DL4J/DataVec: Fix Yolo2OutputLayer and ObjectDetectionRecordReader support for NHWC data format (#483)

* Fix Yolo2OutputLayer for NHWC data format

Signed-off-by: Alex Black <blacka101@gmail.com>

* ObjectDetectionRecordReader NHWC support

Signed-off-by: Alex Black <blacka101@gmail.com>
master
Alex Black 2020-06-05 11:49:02 +10:00 committed by GitHub
parent 45ebd4899c
commit ee3e059b12
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 260 additions and 158 deletions

View File

@ -49,7 +49,7 @@ import static org.nd4j.linalg.indexing.NDArrayIndex.point;
/** /**
* An image record reader for object detection. * An image record reader for object detection.
* <p> * <p>
* Format of returned values: 4d array, with dimensions [minibatch, 4+C, h, w] * Format of returned values: 4d array, with dimensions [minibatch, 4+C, h, w] (nchw) or [minibatch, h, w, 4+C] (nhwc)
* Where the image is quantized into h x w grid locations. * Where the image is quantized into h x w grid locations.
* <p> * <p>
* Note that this matches the format required for Deeplearning4j's Yolo2OutputLayer * Note that this matches the format required for Deeplearning4j's Yolo2OutputLayer
@ -61,26 +61,48 @@ public class ObjectDetectionRecordReader extends BaseImageRecordReader {
private final int gridW; private final int gridW;
private final int gridH; private final int gridH;
private final ImageObjectLabelProvider labelProvider; private final ImageObjectLabelProvider labelProvider;
private final boolean nchw;
protected Image currentImage; protected Image currentImage;
/** /**
* As per {@link #ObjectDetectionRecordReader(int, int, int, int, int, boolean, ImageObjectLabelProvider)} but hardcoded
* to NCHW format
*/
public ObjectDetectionRecordReader(int height, int width, int channels, int gridH, int gridW, ImageObjectLabelProvider labelProvider) {
this(height, width, channels, gridH, gridW, true, labelProvider);
}
/**
* Create ObjectDetectionRecordReader with
* *
* @param height Height of the output images * @param height Height of the output images
* @param width Width of the output images * @param width Width of the output images
* @param channels Number of channels for the output images * @param channels Number of channels for the output images
* @param gridH Grid/quantization size (along height dimension) - Y axis * @param gridH Grid/quantization size (along height dimension) - Y axis
* @param gridW Grid/quantization size (along height dimension) - X axis * @param gridW Grid/quantization size (along height dimension) - X axis
* @param nchw If true: return NCHW format labels with array shape [minibatch, 4+C, h, w]; if false, return
* NHWC format labels with array shape [minibatch, h, w, 4+C]
* @param labelProvider ImageObjectLabelProvider - used to look up which objects are in each image * @param labelProvider ImageObjectLabelProvider - used to look up which objects are in each image
*/ */
public ObjectDetectionRecordReader(int height, int width, int channels, int gridH, int gridW, ImageObjectLabelProvider labelProvider) { public ObjectDetectionRecordReader(int height, int width, int channels, int gridH, int gridW, boolean nchw, ImageObjectLabelProvider labelProvider) {
super(height, width, channels, null, null); super(height, width, channels, null, null);
this.gridW = gridW; this.gridW = gridW;
this.gridH = gridH; this.gridH = gridH;
this.nchw = nchw;
this.labelProvider = labelProvider; this.labelProvider = labelProvider;
this.appendLabel = labelProvider != null; this.appendLabel = labelProvider != null;
} }
/**
* As per {@link #ObjectDetectionRecordReader(int, int, int, int, int, boolean, ImageObjectLabelProvider, ImageTransform)}
* but hardcoded to NCHW format
*/
public ObjectDetectionRecordReader(int height, int width, int channels, int gridH, int gridW,
