
// FIXME: int cast
result.putSlice((int)n, R);
}
dataSet.setFeatures(result);
}
}

View File

@ -0,0 +1,102 @@
package org.nd4j.linalg.dataset.api.preprocessor;
import org.junit.Test;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
public class CompositeDataSetPreProcessorTest {
@Test(expected = NullPointerException.class)
public void when_preConditionsIsNull_expect_NullPointerException() {
// Assemble
CompositeDataSetPreProcessor sut = new CompositeDataSetPreProcessor();
// Act
sut.preProcess(null);
}
@Test
public void when_dataSetIsEmpty_expect_emptyDataSet() {
// Assemble
CompositeDataSetPreProcessor sut = new CompositeDataSetPreProcessor();
DataSet ds = new DataSet(null, null);
// Act
sut.preProcess(ds);
// Assert
assertTrue(ds.isEmpty());
}
@Test
public void when_notStoppingOnEmptyDataSet_expect_allPreProcessorsCalled() {
// Assemble
TestDataSetPreProcessor preProcessor1 = new TestDataSetPreProcessor(true);
TestDataSetPreProcessor preProcessor2 = new TestDataSetPreProcessor(true);
CompositeDataSetPreProcessor sut = new CompositeDataSetPreProcessor(preProcessor1, preProcessor2);
DataSet ds = new DataSet(Nd4j.rand(2, 2), null);
// Act
sut.preProcess(ds);
// Assert
assertTrue(preProcessor1.hasBeenCalled);
assertTrue(preProcessor2.hasBeenCalled);
}
@Test
public void when_stoppingOnEmptyDataSetAndFirstPreProcessorClearDS_expect_firstPreProcessorsCalled() {
// Assemble
TestDataSetPreProcessor preProcessor1 = new TestDataSetPreProcessor(true);
TestDataSetPreProcessor preProcessor2 = new TestDataSetPreProcessor(true);
CompositeDataSetPreProcessor sut = new CompositeDataSetPreProcessor(true, preProcessor1, preProcessor2);
DataSet ds = new DataSet(Nd4j.rand(2, 2), null);
// Act
sut.preProcess(ds);
// Assert
assertTrue(preProcessor1.hasBeenCalled);
assertFalse(preProcessor2.hasBeenCalled);
}
@Test
public void when_stoppingOnEmptyDataSet_expect_firstPreProcessorsCalled() {
// Assemble
TestDataSetPreProcessor preProcessor1 = new TestDataSetPreProcessor(false);
TestDataSetPreProcessor preProcessor2 = new TestDataSetPreProcessor(false);
CompositeDataSetPreProcessor sut = new CompositeDataSetPreProcessor(true, preProcessor1, preProcessor2);
DataSet ds = new DataSet(Nd4j.rand(2, 2), null);
// Act
sut.preProcess(ds);
// Assert
assertTrue(preProcessor1.hasBeenCalled);
assertTrue(preProcessor2.hasBeenCalled);
}
public static class TestDataSetPreProcessor implements DataSetPreProcessor {
private final boolean clearDataSet;
public boolean hasBeenCalled;
public TestDataSetPreProcessor(boolean clearDataSet) {
this.clearDataSet = clearDataSet;
}
@Override
public void preProcess(org.nd4j.linalg.dataset.api.DataSet dataSet) {
hasBeenCalled = true;
if(clearDataSet) {
dataSet.setFeatures(null);
}
}
}
}

