Backpropagation implementation of mergemax, mergeadd and mergeavg ops (#343)

* libnd4j: first step of merge_max implementation

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j fixed typos

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j some corrections for mergeMaxBp

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j some minor corrections

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j test added for mergemax_bp

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j fixed several problems tests added, check with gradCheck

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j remove duplicated tests

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j split implementation of transforms ops into separate file implementation

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j code clean up, added mergeavg_bp and mergeadd_bp, need testing

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j merge master, fixed typos and added tests

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j some minor fixes

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j added helper for mergeAddBp operation, this permits to skip nullify

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j file renaming changes and cuda some corrections, need some additional corrections

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j some additional corrections for merge ops

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* libnd4j more corrections per request for cuda more proper usage

Signed-off-by: Oleg <oleg.semeniv@gmail.com>
master
Oleh 2020-03-25 07:40:30 +02:00 committed by GitHub
parent b1bc7df160
commit e8cbf5255a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 2381 additions and 1382 deletions

View File

@ -33,7 +33,7 @@ OP_IMPL(mergeadd, -1, 1, false) {
auto output = OUTPUT_VARIABLE(0);
std::vector<NDArray*> inArrs(block.width());
std::vector<const NDArray*> inArrs(block.width());
for(int i = 0; i < block.width(); ++i)
inArrs[i] = INPUT_VARIABLE(i);
@ -42,7 +42,6 @@ OP_IMPL(mergeadd, -1, 1, false) {
return Status::OK();
}
DECLARE_SYN(mergesum, mergeadd);
DECLARE_SYN(add_n, mergeadd);
DECLARE_SYN(addn, mergeadd);
@ -54,6 +53,45 @@ DECLARE_SYN(accumulate_n, mergeadd);
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes(sd::DataType::ANY);
}
CUSTOM_OP_IMPL(mergeadd_bp, 2, 1, false, 0, 0) {
auto inSize = block.width() - 1;
REQUIRE_OK(this->validateInputDimensionsMatch(block));
std::vector<NDArray*> outArrs(inSize);
const auto gradient = INPUT_VARIABLE(inSize);
for (int i = 0; i < inSize; ++i) {
outArrs[i] = OUTPUT_VARIABLE(i);
}
helpers::mergeAddBp(block.launchContext(), *gradient, outArrs);
return Status::OK();
}
DECLARE_TYPES(mergeadd_bp) {
getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes(sd::DataType::ANY);
}
DECLARE_SHAPE_FN(mergeadd_bp) {
const int numOfInArrs = block.width() - 1;
auto shapeList = SHAPELIST();
for (int e = 0; e < numOfInArrs; e++) {
auto inShape = inputShape->at(e);
shapeList->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(inShape), shape::order(inShape), shape::shapeOf(inShape), shape::rank(inShape))));
}
return shapeList;
}
}
}

View File

@ -33,7 +33,7 @@ OP_IMPL(mergeavg, -1, 1, false) {
auto output = OUTPUT_VARIABLE(0);
std::vector<NDArray*> inArrs(block.width());
std::vector<const NDArray*> inArrs(block.width());
for(int i = 0; i < block.width(); ++i)
inArrs[i] = INPUT_VARIABLE(i);
@ -48,6 +48,44 @@ OP_IMPL(mergeavg, -1, 1, false) {
->setAllowedInputTypes({ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS});
}
CUSTOM_OP_IMPL(mergeavg_bp, 2, 1, false, 0, 0) {
auto inSize = block.width() - 1;
REQUIRE_OK(this->validateInputDimensionsMatch(block));
std::vector<NDArray*> outArrs(inSize);
const auto gradient = INPUT_VARIABLE(inSize);
for (int i = 0; i < inSize; ++i) {
outArrs[i] = OUTPUT_VARIABLE(i);
}
helpers::mergeAvgBp(block.launchContext(), *gradient, outArrs);
return Status::OK();
}
DECLARE_TYPES(mergeavg_bp) {
getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes(sd::DataType::ANY);
}
DECLARE_SHAPE_FN(mergeavg_bp) {
const int numOfInArrs = block.width() - 1;
auto shapeList = SHAPELIST();
for (int e = 0; e < numOfInArrs; e++) {
auto inShape = inputShape->at(e);
shapeList->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(inShape), shape::order(inShape), shape::shapeOf(inShape), shape::rank(inShape))));
}
return shapeList;
}
}
}

View File

@ -33,7 +33,7 @@ OP_IMPL(mergemax, -1, 1, false) {
auto output = OUTPUT_VARIABLE(0);
std::vector<NDArray*> inArrs(block.width());
std::vector<const NDArray*> inArrs(block.width());
for(int i = 0; i < block.width(); ++i)
inArrs[i] = INPUT_VARIABLE(i);
@ -42,7 +42,6 @@ OP_IMPL(mergemax, -1, 1, false) {
return Status::OK();
}
DECLARE_SYN(MergeMax, mergemax);
DECLARE_TYPES(mergemax) {
@ -51,6 +50,47 @@ DECLARE_SYN(MergeMax, mergemax);
->setAllowedOutputTypes(sd::DataType::ANY);
}
CUSTOM_OP_IMPL(mergemax_bp, 2, 1, false, 0, 0) {
auto inSize = block.width();
REQUIRE_OK(this->validateInputDimensionsMatch(block));
std::vector<const NDArray*> inArrs(inSize);
std::vector<NDArray*> outArrs(inSize - 1);
for (int i = 0; i < inSize; ++i)
inArrs[i] = INPUT_VARIABLE(i);
for (int i = 0; i < (inSize - 1); ++i) {
outArrs[i] = OUTPUT_NULLIFIED(i);
}
helpers::mergeMaxBp(block.launchContext(), inArrs, outArrs);
return Status::OK();
}
DECLARE_TYPES(mergemax_bp) {
getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes(sd::DataType::ANY);
}
DECLARE_SHAPE_FN(mergemax_bp) {
const int numOfInArrs = block.width() - 1;
auto shapeList = SHAPELIST();
for (int e = 0; e < numOfInArrs; e++) {
auto inShape = inputShape->at(e);
shapeList->push_back(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(inShape), shape::order(inShape), shape::shapeOf(inShape), shape::rank(inShape))));
}
return shapeList;
}
}
}

View File

@ -32,7 +32,7 @@ CUSTOM_OP_IMPL(mergemaxindex, -1, 1, false, 0, 0) {
REQUIRE_OK(this->validateInputDimensionsMatch(block));
auto output = OUTPUT_VARIABLE(0);
std::vector<NDArray*> inArrs(block.width());
std::vector<const NDArray*> inArrs(block.width());
for(int i = 0; i < block.width(); ++i)
inArrs[i] = INPUT_VARIABLE(i);

View File

@ -64,6 +64,7 @@ namespace sd {
#if NOT_EXCLUDED(OP_mergemax)
DECLARE_OP(mergemax, -1, 1, false);
DECLARE_CUSTOM_OP(mergemax_bp, 2, 1, false, 0, 0);
#endif
/*
* Complete tensor with max indices merged from all input tensors list
@ -78,10 +79,12 @@ namespace sd {
#if NOT_EXCLUDED(OP_mergeadd)
DECLARE_OP(mergeadd, -1, 1, false);
DECLARE_CUSTOM_OP(mergeadd_bp, 2, 1, false, 0, 0);
#endif
#if NOT_EXCLUDED(OP_mergeavg)
DECLARE_OP(mergeavg, -1, 1, false);
DECLARE_CUSTOM_OP(mergeavg_bp, 2, 1, false, 0, 0);
#endif
#if NOT_EXCLUDED(OP_scatter_update)