ImageObjectLabelProvider labelProvider, ImageTransform imageTransform) {
this(height, width, channels, gridH, gridW, true, labelProvider, imageTransform);
}
/** /**
* When imageTransform != null, object is removed if new center is outside of transformed image bounds. * When imageTransform != null, object is removed if new center is outside of transformed image bounds.
* *
@ -90,13 +112,16 @@ public class ObjectDetectionRecordReader extends BaseImageRecordReader {
* @param gridH Grid/quantization size (along height dimension) - Y axis * @param gridH Grid/quantization size (along height dimension) - Y axis
* @param gridW Grid/quantization size (along height dimension) - X axis * @param gridW Grid/quantization size (along height dimension) - X axis
* @param labelProvider ImageObjectLabelProvider - used to look up which objects are in each image * @param labelProvider ImageObjectLabelProvider - used to look up which objects are in each image
* @param nchw If true: return NCHW format labels with array shape [minibatch, 4+C, h, w]; if false, return
* NHWC format labels with array shape [minibatch, h, w, 4+C]
* @param imageTransform ImageTransform - used to transform image and coordinates * @param imageTransform ImageTransform - used to transform image and coordinates
*/ */
public ObjectDetectionRecordReader(int height, int width, int channels, int gridH, int gridW, public ObjectDetectionRecordReader(int height, int width, int channels, int gridH, int gridW, boolean nchw,
ImageObjectLabelProvider labelProvider, ImageTransform imageTransform) { ImageObjectLabelProvider labelProvider, ImageTransform imageTransform) {
super(height, width, channels, null, null); super(height, width, channels, null, null);
this.gridW = gridW; this.gridW = gridW;
this.gridH = gridH; this.gridH = gridH;
this.nchw = nchw;
this.labelProvider = labelProvider; this.labelProvider = labelProvider;
this.appendLabel = labelProvider != null; this.appendLabel = labelProvider != null;
this.imageTransform = imageTransform; this.imageTransform = imageTransform;
@ -182,6 +207,10 @@ public class ObjectDetectionRecordReader extends BaseImageRecordReader {
exampleNum++; exampleNum++;
} }
if(!nchw) {
outImg = outImg.permute(0, 2, 3, 1); //NCHW to NHWC
outLabel = outLabel.permute(0, 2, 3, 1);
}
return new NDArrayRecordBatch(Arrays.asList(outImg, outLabel)); return new NDArrayRecordBatch(Arrays.asList(outImg, outLabel));
} }
@ -256,6 +285,8 @@ public class ObjectDetectionRecordReader extends BaseImageRecordReader {
imageLoader = new NativeImageLoader(height, width, channels, imageTransform); imageLoader = new NativeImageLoader(height, width, channels, imageTransform);
} }
Image image = this.imageLoader.asImageMatrix(dataInputStream); Image image = this.imageLoader.asImageMatrix(dataInputStream);
if(!nchw)
image.setImage(image.getImage().permute(0,2,3,1));
Nd4j.getAffinityManager().ensureLocation(image.getImage(), AffinityManager.Location.DEVICE); Nd4j.getAffinityManager().ensureLocation(image.getImage(), AffinityManager.Location.DEVICE);
List<Writable> ret = RecordConverter.toRecord(image.getImage()); List<Writable> ret = RecordConverter.toRecord(image.getImage());
@ -264,6 +295,8 @@ public class ObjectDetectionRecordReader extends BaseImageRecordReader {
int nClasses = labels.size(); int nClasses = labels.size();
INDArray outLabel = Nd4j.create(1, 4 + nClasses, gridH, gridW); INDArray outLabel = Nd4j.create(1, 4 + nClasses, gridH, gridW);
label(image, imageObjectsForPath, outLabel, 0); label(image, imageObjectsForPath, outLabel, 0);
if(!nchw)
outLabel = outLabel.permute(0,2,3,1); //NCHW to NHWC
ret.add(new NDArrayWritable(outLabel)); ret.add(new NDArrayWritable(outLabel));
} }
return ret; return ret;