View File

@ -0,0 +1,131 @@
package org.nd4j.linalg.dataset.api.preprocessor;
import org.junit.Test;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
public class CropAndResizeDataSetPreProcessorTest {
@Test(expected = IllegalArgumentException.class)
public void when_originalHeightIsZero_expect_IllegalArgumentException() {
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(0, 15, 5, 5, 4, 3, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
}
@Test(expected = IllegalArgumentException.class)
public void when_originalWidthIsZero_expect_IllegalArgumentException() {
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(10, 0, 5, 5, 4, 3, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
}
@Test(expected = IllegalArgumentException.class)
public void when_yStartIsNegative_expect_IllegalArgumentException() {
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(10, 15, -1, 5, 4, 3, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
}
@Test(expected = IllegalArgumentException.class)
public void when_xStartIsNegative_expect_IllegalArgumentException() {
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(10, 15, 5, -1, 4, 3, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
}
@Test(expected = IllegalArgumentException.class)
public void when_heightIsNotGreaterThanZero_expect_IllegalArgumentException() {
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(10, 15, 5, 5, 0, 3, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
}
@Test(expected = IllegalArgumentException.class)
public void when_widthIsNotGreaterThanZero_expect_IllegalArgumentException() {
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(10, 15, 5, 5, 4, 0, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
}
@Test(expected = IllegalArgumentException.class)
public void when_numChannelsIsNotGreaterThanZero_expect_IllegalArgumentException() {
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(10, 15, 5, 5, 4, 3, 0, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
}
@Test(expected = NullPointerException.class)
public void when_dataSetIsNull_expect_NullPointerException() {
// Assemble
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(10, 15, 5, 5, 4, 3, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
// Act
sut.preProcess(null);
}
@Test
public void when_dataSetIsEmpty_expect_emptyDataSet() {
// Assemble
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(10, 15, 5, 5, 4, 3, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
DataSet ds = new DataSet(null, null);
// Act
sut.preProcess(ds);
// Assert
assertTrue(ds.isEmpty());
}
@Test
public void when_dataSetIs15wx10h_expect_3wx4hDataSet() {
// Assemble
int numChannels = 3;
int height = 10;
int width = 15;
CropAndResizeDataSetPreProcessor sut = new CropAndResizeDataSetPreProcessor(height, width, 5, 5, 4, 3, 3, CropAndResizeDataSetPreProcessor.ResizeMethod.NearestNeighbor);
INDArray input = Nd4j.create(LongShapeDescriptor.fromShape(new int[] { 1, height, width, numChannels }, DataType.FLOAT), true);
for(int c = 0; c < numChannels; ++c) {
for(int h = 0; h < height; ++h) {
for(int w = 0; w < width; ++w) {
input.putScalar(0, h, w, c, c*100 + h*10 + w);
}
}
}
DataSet ds = new DataSet(input, null);
// Act
sut.preProcess(ds);
// Assert
INDArray results = ds.getFeatures();
long[] shape = results.shape();
assertEquals(1, shape[0]);
assertEquals(4, shape[1]);
assertEquals(3, shape[2]);
assertEquals(3, shape[3]);
// Test a few values
assertEquals(55.0, results.getDouble(0, 0, 0, 0), 0.0);
assertEquals(155.0, results.getDouble(0, 0, 0, 1), 0.0);
assertEquals(255.0, results.getDouble(0, 0, 0, 2), 0.0);
assertEquals(56.0, results.getDouble(0, 0, 1, 0), 0.0);
assertEquals(156.0, results.getDouble(0, 0, 1, 1), 0.0);
assertEquals(256.0, results.getDouble(0, 0, 1, 2), 0.0);
assertEquals(57.0, results.getDouble(0, 0, 2, 0), 0.0);
assertEquals(157.0, results.getDouble(0, 0, 2, 1), 0.0);
assertEquals(257.0, results.getDouble(0, 0, 2, 2), 0.0);
assertEquals(65.0, results.getDouble(0, 1, 0, 0), 0.0);
assertEquals(165.0, results.getDouble(0, 1, 0, 1), 0.0);
assertEquals(265.0, results.getDouble(0, 1, 0, 2), 0.0);
assertEquals(66.0, results.getDouble(0, 1, 1, 0), 0.0);
assertEquals(166.0, results.getDouble(0, 1, 1, 1), 0.0);
assertEquals(266.0, results.getDouble(0, 1, 1, 2), 0.0);
assertEquals(75.0, results.getDouble(0, 2, 0, 0), 0.0);
assertEquals(175.0, results.getDouble(0, 2, 0, 1), 0.0);
assertEquals(275.0, results.getDouble(0, 2, 0, 2), 0.0);
assertEquals(76.0, results.getDouble(0, 2, 1, 0), 0.0);
assertEquals(176.0, results.getDouble(0, 2, 1, 1), 0.0);
assertEquals(276.0, results.getDouble(0, 2, 1, 2), 0.0);
}
}