View File

@ -0,0 +1,274 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByNorm_(NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
const int rank = input.rankOf();
const auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions);
const T normActual = norm2.e<T>(0);
const T normClip = clipNorm.e<T>(0);
if (isInplace) {
if(norm2.lengthOf() == 1) {
if(normActual > normClip)
input *= (normClip / normActual);
}
else {
auto listOfInSubArrs = input.allTensorsAlongDimension(dimensions);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
const T iNormActual = norm2.e<T>(i);
if (iNormActual > normClip)
*listOfInSubArrs.at(i) *= normClip / iNormActual;
}
};
samediff::Threads::parallel_tad(func, 0, listOfInSubArrs.size());
}
}
else {
if(norm2.lengthOf() == 1) {
if(normActual > normClip)
output.assign(input * (normClip / normActual));
else
output.assign(input);
}
else {
auto listOfInSubArrs = input.allTensorsAlongDimension(dimensions);
auto listOfOutSubArrs = output.allTensorsAlongDimension(dimensions);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto inputSubArr = listOfInSubArrs.at(i);
auto outputSubArr = listOfOutSubArrs.at(i);
outputSubArr->assign(inputSubArr);
const T iNormActual = norm2.e<T>(i);
if (iNormActual > clipNorm.e<T>(0))
*outputSubArr *= clipNorm / iNormActual;
}
};
samediff::Threads::parallel_tad(func, 0, listOfInSubArrs.size());
}
}
}
//////////////////////////////////////////////////////////////////////////
void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(output.dataType(), clipByNorm_, (input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
template <typename T>
static void clipByGlobalNorm_(std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
T globalNorm = 0; //NDArrayFactory::create<T>(0, inputs[0]->getContext()); //sqrt(sum([l2norm(t)**2 for t in t_list]))
// PRAGMA_OMP_PARALLEL_FOR_SIMD_REDUCTION(sumT : globalNorm)
for (size_t i = 0; i < inputs.size(); i++) {
auto input = inputs[i];
auto l2norm = input->reduceNumber(reduce::Norm2);
globalNorm += l2norm.t<T>(0) * l2norm.t<T>(0);
}
//globalNorm.applyTransform(transform::Sqrt, nullptr, nullptr);// = sd::math::nd4j_sqrt(globalNorm);
auto normS = sd::math::nd4j_sqrt<T,T>(globalNorm);
outputs[inputs.size()]->p(0, normS);
const T factor = clipNorm / normS;
// PRAGMA_OMP_PARALLEL_FOR
for (size_t e = 0; e < inputs.size(); e++) {
// all-reduce
auto input = inputs[e];
auto output = outputs[e];
if (normS <= clipNorm) {
output->assign(input);
}
else {
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input->applyLambda<T>(lambda, *output);
}
}
}
void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
BUILD_SINGLE_SELECTOR(outputs[0]->dataType(), clipByGlobalNorm_, (inputs, clipNorm, workspace, outputs, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByNormBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
const int rank = input.rankOf();
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions);
if(norm2.lengthOf() == 1) {
const T N = norm2.e<T>(0);
auto cn = clipNorm.e<T>(0);
if(N > cn) {
const T sumOfProd = (input * gradO).reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = static_cast<T>(1.f) / N;
const T factor3 = factor1 / (N * N); // 1 / (N*N*N)
auto lambda = LAMBDA_TT(elem1, elem2, cn, sumOfProd, factor1, factor3) {
return cn * (factor1 * elem2 - factor3 * elem1 * sumOfProd);
};
(const_cast<NDArray&>(input)).applyPairwiseLambda<T>(const_cast<NDArray&>(gradO), lambda, gradI);
}
else
gradI.assign(gradO);
}
else {
auto gradISubArrs = gradI.allTensorsAlongDimension({dimensions});
auto gradOSubArrs = gradO.allTensorsAlongDimension({dimensions});
auto inputSubArrs = input.allTensorsAlongDimension({dimensions});
auto cn = clipNorm.e<T>(0);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
T N = norm2.e<T>(i);
auto gradOSubArr = gradOSubArrs.at(i);
auto gradISubArr = gradISubArrs.at(i);
if (N > cn) {
auto inputSubArr = inputSubArrs.at(i);
const T sumOfProd = (*inputSubArr * *gradOSubArr).reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = static_cast<T>(1.f) / N;
const T factor3 = factor1 / (N * N); // 1 / (N*N*N)
auto lambda = LAMBDA_TT(elem1, elem2, cn, sumOfProd, factor1, factor3) {
return cn * (factor1 * elem2 - factor3 * elem1 * sumOfProd);
};
inputSubArr->applyPairwiseLambda<T>(*gradOSubArr, lambda, *gradISubArr);
} else
gradISubArr->assign(gradOSubArr);
}
};
samediff::Threads::parallel_tad(func, 0, gradISubArrs.size());
}
}
void clipByNormBP(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
BUILD_SINGLE_SELECTOR(gradI.dataType(), clipByNormBP_, (input, gradO, gradI, dimensions, clipNorm), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByNormBP_, (const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByAveraged_(NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
auto cn = clipNorm.e<T>(0);
if (dimensions.size() == 0) {
// all-reduce
T n2 = input.reduceNumber(reduce::Norm2).e<T>(0) / input.lengthOf();
if (n2 <= cn) {
if (!isInplace)
output.assign(input);
}
else {
const T factor = cn / n2;
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input.applyLambda<T>(lambda, output);
}
}
else {
// along dimension
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions, false);
if (!isInplace)
output.assign(input);
auto tads = output.allTensorsAlongDimension(dimensions);
// TODO: make this CUDA-compliant somehow
for (int e = 0; e < tads.size(); e++) {
T n2 = norm2.e<T>(e) / tads.at(e)->lengthOf();
const T factor = cn / n2;
if (n2 > cn) {
auto lambda = LAMBDA_T(_x, factor) {return _x * factor;};
tads.at(e)->applyLambda<T>(lambda, output);
}
}
}
}
void clipByAveraged(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByAveraged_, (input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByAveraged_, (NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES);
/*
if (d1 > params[1])
return params[1];
else if (d1 < params[0])
return params[0];
else return d1;
*/
template <typename T>
static void clipByValue_(NDArray& input, double leftBound, double rightBound, NDArray& output) {
auto routine = LAMBDA_T(_x, leftBound, rightBound) {
if (_x > rightBound) return rightBound;
if (_x < leftBound) return leftBound;
return _x;
};
input.applyLambda<T>(routine, output);
}
void clipByValue(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByValue_, (input, leftBound, rightBound, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByValue_, (NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES);
}
}
}

View File

@ -0,0 +1,45 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
void eye(sd::LaunchContext * context, NDArray& output) {
const int rank = output.rankOf();
auto arrs = output.allTensorsAlongDimension({rank-2, rank-1});
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++)
arrs.at(i)->setIdentity();
};
samediff::Threads::parallel_tad(func, 0, arrs.size());
}
}
}
}