View File

@ -56,6 +56,7 @@ public class TestObjectDetectionRecordReader {
@Test @Test
public void test() throws Exception { public void test() throws Exception {
for(boolean nchw : new boolean[]{true, false}) {
ImageObjectLabelProvider lp = new TestImageObjectDetectionLabelProvider(); ImageObjectLabelProvider lp = new TestImageObjectDetectionLabelProvider();
File f = testDir.newFolder(); File f = testDir.newFolder();
@ -73,10 +74,10 @@ public class TestObjectDetectionRecordReader {
URI[] u = new FileSplit(new File(path)).locations(); URI[] u = new FileSplit(new File(path)).locations();
Arrays.sort(u); Arrays.sort(u);
RecordReader rr = new ObjectDetectionRecordReader(h, w, c, gH, gW, lp); RecordReader rr = new ObjectDetectionRecordReader(h, w, c, gH, gW, nchw, lp);
rr.initialize(new CollectionInputSplit(u)); rr.initialize(new CollectionInputSplit(u));
RecordReader imgRR = new ImageRecordReader(h, w, c); RecordReader imgRR = new ImageRecordReader(h, w, c, nchw);
imgRR.initialize(new CollectionInputSplit(u)); imgRR.initialize(new CollectionInputSplit(u));
List<String> labels = rr.getLabels(); List<String> labels = rr.getLabels();
@ -135,7 +136,15 @@ public class TestObjectDetectionRecordReader {
} }
INDArray lArr = ((NDArrayWritable) next.get(1)).get(); INDArray lArr = ((NDArrayWritable) next.get(1)).get();
if(nchw) {
assertArrayEquals(new long[]{1, 4 + 2, gH, gW}, lArr.shape()); assertArrayEquals(new long[]{1, 4 + 2, gH, gW}, lArr.shape());
} else {
assertArrayEquals(new long[]{1, gH, gW, 4 + 2}, lArr.shape());
}
if(!nchw)
expLabels = expLabels.permute(0,2,3,1); //NCHW to NHWC
assertEquals(expLabels, lArr); assertEquals(expLabels, lArr);
} }
@ -164,7 +173,7 @@ public class TestObjectDetectionRecordReader {
int[] nonzeroCount = {5, 10}; int[] nonzeroCount = {5, 10};
ImageTransform transform = new ResizeImageTransform(37, 42); ImageTransform transform = new ResizeImageTransform(37, 42);
RecordReader rrTransform = new ObjectDetectionRecordReader(42, 37, c, gH, gW, lp, transform); RecordReader rrTransform = new ObjectDetectionRecordReader(42, 37, c, gH, gW, nchw, lp, transform);
rrTransform.initialize(new CollectionInputSplit(u)); rrTransform.initialize(new CollectionInputSplit(u));
i = 0; i = 0;
while (rrTransform.hasNext()) { while (rrTransform.hasNext()) {
@ -177,7 +186,7 @@ public class TestObjectDetectionRecordReader {
} }
ImageTransform transform2 = new ResizeImageTransform(1024, 2048); ImageTransform transform2 = new ResizeImageTransform(1024, 2048);
RecordReader rrTransform2 = new ObjectDetectionRecordReader(2048, 1024, c, gH, gW, lp, transform2); RecordReader rrTransform2 = new ObjectDetectionRecordReader(2048, 1024, c, gH, gW, nchw, lp, transform2);
rrTransform2.initialize(new CollectionInputSplit(u)); rrTransform2.initialize(new CollectionInputSplit(u));
i = 0; i = 0;
while (rrTransform2.hasNext()) { while (rrTransform2.hasNext()) {
@ -194,7 +203,7 @@ public class TestObjectDetectionRecordReader {
new ResizeImageTransform(2048, 4096), new ResizeImageTransform(2048, 4096),
new FlipImageTransform(-1) new FlipImageTransform(-1)
); );
RecordReader rrTransform3 = new ObjectDetectionRecordReader(2048, 1024, c, gH, gW, lp, transform3); RecordReader rrTransform3 = new ObjectDetectionRecordReader(2048, 1024, c, gH, gW, nchw, lp, transform3);
rrTransform3.initialize(new CollectionInputSplit(u)); rrTransform3.initialize(new CollectionInputSplit(u));
i = 0; i = 0;
while (rrTransform3.hasNext()) { while (rrTransform3.hasNext()) {
@ -206,7 +215,7 @@ public class TestObjectDetectionRecordReader {
//Test that doing a downscale with the native image loader directly instead of a transform does not cause an exception: //Test that doing a downscale with the native image loader directly instead of a transform does not cause an exception:
ImageTransform transform4 = new FlipImageTransform(-1); ImageTransform transform4 = new FlipImageTransform(-1);
RecordReader rrTransform4 = new ObjectDetectionRecordReader(128, 128, c, gH, gW, lp, transform4); RecordReader rrTransform4 = new ObjectDetectionRecordReader(128, 128, c, gH, gW, nchw, lp, transform4);
rrTransform4.initialize(new CollectionInputSplit(u)); rrTransform4.initialize(new CollectionInputSplit(u));
i = 0; i = 0;
while (rrTransform4.hasNext()) { while (rrTransform4.hasNext()) {
@ -219,6 +228,8 @@ public class TestObjectDetectionRecordReader {
BooleanIndexing.replaceWhere(labelArray, 1, Conditions.notEquals(0)); BooleanIndexing.replaceWhere(labelArray, 1, Conditions.notEquals(0));
assertEquals(nonzeroCount[i++], labelArray.sum().getInt(0)); assertEquals(nonzeroCount[i++], labelArray.sum().getInt(0));
} }
}
} }
//2 images: 000012.jpg and 000019.jpg //2 images: 000012.jpg and 000019.jpg