View File

@ -0,0 +1,124 @@
package org.nd4j.linalg.dataset.api.preprocessor;
import org.nd4j.linalg.dataset.api.preprocessor.PermuteDataSetPreProcessor;
import org.junit.Test;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.*;
public class PermuteDataSetPreProcessorTest {
@Test(expected = NullPointerException.class)
public void when_dataSetIsNull_expect_NullPointerException() {
// Assemble
PermuteDataSetPreProcessor sut = new PermuteDataSetPreProcessor(PermuteDataSetPreProcessor.PermutationTypes.NCHWtoNHWC);
// Act
sut.preProcess(null);
}
@Test
public void when_emptyDatasetInInputdataSetIsNCHW_expect_emptyDataSet() {
// Assemble
PermuteDataSetPreProcessor sut = new PermuteDataSetPreProcessor(PermuteDataSetPreProcessor.PermutationTypes.NCHWtoNHWC);
DataSet ds = new DataSet(null, null);
// Act
sut.preProcess(ds);
// Assert
assertTrue(ds.isEmpty());
}
@Test
public void when_dataSetIsNCHW_expect_dataSetTransformedToNHWC() {
// Assemble
int numChannels = 3;
int height = 5;
int width = 4;
PermuteDataSetPreProcessor sut = new PermuteDataSetPreProcessor(PermuteDataSetPreProcessor.PermutationTypes.NCHWtoNHWC);
INDArray input = Nd4j.create(1, numChannels, height, width);
for(int c = 0; c < numChannels; ++c) {
for(int h = 0; h < height; ++h) {
for(int w = 0; w < width; ++w) {
input.putScalar(0, c, h, w, c*100.0 + h*10.0 + w);
}
}
}
DataSet ds = new DataSet(input, null);
// Act
sut.preProcess(ds);
// Assert
INDArray result = ds.getFeatures();
long[] shape = result.shape();
assertEquals(1, shape[0]);
assertEquals(height, shape[1]);
assertEquals(width, shape[2]);
assertEquals(numChannels, shape[3]);
assertEquals(0.0, result.getDouble(0, 0, 0, 0), 0.0);
assertEquals(1.0, result.getDouble(0, 0, 1, 0), 0.0);
assertEquals(2.0, result.getDouble(0, 0, 2, 0), 0.0);
assertEquals(3.0, result.getDouble(0, 0, 3, 0), 0.0);
assertEquals(110.0, result.getDouble(0, 1, 0, 1), 0.0);
assertEquals(111.0, result.getDouble(0, 1, 1, 1), 0.0);
assertEquals(112.0, result.getDouble(0, 1, 2, 1), 0.0);
assertEquals(113.0, result.getDouble(0, 1, 3, 1), 0.0);
assertEquals(210.0, result.getDouble(0, 1, 0, 2), 0.0);
assertEquals(211.0, result.getDouble(0, 1, 1, 2), 0.0);
assertEquals(212.0, result.getDouble(0, 1, 2, 2), 0.0);
assertEquals(213.0, result.getDouble(0, 1, 3, 2), 0.0);
}
@Test
public void when_dataSetIsNHWC_expect_dataSetTransformedToNCHW() {
// Assemble
int numChannels = 3;
int height = 5;
int width = 4;
PermuteDataSetPreProcessor sut = new PermuteDataSetPreProcessor(PermuteDataSetPreProcessor.PermutationTypes.NHWCtoNCHW);
INDArray input = Nd4j.create(1, height, width, numChannels);
for(int c = 0; c < numChannels; ++c) {
for(int h = 0; h < height; ++h) {
for(int w = 0; w < width; ++w) {
input.putScalar(new int[] { 0, h, w, c }, c*100.0 + h*10.0 + w);
}
}
}
DataSet ds = new DataSet(input, null);
// Act
sut.preProcess(ds);
// Assert
INDArray result = ds.getFeatures();
long[] shape = result.shape();
assertEquals(1, shape[0]);
assertEquals(numChannels, shape[1]);
assertEquals(height, shape[2]);
assertEquals(width, shape[3]);
assertEquals(0.0, result.getDouble(0, 0, 0, 0), 0.0);
assertEquals(1.0, result.getDouble(0, 0, 0, 1), 0.0);
assertEquals(2.0, result.getDouble(0, 0, 0, 2), 0.0);
assertEquals(3.0, result.getDouble(0, 0, 0, 3), 0.0);
assertEquals(110.0, result.getDouble(0, 1, 1, 0), 0.0);
assertEquals(111.0, result.getDouble(0, 1, 1, 1), 0.0);
assertEquals(112.0, result.getDouble(0, 1, 1, 2), 0.0);
assertEquals(113.0, result.getDouble(0, 1, 1, 3), 0.0);
assertEquals(210.0, result.getDouble(0, 2, 1, 0), 0.0);
assertEquals(211.0, result.getDouble(0, 2, 1, 1), 0.0);
assertEquals(212.0, result.getDouble(0, 2, 1, 2), 0.0);
assertEquals(213.0, result.getDouble(0, 2, 1, 3), 0.0);
}
}