View File

@ -0,0 +1,183 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
////////////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void gatherND_(NDArray& input, NDArray& indices, NDArray& output) {
const X* x = reinterpret_cast<X*>(input.getBuffer());
const Y* y = reinterpret_cast<Y*>(indices.getBuffer());
X* z = reinterpret_cast<X*>(output.getBuffer());
const int xRank = input.rankOf();
const int yRank = indices.rankOf();
const int zRank = output.rankOf();
const int maxRank = sd::math::nd4j_max<int>(yRank, sd::math::nd4j_max<int>(xRank, zRank));
const Nd4jLong zLen = output.lengthOf();
const uint yLastDim = indices.sizeAt(-1);
const int diff = zRank - xRank;
const bool bEqual = yLastDim == xRank;
auto func = PRAGMA_THREADS_FOR {
int xCoords[MAX_RANK], zCoords[MAX_RANK], temp;
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.getShapeInfo(), zCoords);
const auto zOffset = shape::getOffset(output.getShapeInfo(), zCoords);
temp = zCoords[yRank - 1];
zCoords[yRank - 1] = 0;
const auto yOffset = shape::getOffset(indices.getShapeInfo(), zCoords);
zCoords[yRank - 1] = temp;
if(bEqual)
memcpy(xCoords, zCoords, zRank * sizeof(int));
else if(diff >= 0)
memcpy(xCoords, zCoords + diff, xRank * sizeof(int));
else
memcpy(xCoords - diff, zCoords, zRank * sizeof(int));
for (uint j = 0; j < yLastDim; ++j)
xCoords[j] = y[yOffset + j * indices.stridesOf()[yRank - 1]]; // last stride
const auto xOffset = shape::getOffset(input.getShapeInfo(), xCoords);
z[zOffset] = x[xOffset];
}
};
samediff::Threads::parallel_tad(func, 0, zLen);
}
////////////////////////////////////////////////////////////////////////
void gatherND(sd::LaunchContext * context, NDArray& input, NDArray& indices, NDArray& output) {
BUILD_DOUBLE_SELECTOR(input.dataType(), indices.dataType(), gatherND_, (input, indices, output), LIBND4J_TYPES, INDEXING_TYPES);
}
////////////////////////////////////////////////////////////////////////
template<typename T>
static void gather_(NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
int axis = intArgs.size() > 0 ? intArgs[0] : 0;
const int inputRank = input->rankOf();
if(axis < 0)
axis += inputRank;
const int numOfIntArgs = intArgs.size();
if (indices != nullptr) {
for(Nd4jLong i = 0; i < indices->lengthOf(); ++i)
if(indices->e<Nd4jLong>(i) >= input->sizeAt(axis))
throw std::runtime_error("helpers::gather function: indices array contains wrong elements, each element must be smaller than corresponding dimension of input array !");
// first case: indices consist of only one scalar
if(indices->isScalar()) {
if(input->rankOf() <= 1){
//For scalar indices, rank 0 or 1 input: can't do tensor along dimension 0 as this is whole array... instead, we want to get a scalar
auto idx = indices->e<Nd4jLong>(0);
auto scalarNDArray = input->e(idx);
output->assign(scalarNDArray);
} else {
auto dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {axis});
auto tadPack = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimensions);
auto tadArr = NDArray(reinterpret_cast<void *>(reinterpret_cast<T*>(input->getBuffer()) + tadPack.primaryOffsets()[indices->e<Nd4jLong>(0)]), tadPack.primaryShapeInfo(), output->getContext());
output->assign(&tadArr);
}
}
else if (input->rankOf() == 1 && indices->isVector()) {
// special case
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++)
output->p(e, input->e<T>(indices->e<Nd4jLong>(e)));
};
samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
else {
std::vector<int> dimsOut(indices->rankOf());
std::iota(dimsOut.begin(), dimsOut.end(), axis); // fill with axis, axis+1, ... indices->rankOf()-1
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(output->getShapeInfo(), dimsOut);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
NDArray subArrOut = (*output)(i, dimsOut);
NDArray subArrIn = (*input)(indices->e<Nd4jLong>(i), {axis});
subArrOut.assign(subArrIn);
}
};
samediff::Threads::parallel_tad(func, 0, numOfSubArrs);
}
}
else {
for(int i = 1; i < numOfIntArgs; ++i)
if(intArgs[i] >= input->sizeAt(axis))
throw std::runtime_error("helpers::gather function: some of input indexes is larger than corresponding shape of input array !");
// we only allow scalar/vector case here
if (numOfIntArgs == 2) { // scalar case
output->assign((*input)(intArgs[1], {axis}));
}
else { // vector case
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(output->getShapeInfo(), {axis});
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
NDArray subArrOut = (*output)(i, {axis});
NDArray subArrIn = (*input)(intArgs[i + 1], {axis});
subArrOut.assign(subArrIn);
}
};
samediff::Threads::parallel_tad(func, 0, numOfSubArrs);
}
}
}
void gather(NDArray* input, const NDArray* indices, NDArray* output, const std::vector<int>& intArgs) {
BUILD_SINGLE_SELECTOR(input->dataType(), gather_, (input, indices, output, intArgs), LIBND4J_TYPES);
}
}
}
}

View File

@ -0,0 +1,51 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
////////////////////////////////////////////////////////////////////////
void invertPermutation(sd::LaunchContext * context, const NDArray& input, NDArray& output) {
std::set<int> uniqueElems;
const int length = input.lengthOf();
for(int i = 0; i < length; ++i) {
int elem = input.e<int>(i);
if(!uniqueElems.insert(elem).second) // this operation forbids us to use #pragma omp
throw std::runtime_error("helpers::invertPermutation function: input array contains duplicates !");
if(elem < 0 || elem > length - 1)
throw std::runtime_error("helpers::invertPermutation function: element of input array is out of range (0, length-1) !");
output.p<int>(elem, i);
}
}
}
}
}

View File

@ -0,0 +1,277 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
* Copyright (c) 2019-2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeMaxIndex_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
T max = -DataTypeUtils::max<T>();
Nd4jLong idx = 0;
for (Nd4jLong i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e);
if (v > max) {
max = v;
idx = i;
}
}
output.p(e, idx);
}
};
samediff::Threads::parallel_for(func, 0, x->lengthOf());
}
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), mergeMaxIndex_, (inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeMax_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
T max = -DataTypeUtils::max<T>();
for (Nd4jLong i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e);
if (v > max)
max = v;
}
output.p(e, max);
}
};
samediff::Threads::parallel_for(func, 0, x->lengthOf());
}
void mergeMax(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeMaxBp_(const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
// outArrs.size() == inArrs.size() - 1
const Nd4jLong numArgs = outArrs.size();
// last array is gradient
const auto gradient = inArrs[numArgs]->bufferAsT<T>();
auto length = inArrs[numArgs]->lengthOf();
bool bSameOrderAndEws1 = (1 == inArrs[numArgs]->ews());
if (bSameOrderAndEws1) {
auto gradOrdering = inArrs[numArgs]->ordering();
for (int i = 0; i < numArgs; ++i) {
bSameOrderAndEws1 &= (gradOrdering == inArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == inArrs[i]->ews());
bSameOrderAndEws1 &= (gradOrdering == outArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == outArrs[i]->ews());
}
}
if(bSameOrderAndEws1){
auto func = PRAGMA_THREADS_FOR{
for (auto e = start; e < stop; e++) {
T max = -DataTypeUtils::max<T>();
Nd4jLong nMaxIndex = 0;
for (Nd4jLong i = 0; i < numArgs; i++) {
const T* v = inArrs[i]->bufferAsT<T>();
if (v[e] > max) {
max = v[e];
nMaxIndex = i;
}
}
T* z = outArrs[nMaxIndex]->bufferAsT<T>();
z[e] = gradient[e];
}
};
samediff::Threads::parallel_for(func, 0, length);
return;
}
auto gradShape = inArrs[numArgs]->getShapeInfo();
std::vector<bool> vbSameShaepeAndStrides(numArgs);
for (int i = 0; i < numArgs; ++i) {
vbSameShaepeAndStrides[i] = shape::haveSameShapeAndStrides(gradShape, inArrs[i]->getShapeInfo());
}
auto func = PRAGMA_THREADS_FOR{
int coords[MAX_RANK];
for (auto e = start; e < stop; e++) {
shape::index2coordsCPU(start, e, gradShape, coords);
const auto gradOffset = shape::getOffset(gradShape, coords);
T max = -DataTypeUtils::max<T>();
Nd4jLong nMaxIndex = 0;
for (Nd4jLong i = 0; i < numArgs; i++) {
const auto xOffset = vbSameShaepeAndStrides[i] ? gradOffset : shape::getOffset(inArrs[i]->getShapeInfo(), coords);
const T* v = inArrs[i]->bufferAsT<T>();
if (v[xOffset] > max) {
max = v[xOffset];
nMaxIndex = i;
}
}
const auto zOffset = vbSameShaepeAndStrides[nMaxIndex] ? gradOffset : shape::getOffset(outArrs[nMaxIndex]->getShapeInfo(), coords);
T* z = outArrs[nMaxIndex]->bufferAsT<T>();
z[zOffset] = gradient[gradOffset];
}
};
samediff::Threads::parallel_for(func, 0, length);
return;
}
void mergeMaxBp(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
BUILD_SINGLE_SELECTOR(outArrs[0]->dataType(), mergeMaxBp_, (inArrs, outArrs), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAvg_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
const T factor = 1.f / numArgs;
auto x = inArrs[0];
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
T sum = 0.;
for (Nd4jLong i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e);
sum += v;
}
output.p<T>(e, sum * factor);
}
};
samediff::Threads::parallel_for(func, 0, x->lengthOf());
}
void mergeAvg(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAvgBp_(const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const Nd4jLong numArgs = outArrs.size();
auto func = PRAGMA_THREADS_FOR{
for (auto e = start; e < stop; e++) {
T v = gradient.e<T>(e) / numArgs;
for (Nd4jLong i = 0; i < numArgs; i++) {
outArrs[i]->p<T>(e, v);
}
}
};
samediff::Threads::parallel_for(func, 0, gradient.lengthOf());
}
void mergeAvgBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAvgBp_, (gradient, outArrs), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAdd_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size();
auto x = inArrs[0];
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
T sum = (T) 0.f;
for (Nd4jLong i = 0; i < numArgs; i++)
sum += inArrs[i]->e<T>(e);
output.p(e, sum);
}
};
samediff::Threads::parallel_for(func, 0, x->lengthOf());
}
void mergeAdd(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (inArrs, output), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mergeAddBp_(const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const Nd4jLong numArgs = outArrs.size();
auto func = PRAGMA_THREADS_FOR{
for (auto e = start; e < stop; e++) {
T v = gradient.e<T>(e);
for (Nd4jLong i = 0; i < numArgs; i++) {
outArrs[i]->p<T>(e, v);
}
}
};
samediff::Threads::parallel_for(func, 0, gradient.lengthOf());
}
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAddBp_, (gradient, outArrs), LIBND4J_TYPES);
}
}
}
}