View File

@ -24,9 +24,7 @@ import org.datavec.image.recordreader.objdetect.impl.VocLabelProvider;
import org.deeplearning4j.BaseDL4JTest; import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.TestUtils; import org.deeplearning4j.TestUtils;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator; import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.deeplearning4j.nn.conf.ConvolutionMode; import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.distribution.GaussianDistribution; import org.deeplearning4j.nn.conf.distribution.GaussianDistribution;
import org.deeplearning4j.nn.conf.inputs.InputType; import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
@ -36,6 +34,8 @@ import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.junit.Rule; import org.junit.Rule;
import org.junit.Test; import org.junit.Test;
import org.junit.rules.TemporaryFolder; import org.junit.rules.TemporaryFolder;
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;
import org.nd4j.linalg.activations.Activation; import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.buffer.DataType; import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray; import org.nd4j.linalg.api.ndarray.INDArray;
@ -50,17 +50,28 @@ import java.io.File;
import java.io.FileOutputStream; import java.io.FileOutputStream;
import java.io.InputStream; import java.io.InputStream;
import static org.junit.Assert.assertArrayEquals;
import static org.junit.Assert.assertTrue; import static org.junit.Assert.assertTrue;
/** /**
* @author Alex Black * @author Alex Black
*/ */
@RunWith(Parameterized.class)
public class YoloGradientCheckTests extends BaseDL4JTest { public class YoloGradientCheckTests extends BaseDL4JTest {
static { static {
Nd4j.setDataType(DataType.DOUBLE); Nd4j.setDataType(DataType.DOUBLE);
} }
private CNN2DFormat format;
public YoloGradientCheckTests(CNN2DFormat format){
this.format = format;
}
@Parameterized.Parameters(name = "{0}")
public static Object[] params(){
return CNN2DFormat.values();
}
@Rule @Rule
public TemporaryFolder testDir = new TemporaryFolder(); public TemporaryFolder testDir = new TemporaryFolder();
@ -97,8 +108,14 @@ public class YoloGradientCheckTests extends BaseDL4JTest {
Nd4j.getRandom().setSeed(12345); Nd4j.getRandom().setSeed(12345);
INDArray input = Nd4j.rand(new int[]{mb, depthIn, h, w}); INDArray input, labels;
INDArray labels = yoloLabels(mb, c, h, w); if(format == CNN2DFormat.NCHW){
input = Nd4j.rand(DataType.DOUBLE, mb, depthIn, h, w);
labels = yoloLabels(mb, c, h, w);
} else {
input = Nd4j.rand(DataType.DOUBLE, mb, h, w, depthIn);
labels = yoloLabels(mb, c, h, w).permute(0,2,3,1);
}
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345) MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345)
.dataType(DataType.DOUBLE) .dataType(DataType.DOUBLE)
@ -112,6 +129,7 @@ public class YoloGradientCheckTests extends BaseDL4JTest {
.layer(new Yolo2OutputLayer.Builder() .layer(new Yolo2OutputLayer.Builder()
.boundingBoxPriors(bbPrior) .boundingBoxPriors(bbPrior)
.build()) .build())
.setInputType(InputType.convolutional(h, w, depthIn, format))
.build(); .build();
MultiLayerNetwork net = new MultiLayerNetwork(conf); MultiLayerNetwork net = new MultiLayerNetwork(conf);
@ -120,7 +138,18 @@ public class YoloGradientCheckTests extends BaseDL4JTest {
String msg = "testYoloOutputLayer() - minibatch = " + mb + ", w=" + w + ", h=" + h + ", l1=" + l1[i] + ", l2=" + l2[i]; String msg = "testYoloOutputLayer() - minibatch = " + mb + ", w=" + w + ", h=" + h + ", l1=" + l1[i] + ", l2=" + l2[i];
System.out.println(msg); System.out.println(msg);
INDArray out = net.output(input);
if(format == CNN2DFormat.NCHW){
assertArrayEquals(new long[]{mb, yoloDepth, h, w}, out.shape());
} else {
assertArrayEquals(new long[]{mb, h, w, yoloDepth}, out.shape());
}
net.fit(input, labels);
boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input) boolean gradOK = GradientCheckUtil.checkGradients(new GradientCheckUtil.MLNConfig().net(net).input(input)
.minAbsoluteError(1e-6)
.labels(labels).subset(true).maxPerParam(100)); .labels(labels).subset(true).maxPerParam(100));
assertTrue(msg, gradOK); assertTrue(msg, gradOK);