View File

@ -0,0 +1,123 @@
package org.nd4j.linalg.dataset.api.preprocessor;
import org.junit.Test;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
public class RGBtoGrayscaleDataSetPreProcessorTest {
@Test(expected = NullPointerException.class)
public void when_dataSetIsNull_expect_NullPointerException() {
// Assemble
RGBtoGrayscaleDataSetPreProcessor sut = new RGBtoGrayscaleDataSetPreProcessor();
// Act
sut.preProcess(null);
}
@Test
public void when_dataSetIsEmpty_expect_EmptyDataSet() {
// Assemble
RGBtoGrayscaleDataSetPreProcessor sut = new RGBtoGrayscaleDataSetPreProcessor();
DataSet ds = new DataSet(null, null);
// Act
sut.preProcess(ds);
// Assert
assertTrue(ds.isEmpty());
}
@Test
public void when_colorsAreConverted_expect_grayScaleResult() {
// Assign
int numChannels = 3;
int height = 1;
int width = 5;
RGBtoGrayscaleDataSetPreProcessor sut = new RGBtoGrayscaleDataSetPreProcessor();
INDArray input = Nd4j.create(2, numChannels, height, width);
// Black, Example 1
input.putScalar(0, 0, 0, 0, 0.0 );
input.putScalar(0, 1, 0, 0, 0.0 );
input.putScalar(0, 2, 0, 0, 0.0 );
// White, Example 1
input.putScalar(0, 0, 0, 1, 255.0 );
input.putScalar(0, 1, 0, 1, 255.0 );
input.putScalar(0, 2, 0, 1, 255.0 );
// Red, Example 1
input.putScalar(0, 0, 0, 2, 255.0 );
input.putScalar(0, 1, 0, 2, 0.0 );
input.putScalar(0, 2, 0, 2, 0.0 );
// Green, Example 1
input.putScalar(0, 0, 0, 3, 0.0 );
input.putScalar(0, 1, 0, 3, 255.0 );
input.putScalar(0, 2, 0, 3, 0.0 );
// Blue, Example 1
input.putScalar(0, 0, 0, 4, 0.0 );
input.putScalar(0, 1, 0, 4, 0.0 );
input.putScalar(0, 2, 0, 4, 255.0 );
// Black, Example 2
input.putScalar(1, 0, 0, 4, 0.0 );
input.putScalar(1, 1, 0, 4, 0.0 );
input.putScalar(1, 2, 0, 4, 0.0 );
// White, Example 2
input.putScalar(1, 0, 0, 3, 255.0 );
input.putScalar(1, 1, 0, 3, 255.0 );
input.putScalar(1, 2, 0, 3, 255.0 );
// Red, Example 2
input.putScalar(1, 0, 0, 2, 255.0 );
input.putScalar(1, 1, 0, 2, 0.0 );
input.putScalar(1, 2, 0, 2, 0.0 );
// Green, Example 2
input.putScalar(1, 0, 0, 1, 0.0 );
input.putScalar(1, 1, 0, 1, 255.0 );
input.putScalar(1, 2, 0, 1, 0.0 );
// Blue, Example 2
input.putScalar(1, 0, 0, 0, 0.0 );
input.putScalar(1, 1, 0, 0, 0.0 );
input.putScalar(1, 2, 0, 0, 255.0 );
DataSet ds = new DataSet(input, null);
// Act
sut.preProcess(ds);
// Assert
INDArray result = ds.getFeatures();
long[] shape = result.shape();
assertEquals(3, shape.length);
assertEquals(2, shape[0]);
assertEquals(1, shape[1]);
assertEquals(5, shape[2]);
assertEquals(0.0, result.getDouble(0, 0, 0), 0.05);
assertEquals(255.0, result.getDouble(0, 0, 1), 0.05);
assertEquals(255.0 * 0.3, result.getDouble(0, 0, 2), 0.05);
assertEquals(255.0 * 0.59, result.getDouble(0, 0, 3), 0.05);
assertEquals(255.0 * 0.11, result.getDouble(0, 0, 4), 0.05);
assertEquals(0.0, result.getDouble(1, 0, 4), 0.05);
assertEquals(255.0, result.getDouble(1, 0, 3), 0.05);
assertEquals(255.0 * 0.3, result.getDouble(1, 0, 2), 0.05);
assertEquals(255.0 * 0.59, result.getDouble(1, 0, 1), 0.05);
assertEquals(255.0 * 0.11, result.getDouble(1, 0, 0), 0.05);
}
}

View File

@ -0,0 +1,130 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.rl4j.observation.preprocessor;
import org.deeplearning4j.rl4j.observation.preprocessor.pooling.ChannelStackPoolContentAssembler;
import org.deeplearning4j.rl4j.observation.preprocessor.pooling.PoolContentAssembler;
import org.deeplearning4j.rl4j.observation.preprocessor.pooling.CircularFifoObservationPool;
import org.deeplearning4j.rl4j.observation.preprocessor.pooling.ObservationPool;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
/**
* The PoolingDataSetPreProcessor will accumulate features from incoming DataSets and will assemble its content
* into a DataSet containing a single example.
*
* There are two special cases:
* 1) preProcess will return without doing anything if the input DataSet is empty
* 2) When the pool has not yet filled, the data from the incoming DataSet is stored in the pool but the DataSet is emptied
* on exit.
* <br>
* The PoolingDataSetPreProcessor requires two sub components: <br>
* 1) The ObservationPool that supervises what and how input observations are kept. (ex.: Circular FIFO, trailing min/max/avg, etc...)
* The default is a Circular FIFO.
* 2) The PoolContentAssembler that will assemble the pool content into a resulting single INDArray. (ex.: stacked along a dimention, squashed into a single observation, etc...)
* The default is stacking along the dimension 0.
*
* @author Alexandre Boulanger
*/
public class PoolingDataSetPreProcessor extends ResettableDataSetPreProcessor {
private final ObservationPool observationPool;
private final PoolContentAssembler poolContentAssembler;
protected PoolingDataSetPreProcessor(PoolingDataSetPreProcessor.Builder builder)
{
observationPool = builder.observationPool;
poolContentAssembler = builder.poolContentAssembler;
}
/**
* Note: preProcess will empty the processed dataset if the pool has not filled. Empty datasets should ignored by the
* Policy/Learning class and other DataSetPreProcessors
*
* @param dataSet
*/
@Override
public void preProcess(DataSet dataSet) {
Preconditions.checkNotNull(dataSet, "Encountered null dataSet");
if(dataSet.isEmpty()) {
return;
}
Preconditions.checkArgument(dataSet.numExamples() == 1, "Pooling datasets conatining more than one example is not supported");
// store a duplicate in the pool
observationPool.add(dataSet.getFeatures().slice(0, 0).dup());
if(!observationPool.isAtFullCapacity()) {
dataSet.setFeatures(null);
return;
}
INDArray result = poolContentAssembler.assemble(observationPool.get());
// return a DataSet containing only 1 example (the result)
long[] resultShape = result.shape();
long[] newShape = new long[resultShape.length + 1];
newShape[0] = 1;
System.arraycopy(resultShape, 0, newShape, 1, resultShape.length);
dataSet.setFeatures(result.reshape(newShape));
}
public static PoolingDataSetPreProcessor.Builder builder() {
return new PoolingDataSetPreProcessor.Builder();
}
@Override
public void reset() {
observationPool.reset();
}
public static class Builder {
private ObservationPool observationPool;
private PoolContentAssembler poolContentAssembler;
/**
* Default is CircularFifoObservationPool
*/
public PoolingDataSetPreProcessor.Builder observablePool(ObservationPool observationPool) {
this.observationPool = observationPool;
return this;
}
/**
* Default is ChannelStackPoolContentAssembler
*/
public PoolingDataSetPreProcessor.Builder poolContentAssembler(PoolContentAssembler poolContentAssembler) {
this.poolContentAssembler = poolContentAssembler;
return this;
}
public PoolingDataSetPreProcessor build() {
if(observationPool == null) {
observationPool = new CircularFifoObservationPool();
}
if(poolContentAssembler == null) {
poolContentAssembler = new ChannelStackPoolContentAssembler();
}
return new PoolingDataSetPreProcessor(this);
}
}
}