View File

@ -0,0 +1,483 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
void pad_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) {
const T* x = input.bufferAsT<T>();
T* z = output.bufferAsT<T>();
const Nd4jLong* xShape = input.shapeOf();
const Nd4jLong* zShape = output.shapeOf();
const int rank = input.rankOf(); // both input and output have the same rank
const int rankMinusOne = rank - 1;
const auto zLen = output.lengthOf();
if(mode == 0) { // CONSTANT case
const T padVal = padValue.e<T>(0);
auto func = PRAGMA_THREADS_FOR {
int zCoords[MAX_RANK], xCoords[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.getShapeInfo(), zCoords);
const auto zOffset = shape::getOffset(output.getShapeInfo(), zCoords);
memcpy(xCoords, zCoords, rank * sizeof(int));
bool within = true;
for (int j = rankMinusOne; j >= 0; --j) {
if (xShape[j] == zShape[j])
continue;
const auto left = paddings.e<Nd4jLong>(j, 0);
if (zCoords[j] < left || zCoords[j] >= left + xShape[j]) {
within = false;
break;
}
else
xCoords[j] = zCoords[j] - left;
}
if (within)
z[zOffset] = x[shape::getOffset(input.getShapeInfo(), xCoords)];
else
z[zOffset] = padVal;
}
};
samediff::Threads::parallel_tad(func, 0, zLen);
}
else { // REFLECT and SYMMETRIC cases
const Nd4jLong shift1 = mode == 1 ? 0 : 1; // REFLECT : SYMMETRIC
const Nd4jLong shift2 = mode == 1 ? 2 : 1; // REFLECT : SYMMETRIC
auto func = PRAGMA_THREADS_FOR {
int zCoords[MAX_RANK], xCoords[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.getShapeInfo(), zCoords);
const auto zOffset = shape::getOffset(output.getShapeInfo(), zCoords);
memcpy(xCoords, zCoords, rank * sizeof(int));
for (int j = rankMinusOne; j >= 0; --j) {
if (xShape[j] == zShape[j])
continue;
xCoords[j] = zCoords[j] - paddings.e<Nd4jLong>(j, 0); // are ready to fill middle (within input dimension range)
if (xCoords[j] < 0)
xCoords[j] = -xCoords[j] - shift1; // means fill from left
else if (xCoords[j] >= xShape[j])
xCoords[j] = 2 * xShape[j] - xCoords[j] - shift2; // means fill from right
}
const auto xOffset = shape::getOffset(input.getShapeInfo(), xCoords);
z[zOffset] = x[xOffset];
}
};
samediff::Threads::parallel_tad(func, 0, zLen);
}
}
// //////////////////////////////////////////////////////////////////////////
// template<typename T>
// void pad2_(const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
// const int rank = output.rankOf();
// std::vector<int> dimsToExclude(rank);
// std::iota(dimsToExclude.begin(), dimsToExclude.end(), 0); // fill with 0, 1, ... rank-1
// Nd4jLong numLeft = paddings.e<Nd4jLong>(rank-1,0);
// Nd4jLong numRight = paddings.e<Nd4jLong>(rank-1,1);
// Nd4jLong inDimSize = input.sizeAt(rank-1);
// Nd4jLong outDimSize = output.sizeAt(rank-1);
// std::vector<std::vector<Nd4jLong>> outIdx = { std::vector<Nd4jLong>(2*rank), {numLeft, numLeft + inDimSize}, {0, numLeft}, {numLeft + inDimSize, outDimSize} };
// for(int i = 0; i < rank-1; ++i) {
// outIdx[0][2*i] = paddings.e<Nd4jLong>(i, 0);
// outIdx[0][2*i + 1] = outIdx[0][2*i] + input.sizeAt(i);
// }
// outIdx[0][2*rank-1] = outIdx[0][2*rank-2] = 0;
// // ***** populate innermost sub-arrays firstly ***** //
// dimsToExclude.pop_back();
// Nd4jLong startL = mode == 1 ? 1 : 0; // REFLECT or SYMMETRIC
// Nd4jLong startR = mode == 1 ? inDimSize-2 : inDimSize-1; // REFLECT or SYMMETRIC
// Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.getShapeInfo(), dimsToExclude);
// NDArray outSubArr0 = output(outIdx[0], true);
// PRAGMA_OMP_PARALLEL_FOR
// for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
// NDArray outSubArr1 = outSubArr0(j, dimsToExclude);
// NDArray inSubArr = input(j, dimsToExclude);
// NDArray outSubArrMid = outSubArr1(outIdx[1]);
// outSubArrMid.assign(inSubArr); // assign middle
// if(mode == 0) { // CONSTANT
// if(numLeft != 0) {
// NDArray temp = outSubArr1(outIdx[2]);
// temp.assign(padValue); // assign left
// }
// if(numRight != 0) {
// NDArray temp = outSubArr1(outIdx[3]);
// temp.assign(padValue); // assign right
// }
// }
// else { // REFLECT or SYMMETRIC
// for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) // fill left side
// outSubArr1.t<T>(k) = inSubArr.t<T>(e);
// for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) // fill right side
// outSubArr1.t<T>(k) = inSubArr.t<T>(e);
// }
// }
// // ***** fill rest of outer sub-arrays ***** //
// std::vector<Nd4jLong> outIdxInner(2, 0);
// std::vector<Nd4jLong> outIdxOuter(2, 0);
// for(int i = rankBorder - 1; i >= 0; --i) {
// dimsToExclude.pop_back();
// outIdxInner.push_back(0), outIdxInner.push_back(0);
// outIdxOuter.push_back(0), outIdxOuter.push_back(0);
// Nd4jLong numLeft = paddings.e<Nd4jLong>(i, 0);
// Nd4jLong numRight = paddings.e<Nd4jLong>(i, 1);
// if(numLeft == 0 && numRight == 0)
// continue;
// Nd4jLong inDimSize = input.sizeAt(i);
// Nd4jLong outDimSize = output.sizeAt(i);
// if(mode == 0) {
// outIdxOuter[0] = 0; outIdxOuter[1] = numLeft;
// outIdxInner[0] = numLeft + inDimSize; outIdxInner[1] = outDimSize;
// }
// startL = mode == 1 ? numLeft + 1 : numLeft; // REFLECT or SYMMETRIC
// startR = mode == 1 ? numLeft + inDimSize - 2 : numLeft + inDimSize-1; // REFLECT or SYMMETRIC
// numOfSubArrs = ShapeUtils::getNumOfSubArrs(output.getShapeInfo(), dimsToExclude);
// PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(outIdxOuter, outIdxInner))
// for(Nd4jLong j = 0; j < numOfSubArrs; ++j) {
// NDArray outSubArr = output(j, dimsToExclude);
// if(mode == 0) { // CONSTANT
// if(numLeft != 0) {
// NDArray tempO = outSubArr(outIdxOuter);
// tempO.assign(padValue); // assign left
// }
// if(numRight != 0) {
// NDArray tempI = outSubArr(outIdxInner);
// tempI.assign(padValue); // assign right
// }
// }
// else { // REFLECT or SYMMETRIC
// for(Nd4jLong k = numLeft-1, e = startL; k >= 0; --k, ++e) { // fill left side
// outIdxOuter[0] = k;
// outIdxOuter[1] = k+1;
// outIdxInner[0] = e;
// outIdxInner[1] = e+1;
// NDArray outSubArrInner = outSubArr(outIdxInner);
// NDArray outSubArrOuter = outSubArr(outIdxOuter);
// outSubArrOuter.assign(outSubArrInner);
// }
// for(Nd4jLong k = numLeft + inDimSize, e = startR; k < outDimSize; ++k, --e) { // fill right side
// outIdxOuter[0] = k;
// outIdxOuter[1] = k+1;
// outIdxInner[0] = e;
// outIdxInner[1] = e+1;
// NDArray outSubArrInner = outSubArr(outIdxInner);
// NDArray outSubArrOuter = outSubArr(outIdxOuter);
// outSubArrOuter.assign(outSubArrInner);
// }
// }
// }
// }
// }
void pad(sd::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, NDArray const& padValue) {
BUILD_SINGLE_SELECTOR(input.dataType(), pad_, (mode, input, paddings, output, padValue), LIBND4J_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void mirrorPad_(const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
// mode: 0 - REFLECT, else - SYMMETRIC
const int reflBorder = (bool)mode ? 1 : 0;
const int rank = input.rankOf();
const Nd4jLong outLen = output.lengthOf();
if(rank <= 1) {
const Nd4jLong inLen = input.lengthOf();
const auto leftSide = paddings.e<Nd4jLong>(0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder;
for(int i = 0; i < outLen; ++i) {
if (i < leftSide) // left side
output.p(i, input.e<T>(leftSideCorrected - i));
else if(i >= leftSide && i < leftSide + inLen) // middle
output.p(i, input.e<T>(i - leftSide));