View File

@ -21,6 +21,7 @@ import lombok.Getter;
import lombok.Setter; import lombok.Setter;
import org.deeplearning4j.nn.api.Layer; import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer; import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.GradientNormalization; import org.deeplearning4j.nn.conf.GradientNormalization;
import org.deeplearning4j.nn.conf.InputPreProcessor; import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration; import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
@ -80,6 +81,8 @@ public class Yolo2OutputLayer extends org.deeplearning4j.nn.conf.layers.Layer {
@JsonDeserialize(using = BoundingBoxesDeserializer.class) @JsonDeserialize(using = BoundingBoxesDeserializer.class)
private INDArray boundingBoxes; private INDArray boundingBoxes;
private CNN2DFormat format = CNN2DFormat.NCHW; //Default for serialization of old formats
private Yolo2OutputLayer() { private Yolo2OutputLayer() {
//No-arg constructor for Jackson JSON //No-arg constructor for Jackson JSON
} }
@ -119,7 +122,8 @@ public class Yolo2OutputLayer extends org.deeplearning4j.nn.conf.layers.Layer {
@Override @Override
public void setNIn(InputType inputType, boolean override) { public void setNIn(InputType inputType, boolean override) {
//No op InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional) inputType;
this.format = c.getFormat();
} }
@Override @Override