View File

@ -0,0 +1,28 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.rl4j.observation.preprocessor;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
/**
* A base class for all DataSetPreProcessor that must be reset between each MDP sessions (games).
*
* @author Alexandre Boulanger
*/
public abstract class ResettableDataSetPreProcessor implements DataSetPreProcessor {
public abstract void reset();
}

View File

@ -0,0 +1,62 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.rl4j.observation.preprocessor;
import lombok.Builder;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.dataset.api.DataSet;
/**
* The SkippingDataSetPreProcessor will either do nothing to the input (when not skipped) or will empty
* the input DataSet when skipping.
*
* @author Alexandre Boulanger
*/
public class SkippingDataSetPreProcessor extends ResettableDataSetPreProcessor {
private final int skipFrame;
private int currentIdx = 0;
/**
* @param skipFrame For example, a skipFrame of 4 will skip 3 out of 4 observations.
*/
@Builder
public SkippingDataSetPreProcessor(int skipFrame) {
Preconditions.checkArgument(skipFrame > 0, "skipFrame must be greater than 0, got %s", skipFrame);
this.skipFrame = skipFrame;
}
@Override
public void preProcess(DataSet dataSet) {
Preconditions.checkNotNull(dataSet, "Encountered null dataSet");
if(dataSet.isEmpty()) {
return;
}
if(currentIdx++ % skipFrame != 0) {
dataSet.setFeatures(null);
dataSet.setLabels(null);
}
}
@Override
public void reset() {
currentIdx = 0;
}
}

View File

@ -0,0 +1,53 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.rl4j.observation.preprocessor.pooling;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
/**
* ChannelStackPoolContentAssembler is used with the PoolingDataSetPreProcessor. This assembler will
* stack along the dimension 0. For example if the pool elements are of shape [ Height, Width ]
* the output will be of shape [ Stacked, Height, Width ]
*
* @author Alexandre Boulanger
*/
public class ChannelStackPoolContentAssembler implements PoolContentAssembler {
/**
* Will return a new INDArray with one more dimension and with poolContent stacked along dimension 0.
*
* @param poolContent Array of INDArray
* @return A new INDArray with 1 more dimension than the input elements
*/
@Override
public INDArray assemble(INDArray[] poolContent)
{
// build the new shape
long[] elementShape = poolContent[0].shape();
long[] newShape = new long[elementShape.length + 1];
newShape[0] = poolContent.length;
System.arraycopy(elementShape, 0, newShape, 1, elementShape.length);
// put pool elements in result
INDArray result = Nd4j.create(newShape);
for(int i = 0; i < poolContent.length; ++i) {
result.putRow(i, poolContent[i]);
}
return result;
}
}