else // right side
output.p(i, input.e<T>(len - i));
}
}
else {
auto func = PRAGMA_THREADS_FOR {
int inIdx[MAX_RANK], outIdx[MAX_RANK];
for (auto i = start; i < stop; i++) {
shape::index2coordsCPU(start, i, output.getShapeInfo(), outIdx);
for (int j = 0; j < rank; ++j) {
const Nd4jLong inLen = input.sizeAt(j);
const auto leftSide = paddings.e<T>(j, 0);
const auto leftSideCorrected = leftSide - reflBorder;
const Nd4jLong len = 2 * (inLen - 1) + leftSide + reflBorder;
if (outIdx[j] < leftSide) // left side
inIdx[j] = leftSideCorrected - outIdx[j];
else if (outIdx[j] >= leftSide && outIdx[j] < leftSide + inLen) // middle
inIdx[j] = outIdx[j] - leftSide;
else // right side
inIdx[j] = len - outIdx[j];
}
auto outOffset = shape::getOffset(output.getShapeInfo(), outIdx);
auto inOffset = shape::getOffset(input.getShapeInfo(), inIdx);
reinterpret_cast<T *>(output.buffer())[outOffset] = reinterpret_cast<T *>(input.getBuffer())[inOffset];
}
};
samediff::Threads::parallel_for(func, 0, outLen);
}
}
void mirrorPad(sd::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
BUILD_SINGLE_SELECTOR(input.dataType(), mirrorPad_, (input, paddings, output, mode), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void mirrorPad_, (const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES);
////////////////////////////////////////////////////////////////////////
/*// initial values of inIdx, outIdx, dim must be equal to zero
template<typename T>
static void recursiveLoopForPad_(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) {
int leftOffset;
// dimensions are array of input dimensions, it is sorted in increasing order
// every time at the beginning we erase first element from it (not good idea to use vector for this purpose, but luckily it is small enough)
// then we use this array for tads building, every time while recursion the number of built tads becomes bigger
dimensions.erase(dimensions.begin());
// build tad basing on output array, also create auxiliary arrays pointing on required output array ranges
shape::TAD tadOut(output.getShapeInfo(), dimensions.data(), dimensions.size());
tadOut.createTadOnlyShapeInfo();
tadOut.createOffsets();
auto subArrOut = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext());
auto subArr = NDArray(output.getBuffer(), tadOut.tadOnlyShapeInfo, output.getContext());
// build tad basing on input array, also create auxiliary array pointing on required input array range
shape::TAD tadIn(input.getShapeInfo(), dimensions.data(), dimensions.size());
tadIn.createTadOnlyShapeInfo();
tadIn.createOffsets();
auto subArrIn = NDArray(input.getBuffer(), tadIn.tadOnlyShapeInfo, output.getContext());
// these indices take into account recursion and always point to actual tads numbers
if (input.rankOf() > 1 && output.rankOf() > 1) {// only for non-vector cases
outIdx = outIdx * output.sizeAt(dim + 1);
inIdx = inIdx * input.sizeAt(dim + 1);
}
// current input tad number, we add to it unity in a loop
int k = -1;
// loop through current dimension
for(int i = 0; i < output.sizeAt(dim); ++i) {
// corresponds to outer range (relevant indices are absent in input)
leftOffset = paddings.e<int>(dim, 0);
if(i < leftOffset || i >= (input.sizeAt(dim) + leftOffset))
continue;
// increase input tads number
++k;
// recursion condition allows for the fact that tad can't reduce to scalar
if(dim < input.rankOf() - 2)
recursiveLoopForPad(mode, input, paddings, output, dimensions, dim + 1, inIdx + k, outIdx + i, padValue);
else if (paddings.sizeAt(0) > dim + 1){
leftOffset = paddings.e<int>(dim + 1, 0);
// shift buffers pointers to actual element position
if (output.rankOf() > 1) {
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + i]);
subArrIn.setBuffer(reinterpret_cast<T*>(input.getBuffer()) + tadIn.tadOffsets[inIdx + i - paddings.e<int>(dim, 0)]);
}
else {
subArrOut.p(i, subArrIn.e<T>(i - leftOffset));
}
// most inner loop, corresponds to last dim = rank-1
switch (mode) {
case 0: // CONSTANT mode
for(int j = 0; j < subArrOut.lengthOf(); ++j)
if(j < leftOffset || j >= (subArrIn.lengthOf() + leftOffset) ) // firstly fill with zeros outer ranges
subArrOut.p(j, (T)0.f);
else
subArrOut.p(j, subArrIn.e<T>(j - leftOffset)); // fill middle with elements of input array
break;
case 1: // REFLECT mode
for(int j = 1; j <= leftOffset; ++j) // fill firstly left side
subArrOut.p(leftOffset - j, subArrIn.e<T>(j));
for(int j = 0; j < subArrIn.lengthOf(); ++j) // fill middle
subArrOut.p(leftOffset + j, subArrIn.e<T>(j));
for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j) // fill right side
subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j - 1));
break;
case 2: // SYMMETRIC mode
for(int j = 1; j <= leftOffset; ++j) // fill firstly left side
subArrOut.p(leftOffset - j, subArrIn.e<T>(j-1));
for(int j = 0; j < subArrIn.lengthOf(); ++j) // fill middle
subArrOut.p(leftOffset + j, subArrIn.e<T>(j));
for(int j = (subArrOut.lengthOf() - leftOffset); j < subArrOut.lengthOf(); ++j) // fill right side
subArrOut.p(j, subArrIn.e<T>(subArrOut.lengthOf() - j));
break;
}
}
else {
if (mode == 0 && input.rankOf() < 2)
subArrOut.p(i, subArrIn.e<T>(i - leftOffset)); // fill middle with elements of input array
}
}
// populate sub-array formed previously
leftOffset = paddings.e<int>(dim,0);
switch (mode) {
case 0: // CONSTANT mode
for(int j = 1; j <= leftOffset; ++j) {
// fill left side with padValue
if (output.rankOf() > 1) {
subArrOut.setBuffer(
reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(padValue);
}
else {
subArrOut.p(j - 1, padValue);
}
}
// output.printIndexedBuffer("Output at");
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill left side with zeros
if (output.rankOf() > 1) {
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(padValue);
}
else {
subArrOut.p(j, padValue);
}
}
break;
case 1: // REFLECT mode
for(int j = 1; j <= leftOffset; ++j) { // fill left side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(&subArr);
}
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill right side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - 1 - j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(&subArr);
}
break;
case 2: // SYMMETRIC mode
for(int j = 1; j <= leftOffset; ++j) { // fill left side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset + j - 1]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + leftOffset - j]);
subArrOut.assign(&subArr);
}
for(int j = (output.sizeAt(dim) - leftOffset); j < output.sizeAt(dim); ++j) { // fill right side
subArr.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + output.sizeAt(dim) + leftOffset - j]);
subArrOut.setBuffer(reinterpret_cast<T*>(output.getBuffer()) + tadOut.tadOffsets[outIdx + j]);
subArrOut.assign(&subArr);
}
break;
}
}
*/
/*
void recursiveLoopForPad(const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue ) {
BUILD_SINGLE_SELECTOR(input.dataType(), recursiveLoopForPad_, (mode, input, paddings, output, dimensions, dim, inIdx, outIdx, padValue), LIBND4J_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void recursiveLoopForPad_, (const int mode, NDArray& input, const NDArray& paddings, NDArray& output, std::vector<int> dimensions, int dim, int inIdx, int outIdx, NDArray& padValue), LIBND4J_TYPES);
*/
}
}
}