View File

@ -19,6 +19,7 @@ package org.deeplearning4j.nn.layers.objdetect;
import lombok.*; import lombok.*;
import org.deeplearning4j.nn.api.Layer; import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.layers.IOutputLayer; import org.deeplearning4j.nn.api.layers.IOutputLayer;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration; import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient; import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient; import org.deeplearning4j.nn.gradient.Gradient;
@ -110,6 +111,12 @@ public class Yolo2OutputLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
Preconditions.checkState(labels.rank() == 4, "Expected rank 4 labels array with shape [minibatch, 4+numClasses, h, w]" + Preconditions.checkState(labels.rank() == 4, "Expected rank 4 labels array with shape [minibatch, 4+numClasses, h, w]" +
" but got rank %s labels array with shape %s", labels.rank(), labels.shape()); " but got rank %s labels array with shape %s", labels.rank(), labels.shape());
boolean nchw = layerConf().getFormat() == CNN2DFormat.NCHW;
INDArray input = nchw ? this.input : this.input.permute(0,3,1,2); //NHWC to NCHW
INDArray labels = this.labels.castTo(input.dataType()); //Ensure correct dtype (same as params); no-op if already correct dtype
if(!nchw)
labels = labels.permute(0,3,1,2); //NHWC to NCHW
double lambdaCoord = layerConf().getLambdaCoord(); double lambdaCoord = layerConf().getLambdaCoord();
double lambdaNoObj = layerConf().getLambdaNoObj(); double lambdaNoObj = layerConf().getLambdaNoObj();
@ -119,7 +126,7 @@ public class Yolo2OutputLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
int b = (int) layerConf().getBoundingBoxes().size(0); int b = (int) layerConf().getBoundingBoxes().size(0);
int c = (int) labels.size(1)-4; int c = (int) labels.size(1)-4;
INDArray labels = this.labels.castTo(input.dataType()); //Ensure correct dtype (same as params); no-op if already correct dtype
//Various shape arrays, to reuse //Various shape arrays, to reuse
long[] nhw = new long[]{mb, h, w}; long[] nhw = new long[]{mb, h, w};
@ -380,13 +387,17 @@ public class Yolo2OutputLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
epsWH.addi(dLc_din_wh); epsWH.addi(dLc_din_wh);
epsXY.addi(dLc_din_xy); epsXY.addi(dLc_din_xy);
if(!nchw)
epsOut = epsOut.permute(0,2,3,1); //NCHW to NHWC
return epsOut; return epsOut;
} }
@Override @Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) { public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false); assertInputSet(false);
return YoloUtils.activate(layerConf().getBoundingBoxes(), input, workspaceMgr); boolean nchw = layerConf().getFormat() == CNN2DFormat.NCHW;
return YoloUtils.activate(layerConf().getBoundingBoxes(), input, nchw, workspaceMgr);
} }
@Override @Override

View File

@ -39,12 +39,23 @@ import static org.nd4j.linalg.indexing.NDArrayIndex.*;
*/ */
public class YoloUtils { public class YoloUtils {
/** Essentially: just apply activation functions... */ /** Essentially: just apply activation functions... For NCHW format. For NCHW format, use one of the other activate methods */
public static INDArray activate(INDArray boundingBoxPriors, INDArray input) { public static INDArray activate(INDArray boundingBoxPriors, INDArray input) {
return activate(boundingBoxPriors, input, LayerWorkspaceMgr.noWorkspaces()); return activate(boundingBoxPriors, input, true);
}
public static INDArray activate(INDArray boundingBoxPriors, INDArray input, boolean nchw) {
return activate(boundingBoxPriors, input, nchw, LayerWorkspaceMgr.noWorkspaces());
} }
public static INDArray activate(@NonNull INDArray boundingBoxPriors, @NonNull INDArray input, LayerWorkspaceMgr layerWorkspaceMgr) { public static INDArray activate(@NonNull INDArray boundingBoxPriors, @NonNull INDArray input, LayerWorkspaceMgr layerWorkspaceMgr) {
return activate(boundingBoxPriors, input, true, layerWorkspaceMgr);
}
public static INDArray activate(@NonNull INDArray boundingBoxPriors, @NonNull INDArray input, boolean nchw, LayerWorkspaceMgr layerWorkspaceMgr){
if(!nchw)
input = input.permute(0,3,1,2); //NHWC to NCHW
long mb = input.size(0); long mb = input.size(0);
long h = input.size(2); long h = input.size(2);
long w = input.size(3); long w = input.size(3);
@ -83,6 +94,9 @@ public class YoloUtils {
INDArray outputClasses = output5.get(all(), all(), interval(5, 5+c), all(), all()); //Shape: [minibatch, C, H, W] INDArray outputClasses = output5.get(all(), all(), interval(5, 5+c), all(), all()); //Shape: [minibatch, C, H, W]
outputClasses.assign(postSoftmax5d); outputClasses.assign(postSoftmax5d);
if(!nchw)
output = output.permute(0,2,3,1); //NCHW to NHWC
return output; return output;
} }