View File

@ -0,0 +1,95 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.rl4j.observation.preprocessor.pooling;
import org.apache.commons.collections4.queue.CircularFifoQueue;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
/**
* CircularFifoObservationPool is used with the PoolingDataSetPreProcessor. This pool is a first-in first-out queue
* with a fixed size that replaces its oldest element if full.
*
* @author Alexandre Boulanger
*/
public class CircularFifoObservationPool implements ObservationPool {
private static final int DEFAULT_POOL_SIZE = 4;
private final CircularFifoQueue<INDArray> queue;
private CircularFifoObservationPool(Builder builder) {
queue = new CircularFifoQueue<>(builder.poolSize);
}
public CircularFifoObservationPool()
{
this(DEFAULT_POOL_SIZE);
}
public CircularFifoObservationPool(int poolSize)
{
Preconditions.checkArgument(poolSize > 0, "The pool size must be at least 1, got %s", poolSize);
queue = new CircularFifoQueue<>(poolSize);
}
/**
* Add an element to the pool, if this addition would make the pool to overflow, the added element replaces the oldest one.
* @param elem
*/
public void add(INDArray elem) {
queue.add(elem);
}
/**
* @return The content of the pool, returned in order from oldest to newest.
*/
public INDArray[] get() {
int size = queue.size();
INDArray[] array = new INDArray[size];
for (int i = 0; i < size; ++i) {
array[i] = queue.get(i).castTo(Nd4j.dataType());
}
return array;
}
public boolean isAtFullCapacity() {
return queue.isAtFullCapacity();
}
@Override
public void reset() {
queue.clear();
}
public static Builder builder() {
return new Builder();
}
public static class Builder {
private int poolSize = DEFAULT_POOL_SIZE;
public Builder poolSize(int poolSize) {
this.poolSize = poolSize;
return this;
}
public CircularFifoObservationPool build() {
return new CircularFifoObservationPool(this);
}
}
}

View File

@ -0,0 +1,32 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.rl4j.observation.preprocessor.pooling;
import org.nd4j.linalg.api.ndarray.INDArray;
/**
* ObservationPool is used with the PoolingDataSetPreProcessor. Used to supervise how data from the
* PoolingDataSetPreProcessor is stored.
*
* @author Alexandre Boulanger
*/
public interface ObservationPool {
void add(INDArray observation);
INDArray[] get();
boolean isAtFullCapacity();
void reset();
}

View File

@ -0,0 +1,30 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.rl4j.observation.preprocessor.pooling;
import org.nd4j.linalg.api.ndarray.INDArray;
/**
* A PoolContentAssembler is used with the PoolingDataSetPreProcessor. This interface defines how the array of INDArray
* returned by the ObservationPool is packaged into the single INDArray that will be set
* in the DataSet of PoolingDataSetPreProcessor.preProcess
*
* @author Alexandre Boulanger
*/
public interface PoolContentAssembler {
INDArray assemble(INDArray[] poolContent);
}