View File

@ -0,0 +1,126 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
#include <graph/RandomGenerator.h>
#include <numeric>
#include <helpers/ShapeUtils.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
void randomShuffle_(NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace) {
// check edge cases first
int temp;
const int firstDim = input.sizeAt(0);
if(input.lengthOf() == 1 || firstDim == 1) {
if(!isInplace)
output.assign(input);
}
else if (input.isVector() || shape::isLikeVector(input.getShapeInfo(), temp)) {
// apply Fisher-Yates shuffle
if(isInplace) {
//PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->tadThreshold())
for(int i = firstDim-1; i > 0; --i) {
int r = rng.relativeInt(i) % i;
if(i == r)
continue;
T t0 = input.t<T>(i);
T t1 = input.t<T>(r);
//math::nd4j_swap<T>(input(i), input(r));
input.t<T>(i) = t1;
input.t<T>(r) = t0;
}
}
else {
std::vector<int> indices(firstDim);
std::iota(indices.begin(), indices.end(), 0);
output.p<T>(Nd4jLong(0), input.e<T>(0));
// FIXME: parallelism!!
for(int i = firstDim-1; i > 0; --i) {
int r = rng.relativeInt(i) % i;
output.t<T>(i) = input.t<T>(indices[r]);
if(i == r)
continue;
output.t<T>(r) = input.t<T>(indices[i]);
math::nd4j_swap<int>(indices[i], indices[r]);
}
rng.rewindH(firstDim-1);
}
}
else {
// evaluate sub-arrays list of input array through all dimensions excluding first one
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input.rankOf(), {0});
auto subArrsListIn = input.allTensorsAlongDimension(dimensions);
// apply Fisher-Yates shuffle
if(isInplace) {
//PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->elementwiseThreshold())
for(int i = firstDim - 1; i > 0; --i) {
int r = rng.relativeInt(i) % i;
if(i == r)
continue;
subArrsListIn.at(i)->swapUnsafe(*subArrsListIn.at(r));
}
}
else {
// evaluate sub-arrays list of output array through all dimensions excluding first one
auto subArrsListOut = output.allTensorsAlongDimension(dimensions);
std::vector<int> indices(firstDim);
std::iota(indices.begin(), indices.end(), 0);
bool isZeroShuffled = false;
//PRAGMA_OMP_PARALLEL_FOR_IF((firstDim-1) > Environment::getInstance()->tadThreshold())
for(int i = firstDim - 1; i > 0; --i) {
int r = rng.relativeInt(i) % i;
subArrsListOut.at(i)->assign(subArrsListIn.at(indices[r]));
if(r == 0)
isZeroShuffled = true;
if(i == r)
continue;
subArrsListOut.at(r)->assign(subArrsListIn.at(indices[i]));
math::nd4j_swap<int>(indices[i], indices[r]);
}
if(!isZeroShuffled)
subArrsListOut.at(0)->assign(subArrsListIn.at(0));
}
rng.rewindH(firstDim-1);
}
}
void randomShuffle(sd::LaunchContext * context, NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), randomShuffle_, (input, output, rng, isInplace), LIBND4J_TYPES);
}
}
}
}

View File

@ -0,0 +1,115 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/ShapeUtils.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
void scatterUpdate(sd::LaunchContext * context, NDArray& input, NDArray& updates, const std::vector<int>* intArgs) {
int opCode = (*intArgs)[0];
int dimSize = (*intArgs)[1];
Nd4jLong e;
Nd4jLong limg = 2 + dimSize;
std::vector<int> tadDimensions(dimSize);
for (e = 2; e < limg; e++)
tadDimensions[e-2] = (*intArgs)[e];
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(input.rankOf(), tadDimensions);
// increasing counter to skip numIndices
e++;
std::vector<int> indices;
for (; e < static_cast<Nd4jLong>(intArgs->size()); e++)
indices.push_back((*intArgs)[e]);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto inSubArr = input(indices[i], dimsToExclude, true);
auto updSubArr = updates(i, dimsToExclude, true);
if (inSubArr.lengthOf() != updSubArr.lengthOf())
continue;
switch (opCode) {
case 0:
inSubArr.applyPairwiseTransform(pairwise::Add, updSubArr, inSubArr);
break;
case 1:
inSubArr.applyPairwiseTransform(pairwise::Subtract, updSubArr, inSubArr);
break;
case 2:
inSubArr.applyPairwiseTransform(pairwise::Multiply, updSubArr, inSubArr);
break;
case 3:
inSubArr.applyPairwiseTransform(pairwise::Divide, updSubArr, inSubArr);
break;
case 4:
inSubArr.applyPairwiseTransform(pairwise::ReverseSubtract, updSubArr, inSubArr);
break;
case 5:
inSubArr.applyPairwiseTransform(pairwise::ReverseDivide, updSubArr, inSubArr);
break;
case 6:
inSubArr.applyPairwiseTransform(pairwise::CopyPws, updSubArr, inSubArr);
break;
default:
continue;
}
}
};
samediff::Threads::parallel_tad(func, 0, indices.size());
}
//////////////////////////////////////////////////////////////////////////
void scatterSimple(sd::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions) {
// updates and indices have same length
const Nd4jLong len = indices.lengthOf();
switch (opId) {
case 6: { // copy
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto inSubArr = input(i, dimensions);
inSubArr.p(indices.t<Nd4jLong>(i), updates.e(i));
}
};
samediff::Threads::parallel_for(func, 0, len);
}
break;
default:
throw std::invalid_argument("helpers::scatterSimple: operation is not implemented for given id !");
}
}
}
}
}

View File

@ -0,0 +1,91 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/ShapeUtils.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void tileBP_(const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps) {
T* gradIBuff = reinterpret_cast<T*>(gradI.getBuffer());
const T* gradOBuff = reinterpret_cast<T*>(gradO.getBuffer());
const Nd4jLong gradILen = gradI.lengthOf();
const Nd4jLong gradOLen = gradO.lengthOf(); // gradOLen >= gradILen
const Nd4jLong gradIEWS = sd::math::nd4j_abs<Nd4jLong>(gradI.ews());
const Nd4jLong gradOEWS = gradO.ews();
// initial zeroing of gradI content
if(gradIEWS == 1)
memset(gradIBuff, 0, gradILen * sizeof(T));
else {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for (Nd4jLong i = 0; i < gradILen * gradIEWS; i += gradIEWS)
gradIBuff[i] = static_cast<T>(0.f);
}
if(gradO.ordering() == 'c' && gradOEWS == 1) {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto idx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(idx, gradI.e<T>(idx) + gradOBuff[i]);
}
}
else if(gradO.ordering() == 'c' && gradOEWS > 1) {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto idx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(idx, gradI.e<T>(idx) + gradOBuff[i * gradOEWS]);
}
}
else {
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for(Nd4jLong i=0; i<gradOLen; ++i) {
auto fidx = shape::subArrayIndex(i, gradO.getShapeInfo(), gradI.getShapeInfo());
gradI.p(fidx, gradI.e<T>(fidx) + gradOBuff[shape::getIndexOffset(i, gradO.getShapeInfo())]);
}
}
}
void tileBP(sd::LaunchContext * context, const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps) {
BUILD_SINGLE_SELECTOR(gradI.dataType(), tileBP_, (gradO, gradI, reps), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void tileBP_, (const NDArray& gradO /*input*/, NDArray& gradI /*output*/, const std::vector<Nd4jLong> reps), FLOAT_TYPES);
}
}
}

