diff --git a/.gitignore b/.gitignore index 6c39e54b9..8afcd96f8 100644 --- a/.gitignore +++ b/.gitignore @@ -36,6 +36,7 @@ pom.xml.versionsBackup pom.xml.next release.properties *dependency-reduced-pom.xml +*/build/* # Specific for Nd4j *.md5 diff --git a/cavis-dnn/cavis-dnn-api/src/main/java/org/nd4j/linalg/dataset/DataSet.java b/cavis-dnn/cavis-dnn-api/src/main/java/org/nd4j/linalg/dataset/DataSet.java index 222990cc5..d0c691cad 100644 --- a/cavis-dnn/cavis-dnn-api/src/main/java/org/nd4j/linalg/dataset/DataSet.java +++ b/cavis-dnn/cavis-dnn-api/src/main/java/org/nd4j/linalg/dataset/DataSet.java @@ -334,6 +334,7 @@ public class DataSet implements org.nd4j.linalg.dataset.api.DataSet { public void save(File to) { try (FileOutputStream fos = new FileOutputStream(to, false); BufferedOutputStream bos = new BufferedOutputStream(fos)) { + to.mkdirs(); save(bos); } catch (IOException e) { throw new RuntimeException(e); diff --git a/cavis-dnn/cavis-dnn-core/src/test/java/org/deeplearning4j/datasets/iterator/DataSetIteratorTest.java b/cavis-dnn/cavis-dnn-core/src/test/java/org/deeplearning4j/datasets/iterator/DataSetIteratorTest.java index cf3aff480..e33eebd6e 100644 --- a/cavis-dnn/cavis-dnn-core/src/test/java/org/deeplearning4j/datasets/iterator/DataSetIteratorTest.java +++ b/cavis-dnn/cavis-dnn-core/src/test/java/org/deeplearning4j/datasets/iterator/DataSetIteratorTest.java @@ -166,10 +166,10 @@ public class DataSetIteratorTest extends BaseDL4JTest { int seed = 123; int listenerFreq = 1; - LFWDataSetIterator lfw = new LFWDataSetIterator(batchSize, numSamples, + final LFWDataSetIterator lfw = new LFWDataSetIterator(batchSize, numSamples, new int[] {numRows, numColumns, numChannels}, outputNum, false, true, 1.0, new Random(seed)); - NeuralNetConfiguration.NeuralNetConfigurationBuilder builder = NeuralNetConfiguration.builder().seed(seed) + final var builder = NeuralNetConfiguration.builder().seed(seed) .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .layer(0, ConvolutionLayer.builder(5, 5).nIn(numChannels).nOut(6) @@ -181,7 +181,7 @@ public class DataSetIteratorTest extends BaseDL4JTest { .build()) .inputType(InputType.convolutionalFlat(numRows, numColumns, numChannels)); - MultiLayerNetwork model = new MultiLayerNetwork(builder.build()); + final MultiLayerNetwork model = new MultiLayerNetwork(builder.build()); model.init(); model.addTrainingListeners(new ScoreIterationListener(listenerFreq));