View File

@ -0,0 +1,164 @@
package org.deeplearning4j.rl4j.observation.preprocessor;
import org.deeplearning4j.rl4j.observation.preprocessor.pooling.ObservationPool;
import org.deeplearning4j.rl4j.observation.preprocessor.pooling.PoolContentAssembler;
import org.junit.Assert;
import org.junit.Test;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import static junit.framework.TestCase.assertTrue;
import static org.junit.Assert.assertEquals;
public class PoolingDataSetPreProcessorTest {
@Test(expected = NullPointerException.class)
public void when_dataSetIsNull_expect_NullPointerException() {
// Assemble
PoolingDataSetPreProcessor sut = PoolingDataSetPreProcessor.builder().build();
// Act
sut.preProcess(null);
}
@Test(expected = IllegalArgumentException.class)
public void when_dataSetHasMoreThanOneExample_expect_IllegalArgumentException() {
// Assemble
PoolingDataSetPreProcessor sut = PoolingDataSetPreProcessor.builder().build();
// Act
sut.preProcess(new DataSet(Nd4j.rand(new long[] { 2, 2, 2 }), null));
}
@Test
public void when_dataSetIsEmpty_expect_EmptyDataSet() {
// Assemble
PoolingDataSetPreProcessor sut = PoolingDataSetPreProcessor.builder().build();
DataSet ds = new DataSet(null, null);
// Act
sut.preProcess(ds);
// Assert
Assert.assertTrue(ds.isEmpty());
}
@Test
public void when_builderHasNoPoolOrAssembler_expect_defaultPoolBehavior() {
// Arrange
PoolingDataSetPreProcessor sut = PoolingDataSetPreProcessor.builder().build();
DataSet[] observations = new DataSet[5];
INDArray[] inputs = new INDArray[5];
// Act
for(int i = 0; i < 5; ++i) {
inputs[i] = Nd4j.rand(new long[] { 1, 2, 2 });
DataSet input = new DataSet(inputs[i], null);
sut.preProcess(input);
observations[i] = input;
}
// Assert
assertTrue(observations[0].isEmpty());
assertTrue(observations[1].isEmpty());
assertTrue(observations[2].isEmpty());
for(int i = 0; i < 4; ++i) {
assertEquals(inputs[i].getDouble(new int[] { 0, 0, 0 }), observations[3].getFeatures().getDouble(new int[] { 0, i, 0, 0 }), 0.0001);
assertEquals(inputs[i].getDouble(new int[] { 0, 0, 1 }), observations[3].getFeatures().getDouble(new int[] { 0, i, 0, 1 }), 0.0001);
assertEquals(inputs[i].getDouble(new int[] { 0, 1, 0 }), observations[3].getFeatures().getDouble(new int[] { 0, i, 1, 0 }), 0.0001);
assertEquals(inputs[i].getDouble(new int[] { 0, 1, 1 }), observations[3].getFeatures().getDouble(new int[] { 0, i, 1, 1 }), 0.0001);
}
for(int i = 0; i < 4; ++i) {
assertEquals(inputs[i+1].getDouble(new int[] { 0, 0, 0 }), observations[4].getFeatures().getDouble(new int[] { 0, i, 0, 0 }), 0.0001);
assertEquals(inputs[i+1].getDouble(new int[] { 0, 0, 1 }), observations[4].getFeatures().getDouble(new int[] { 0, i, 0, 1 }), 0.0001);
assertEquals(inputs[i+1].getDouble(new int[] { 0, 1, 0 }), observations[4].getFeatures().getDouble(new int[] { 0, i, 1, 0 }), 0.0001);
assertEquals(inputs[i+1].getDouble(new int[] { 0, 1, 1 }), observations[4].getFeatures().getDouble(new int[] { 0, i, 1, 1 }), 0.0001);
}
}
@Test
public void when_builderHasPoolAndAssembler_expect_paramPoolAndAssemblerAreUsed() {
// Arrange
INDArray input = Nd4j.rand(1, 1);
TestObservationPool pool = new TestObservationPool();
TestPoolContentAssembler assembler = new TestPoolContentAssembler();
PoolingDataSetPreProcessor sut = PoolingDataSetPreProcessor.builder()
.observablePool(pool)
.poolContentAssembler(assembler)
.build();
// Act
sut.preProcess(new DataSet(input, null));
// Assert
assertTrue(pool.isAtFullCapacityCalled);
assertTrue(pool.isGetCalled);
assertEquals(input.getDouble(0), pool.observation.getDouble(0), 0.0);
assertTrue(assembler.assembleIsCalled);
}
@Test
public void when_pastInputChanges_expect_outputNotChanged() {
// Arrange
INDArray input = Nd4j.zeros(1, 1);
TestObservationPool pool = new TestObservationPool();
TestPoolContentAssembler assembler = new TestPoolContentAssembler();
PoolingDataSetPreProcessor sut = PoolingDataSetPreProcessor.builder()
.observablePool(pool)
.poolContentAssembler(assembler)
.build();
// Act
sut.preProcess(new DataSet(input, null));
input.putScalar(0, 0, 1.0);
// Assert
assertEquals(0.0, pool.observation.getDouble(0), 0.0);
}
private static class TestObservationPool implements ObservationPool {
public INDArray observation;
public boolean isGetCalled;
public boolean isAtFullCapacityCalled;
private boolean isResetCalled;
@Override
public void add(INDArray observation) {
this.observation = observation;
}
@Override
public INDArray[] get() {
isGetCalled = true;
return new INDArray[0];
}
@Override
public boolean isAtFullCapacity() {
isAtFullCapacityCalled = true;
return true;
}
@Override
public void reset() {
isResetCalled = true;
}
}
private static class TestPoolContentAssembler implements PoolContentAssembler {
public boolean assembleIsCalled;
@Override
public INDArray assemble(INDArray[] poolContent) {
assembleIsCalled = true;
return Nd4j.create(1, 1);
}
}
}

View File

@ -0,0 +1,70 @@
package org.deeplearning4j.rl4j.observation.preprocessor;
import org.junit.Test;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
public class SkippingDataSetPreProcessorTest {
@Test(expected = IllegalArgumentException.class)
public void when_ctorSkipFrameIsZero_expect_IllegalArgumentException() {
SkippingDataSetPreProcessor sut = new SkippingDataSetPreProcessor(0);
}
@Test(expected = IllegalArgumentException.class)
public void when_builderSkipFrameIsZero_expect_IllegalArgumentException() {
SkippingDataSetPreProcessor sut = SkippingDataSetPreProcessor.builder()
.skipFrame(0)
.build();
}
@Test
public void when_skipFrameIs3_expect_Skip2OutOf3() {
// Arrange
SkippingDataSetPreProcessor sut = SkippingDataSetPreProcessor.builder()
.skipFrame(3)
.build();
DataSet[] results = new DataSet[4];
// Act
for(int i = 0; i < 4; ++i) {
results[i] = new DataSet(Nd4j.create(new double[] { 123.0 }), null);
sut.preProcess(results[i]);
}
// Assert
assertFalse(results[0].isEmpty());
assertTrue(results[1].isEmpty());
assertTrue(results[2].isEmpty());
assertFalse(results[3].isEmpty());
}
@Test
public void when_resetIsCalled_expect_skippingIsReset() {
// Arrange
SkippingDataSetPreProcessor sut = SkippingDataSetPreProcessor.builder()
.skipFrame(3)
.build();
DataSet[] results = new DataSet[4];
// Act
results[0] = new DataSet(Nd4j.create(new double[] { 123.0 }), null);
results[1] = new DataSet(Nd4j.create(new double[] { 123.0 }), null);
results[2] = new DataSet(Nd4j.create(new double[] { 123.0 }), null);
results[3] = new DataSet(Nd4j.create(new double[] { 123.0 }), null);
sut.preProcess(results[0]);
sut.preProcess(results[1]);
sut.reset();
sut.preProcess(results[2]);
sut.preProcess(results[3]);
// Assert
assertFalse(results[0].isEmpty());
assertTrue(results[1].isEmpty());
assertFalse(results[2].isEmpty());
assertTrue(results[3].isEmpty());
}
}