View File

@ -0,0 +1,47 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void trace_(const NDArray& input, NDArray& output) {
const int inRank = input.rankOf();
auto setOfSubArrs = input.allTensorsAlongDimension({inRank-2, inRank-1});
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++)
output.p(i, setOfSubArrs.at(i)->getTrace());
};
samediff::Threads::parallel_for(func, 0, setOfSubArrs.size());
}
void trace(sd::LaunchContext * context, const NDArray& input, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), trace_, (input, output), LIBND4J_TYPES);
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,56 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void triuBP_(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal) {
auto dOdI = NDArray(&gradO); // dO/dI
const_cast<NDArray&>(input).fillAsTriangular<T>(0, diagonal, dOdI.sizeAt(-1), dOdI, 'b');
int dLen = dOdI.lengthOf();
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
if (dOdI.t<T>(i) != static_cast<T>(0.f))
dOdI.t<T>(i) = static_cast<T>(1.f);
}
};
samediff::Threads::parallel_for(func, 0, dLen);
// FIXME: !!!
gradI.assign(dOdI * gradO); // chain rule: dLoss/dI = dO/dI * dLoss/dO
}
void triuBP(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int diagonal) {
BUILD_SINGLE_SELECTOR(gradO.dataType(), triuBP_, (context, input, gradO, gradI, diagonal), LIBND4J_TYPES);
}
}
}
}

View File

@ -34,7 +34,7 @@ namespace sd {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T, typename Z>
static __global__ void global_mergeMaxIndex_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
static __global__ void mergeMaxIndexCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<Z*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
@ -53,18 +53,18 @@ namespace sd {
mVal = val;
}
}
__syncthreads();
output[shape::getIndexOffset(e, outputShape)] = mIdx;
}
}
template <typename T, typename Z>
static void mergeMaxIndex_(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
static void mergeMaxIndex_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
for (int e = 0; e < inArrs.size(); e++) {
int nArrSize = static_cast<int>(inArrs.size());
std::vector<void*> inBuffers(nArrSize), inShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
@ -75,25 +75,27 @@ namespace sd {
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf();
global_mergeMaxIndex_<T,Z><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxIndexCudaLauncher<T, Z> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, nArrSize, output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({&output}, {});
for (auto v:inArrs)
v->syncToDevice();
void mergeMaxIndex(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({ &output }, inArrs);
BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (context, inArrs, output), LIBND4J_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({&output}, {});
NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeMax_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
static __global__ void mergeMaxCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
@ -103,24 +105,25 @@ namespace sd {
T mVal = -DataTypeUtils::max<T>();
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong *>(inShapes[i]);
auto x = reinterpret_cast<const T*>(inArrs[i]);
auto xShape = reinterpret_cast<const Nd4jLong*>(inShapes[i]);
auto val = x[shape::getIndexOffset(e, xShape)];;
if (mVal < val)
mVal = val;
}
__syncthreads();
output[shape::getIndexOffset(e, outputShape)] = mVal;
}
}
template<typename T>
static void mergeMax_(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
static void mergeMax_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
for (int e = 0; e < inArrs.size(); e++) {
int nArrsSize = static_cast<int>(inArrs.size());
std::vector<void*> inBuffers(nArrsSize), inShapes(nArrsSize);
for (int e = 0; e < nArrsSize; e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
@ -131,23 +134,134 @@ namespace sd {
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf();
global_mergeMax_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, nArrsSize, output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
void mergeMax(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({&output}, {});
for (auto v:inArrs)
v->syncToDevice();
void mergeMax(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({ &output }, inArrs);
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (context, inArrs, output), LIBND4J_TYPES);
NDArray::registerSpecialUse({&output}, {});
NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeAvg_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
static __global__ void mergeMaxBpCudaLauncher(void** inArrs, void** inShapes, void* vgradient, Nd4jLong* gradientShape, const int numArrays,
void** outArrs, void** outShapes, Nd4jLong length, bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
int nMaxIndex = 0;
auto xOffset = e, zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
if (!bSameOrderAndEws1) {
auto xShape = reinterpret_cast<Nd4jLong*>(inShapes[i]);
xOffset = shape::getOffset(xShape, coords);
}
auto val = x[xOffset];
if (mVal < val) {
mVal = val;
nMaxIndex = i;
}
}
// outputs have to be pre-nullify
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[nMaxIndex]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[nMaxIndex]);
output[zOffset] = grad[gradOffset];
}
}
template<typename T>
static void mergeMaxBp_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs, int nArrSize, bool bSameOrderAndEws1) {
std::vector<void*> inBuffers(nArrSize), inShapes(nArrSize), outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
outBuffers[e] = outArrs[e]->getSpecialBuffer();
outShapes[e] = outArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeMaxBp");
auto pInBuffers = reinterpret_cast<void**>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void*)));
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = inArrs[nArrSize]->lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxBpCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, inArrs[nArrSize]->getSpecialBuffer(),
inArrs[nArrSize]->getSpecialShapeInfo(), nArrSize, pOutBuffers, pOutShapes,
length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeMaxBp(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
// not use gradient
int nArrSize = static_cast<int>(inArrs.size() - 1);
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>&>(outArrs);
NDArray::prepareSpecialUse(out, inArrs);
bool bSameOrderAndEws1 = (1 == inArrs[nArrSize]->ews());
auto ordering = inArrs[nArrSize]->ordering();
for (int i = 0; i < nArrSize; ++i) {
bSameOrderAndEws1 &= (ordering == inArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == inArrs[i]->ews());
bSameOrderAndEws1 &= (ordering == outArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == outArrs[i]->ews());
}
BUILD_SINGLE_SELECTOR(inArrs[nArrSize]->dataType(), mergeMaxBp_, (context, inArrs, outArrs, nArrSize, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::registerSpecialUse( out, inArrs );
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAvgCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
@ -168,9 +282,9 @@ namespace sd {
}
template<typename T>
static void mergeAvg_(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
static void mergeAvg_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
std::vector<void*> inBuffers(inArrs.size()), inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
@ -183,24 +297,107 @@ namespace sd {
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf();
global_mergeAvg_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAvgCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, (int)inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
void mergeAvg(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({&output}, {});
for (auto v:inArrs)
v->syncToDevice();
void mergeAvg(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({ &output }, inArrs);
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (context, inArrs, output), FLOAT_TYPES);
NDArray::registerSpecialUse({&output}, {});
NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAvgBpCudaLauncher(void* vgradient, Nd4jLong* gradientShape, void** outArrs, void** outShapes,
const int numArrays, Nd4jLong length, bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
auto zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[i]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[i]);
output[zOffset] = grad[gradOffset] / numArrays;
}
}
}
template<typename T>
static void mergeAvgBp_(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs, bool bSameOrderAndEws1) {
int nArrSize = static_cast<int>(outArrs.size());
std::vector<void*> outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
outBuffers[e] = outArrs[e]->getSpecialBuffer();
outShapes[e] = outArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeAvgBp");
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = gradient.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAvgBpCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (gradient.getSpecialBuffer(), gradient.getSpecialShapeInfo(),
pOutBuffers, pOutShapes, nArrSize, length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeAvgBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>&>(outArrs);
NDArray::prepareSpecialUse( out, { &gradient });
bool bSameOrderAndEws1 = (1 == gradient.ews());
auto ordering = gradient.ordering();
for (const auto& v : outArrs) {
bSameOrderAndEws1 &= (ordering == v->ordering());
bSameOrderAndEws1 &= (1 == v->ews());
}
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAvgBp_, (context, gradient, outArrs, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::prepareSpecialUse(out, { &gradient });
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void global_mergeAdd_(void **inArrs, void **inShapes, const int numArrays, void *voutput, Nd4jLong *outputShape, Nd4jLong length) {
static __global__ void mergeAddCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
@ -221,11 +418,12 @@ namespace sd {
}
template<typename T>
static void mergeAdd_(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
std::vector<void *> inBuffers(inArrs.size());
std::vector<void *> inShapes(inArrs.size());
static void mergeAdd_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
for (int e = 0; e < inArrs.size(); e++) {
int nArrSize = static_cast<int>(inArrs.size());
std::vector<void*> inBuffers(nArrSize), inShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->getSpecialBuffer();
inShapes[e] = inArrs[e]->getSpecialShapeInfo();
}
@ -236,21 +434,104 @@ namespace sd {
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf();
global_mergeAdd_<T><<<512, 512, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int) inArrs.size(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAddCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (pInBuffers, pInShapes, nArrSize, output.getSpecialBuffer(), output.getSpecialShapeInfo(), length);
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output), NUMERIC_TYPES);
BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output), NUMERIC_TYPES);
void mergeAdd(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({&output}, {});
for (auto v:inArrs)
v->syncToDevice();
void mergeAdd(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({ &output }, inArrs);
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (context, inArrs, output), NUMERIC_TYPES);
NDArray::registerSpecialUse({&output}, {});
NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAddBpCudaLauncher(void* vgradient, Nd4jLong* gradientShape, void** outArrs, void** outShapes,
const int numArrays, Nd4jLong length, bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
auto zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[i]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[i]);
output[zOffset] = grad[gradOffset];
}
}
}
template<typename T>
static void mergeAddBp_(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs, bool bSameOrderAndEws1) {
int nArrSize = static_cast<int>(outArrs.size());
std::vector<void*> outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
outBuffers[e] = outArrs[e]->getSpecialBuffer();
outShapes[e] = outArrs[e]->getSpecialShapeInfo();
}
PointersManager manager(context, "mergeAddBp");
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = gradient.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAddBpCudaLauncher<T> << <blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream() >> > (gradient.getSpecialBuffer(), gradient.getSpecialShapeInfo(),
pOutBuffers, pOutShapes, nArrSize, length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>& >(outArrs);
NDArray::prepareSpecialUse( out, { &gradient });
bool bSameOrderAndEws1 = (1 == gradient.ews());
auto ordering = gradient.ordering();
for (const auto& v : outArrs) {
bSameOrderAndEws1 &= (ordering == v->ordering());
bSameOrderAndEws1 &= (1 == v->ews());
}
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAddBp_, (context, gradient, outArrs, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::prepareSpecialUse( out, { &gradient });
}
}
}
}

View File

@ -52,13 +52,16 @@ namespace helpers {
void scatterSimple(sd::LaunchContext * context, const int opId, NDArray& input, const NDArray& updates, const NDArray& indices, const std::vector<int>& dimensions);
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output);
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeMax(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output);
void mergeMax(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeMaxBp(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs);
void mergeAvg(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output);
void mergeAvg(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeAvgBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs);
void mergeAdd(sd::LaunchContext * context, const std::vector<NDArray*>& inArrs, NDArray& output);
void mergeAdd(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs);
void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace);
void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace);

View File

@ -955,7 +955,160 @@ TEST_F(DeclarableOpsTests13, mergemax_2) {
ASSERT_EQ(20, status);
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergemax_bp_1) {
NDArray x1('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x2('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x3('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray grad('c', { 5, 5 }, sd::DataType::FLOAT32);
x1.assign(3);
x2.assign(1);
x3.assign(2);
grad.linspace(.1, .1);
sd::ops::mergemax_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
auto z = result.at(0);
ASSERT_TRUE(grad.isSameShape(z));
ASSERT_TRUE(grad.equalsTo(z));
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergemax_bp_2) {
NDArray x1('c', { 2, 5 }, { 1,2,3,4,5,4,3,2,1,0 }, sd::DataType::FLOAT32);
NDArray x2('c', { 2, 5 }, { 0,1,2,3,4,5,6,7,8,9 }, sd::DataType::FLOAT32);
NDArray x3('c', { 2, 5 }, { 0,1,1,2,3,4,7,5,8,10 }, sd::DataType::FLOAT32);
NDArray grad('c', { 2, 5 }, sd::DataType::FLOAT32);
grad.linspace(.1, .1);
NDArray exp1('c', { 2, 5 }, { 0.1, 0.2, 0.3, 0.4, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0 }, sd::DataType::FLOAT32);
NDArray exp2('c', { 2, 5 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 0.8, 0.9, 0.0 }, sd::DataType::FLOAT32);
NDArray exp3('c', { 2, 5 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 1.0 }, sd::DataType::FLOAT32);
sd::ops::mergemax_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
auto z1 = result.at(0);
auto z2 = result.at(1);
auto z3 = result.at(2);
ASSERT_TRUE(exp1.isSameShape(z1));
ASSERT_TRUE(exp1.equalsTo(z1));
ASSERT_TRUE(exp2.isSameShape(z2));
ASSERT_TRUE(exp2.equalsTo(z2));
ASSERT_TRUE(exp3.isSameShape(z3));
ASSERT_TRUE(exp3.equalsTo(z3));
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergemax_bp_3) {
NDArray x1C('c', { 2, 5 }, { 1,2,3,4,5,4,3,2,1,0 }, sd::DataType::FLOAT32);
NDArray x2C('c', { 2, 5 }, { 0,1,2,3,4,5,6,7,8,9 }, sd::DataType::FLOAT32);
NDArray x3C('c', { 2, 5 }, { 0,1,1,2,3,4,7,5,8,10 }, sd::DataType::FLOAT32);
NDArray grad('c', { 2, 5 }, sd::DataType::FLOAT32);
grad.linspace(.1, .1);
NDArray x1('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray x2('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray x3('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray exp1C('c', { 2, 5 }, { 0.1, 0.2, 0.3, 0.4, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0 }, sd::DataType::FLOAT32);
NDArray exp2C('c', { 2, 5 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 0.8, 0.9, 0.0 }, sd::DataType::FLOAT32);
NDArray exp3C('c', { 2, 5 }, { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0, 1.0 }, sd::DataType::FLOAT32);
NDArray exp1('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray exp2('f', { 2, 5 }, sd::DataType::FLOAT32);
NDArray exp3('f', { 2, 5 }, sd::DataType::FLOAT32);
x1.assign(x1C);
x2.assign(x2C);
x3.assign(x3C);
exp1.assign(exp1C);
exp2.assign(exp2C);
exp3.assign(exp3C);
sd::ops::mergemax_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
auto z1 = result.at(0);
auto z2 = result.at(1);
auto z3 = result.at(2);
ASSERT_TRUE(exp1.isSameShape(z1));
ASSERT_TRUE(exp1.equalsTo(z1));
ASSERT_TRUE(exp2.isSameShape(z2));
ASSERT_TRUE(exp2.equalsTo(z2));
ASSERT_TRUE(exp3.isSameShape(z3));
ASSERT_TRUE(exp3.equalsTo(z3));
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergeadd_bp_1) {
NDArray x1('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x2('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x3('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray grad('c', { 5, 5 }, sd::DataType::FLOAT32);
x1.assign(3);
x2.assign(1);
x3.assign(2);
grad.linspace(.1, .1);
sd::ops::mergeadd_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
for (int i = 0; i < 3; i++) {
auto z = result.at(0);
ASSERT_TRUE(grad.isSameShape(z));
ASSERT_TRUE(grad.equalsTo(z));
}
}
/////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, mergeavg_bp_1) {
NDArray x1('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x2('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray x3('c', { 5, 5 }, sd::DataType::FLOAT32);
NDArray grad('c', { 5, 5 }, sd::DataType::FLOAT32);
x1.assign(3);
x2.assign(1);
x3.assign(2);
grad.linspace(.1, .1);
sd::ops::mergeavg_bp op;
auto result = op.evaluate({ &x1, &x2, &x3, &grad }, {}, {});
ASSERT_EQ(Status::OK(), result.status());
ASSERT_EQ(3, result.size());
grad.applyScalar(sd::scalar::Divide, 3, grad);
for (int i = 0; i < 3; i++) {
auto z = result.at(i);
ASSERT_TRUE(grad.isSameShape(z));
ASSERT_TRUE(grad.equalsTo(z));
}
}
///////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests13, lstmLayer_1) {