View File

@ -0,0 +1,41 @@
package org.deeplearning4j.rl4j.observation.preprocessor.pooling;
import org.junit.Test;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.assertEquals;
public class ChannelStackPoolContentAssemblerTest {
@Test
public void when_assemble_expect_poolContentStackedOnChannel() {
// Assemble
ChannelStackPoolContentAssembler sut = new ChannelStackPoolContentAssembler();
INDArray[] poolContent = new INDArray[] {
Nd4j.rand(2, 2),
Nd4j.rand(2, 2),
};
// Act
INDArray result = sut.assemble(poolContent);
// Assert
assertEquals(3, result.shape().length);
assertEquals(2, result.shape()[0]);
assertEquals(2, result.shape()[1]);
assertEquals(2, result.shape()[2]);
assertEquals(poolContent[0].getDouble(0, 0), result.getDouble(0, 0, 0), 0.0001);
assertEquals(poolContent[0].getDouble(0, 1), result.getDouble(0, 0, 1), 0.0001);
assertEquals(poolContent[0].getDouble(1, 0), result.getDouble(0, 1, 0), 0.0001);
assertEquals(poolContent[0].getDouble(1, 1), result.getDouble(0, 1, 1), 0.0001);
assertEquals(poolContent[1].getDouble(0, 0), result.getDouble(1, 0, 0), 0.0001);
assertEquals(poolContent[1].getDouble(0, 1), result.getDouble(1, 0, 1), 0.0001);
assertEquals(poolContent[1].getDouble(1, 0), result.getDouble(1, 1, 0), 0.0001);
assertEquals(poolContent[1].getDouble(1, 1), result.getDouble(1, 1, 1), 0.0001);
}
}

View File

@ -0,0 +1,100 @@
package org.deeplearning4j.rl4j.observation.preprocessor.pooling;
import org.junit.Test;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
public class CircularFifoObservationPoolTest {
@Test(expected = IllegalArgumentException.class)
public void when_poolSizeZeroOrLess_expect_IllegalArgumentException() {
CircularFifoObservationPool sut = new CircularFifoObservationPool(0);
}
@Test
public void when_poolIsEmpty_expect_NotReady() {
// Assemble
CircularFifoObservationPool sut = new CircularFifoObservationPool();
// Act
boolean isReady = sut.isAtFullCapacity();
// Assert
assertFalse(isReady);
}
@Test
public void when_notEnoughElementsInPool_expect_notReady() {
// Assemble
CircularFifoObservationPool sut = new CircularFifoObservationPool();
sut.add(Nd4j.create(new double[] { 123.0 }));
// Act
boolean isReady = sut.isAtFullCapacity();
// Assert
assertFalse(isReady);
}
@Test
public void when_enoughElementsInPool_expect_ready() {
// Assemble
CircularFifoObservationPool sut = CircularFifoObservationPool.builder()
.poolSize(2)
.build();
sut.add(Nd4j.createFromArray(123.0));
sut.add(Nd4j.createFromArray(123.0));
// Act
boolean isReady = sut.isAtFullCapacity();
// Assert
assertTrue(isReady);
}
@Test
public void when_addMoreThanSize_expect_getReturnOnlyLastElements() {
// Assemble
CircularFifoObservationPool sut = CircularFifoObservationPool.builder().build();
sut.add(Nd4j.createFromArray(0.0));
sut.add(Nd4j.createFromArray(1.0));
sut.add(Nd4j.createFromArray(2.0));
sut.add(Nd4j.createFromArray(3.0));
sut.add(Nd4j.createFromArray(4.0));
sut.add(Nd4j.createFromArray(5.0));
sut.add(Nd4j.createFromArray(6.0));
// Act
INDArray[] result = sut.get();
// Assert
assertEquals(3.0, result[0].getDouble(0), 0.0);
assertEquals(4.0, result[1].getDouble(0), 0.0);
assertEquals(5.0, result[2].getDouble(0), 0.0);
assertEquals(6.0, result[3].getDouble(0), 0.0);
}
@Test
public void when_resetIsCalled_expect_poolContentFlushed() {
// Assemble
CircularFifoObservationPool sut = CircularFifoObservationPool.builder().build();
sut.add(Nd4j.createFromArray(0.0));
sut.add(Nd4j.createFromArray(1.0));
sut.add(Nd4j.createFromArray(2.0));
sut.add(Nd4j.createFromArray(3.0));
sut.add(Nd4j.createFromArray(4.0));
sut.add(Nd4j.createFromArray(5.0));
sut.add(Nd4j.createFromArray(6.0));
sut.reset();
// Act
INDArray[] result = sut.get();
// Assert
assertEquals(0, result.length);
}
}