SameDiff If, While, and Misc changes (#52)
* softmax and logSoftmax w/ dimension Signed-off-by: Ryan Nett <rnett@skymind.io> * start of while Signed-off-by: Ryan Nett <rnett@skymind.io> * if, start of javadocs Signed-off-by: Ryan Nett <rnett@skymind.io> * while foreward pass working, backprop WIP Signed-off-by: Ryan Nett <rnett@skymind.io> * no backprop Signed-off-by: Ryan Nett <rnett@skymind.io> * Tensorflow style if/while (& tests), name scope fixes (and test), argument interceptor (for if/while), use '_' in op names instead of ':' Signed-off-by: Ryan Nett <rnett@skymind.io> * javadoc Signed-off-by: Ryan Nett <rnett@skymind.io> * many fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * many fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * Some fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * cleanup if condition doesn't return boolean Signed-off-by: Ryan Nett <rnett@skymind.io> * serialization fix Signed-off-by: Ryan Nett <rnett@skymind.io> * use constants instead of magic numbers Signed-off-by: Ryan Nett <rnett@skymind.io>master
parent
2d991f5445
commit
daf3950d8d
|
@ -451,6 +451,17 @@ public abstract class DifferentialFunction {
|
|||
}
|
||||
}
|
||||
|
||||
public void replaceArg(int i, SDVariable newArg){
|
||||
if(sameDiff != null){
|
||||
sameDiff.replaceArgFor(i, newArg, this);
|
||||
if(args()[i].isPlaceHolder() && !newArg.isPlaceHolder()){
|
||||
sameDiff.removePropertyToResolve(this, args()[i].getVarName());
|
||||
} else if(!args()[i].isPlaceHolder() && newArg.isPlaceHolder()){
|
||||
sameDiff.addPropertyToResolve(this, newArg.getVarName());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Return the output variables for this differential function.
|
||||
|
@ -652,9 +663,9 @@ public abstract class DifferentialFunction {
|
|||
scope = "";
|
||||
else
|
||||
scope = scope + "/";
|
||||
String varName = scope + sameDiff.generateNewVarName(opName(),argIndex);
|
||||
String varName = scope + sameDiff.generateNewVarName(opName(),argIndex).replace(":", "_");
|
||||
while(sameDiff.functionExists(varName)) {
|
||||
varName = scope + sameDiff.generateNewVarName(opName(), argIndex);
|
||||
varName = scope + sameDiff.generateNewVarName(opName(), argIndex).replace(":", "_");
|
||||
argIndex++;
|
||||
}
|
||||
|
||||
|
|
|
@ -16,6 +16,11 @@
|
|||
|
||||
package org.nd4j.autodiff.functions;
|
||||
|
||||
import java.lang.reflect.Method;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import lombok.Data;
|
||||
import lombok.NonNull;
|
||||
import lombok.val;
|
||||
|
@ -30,36 +35,183 @@ import org.nd4j.linalg.api.ndarray.INDArray;
|
|||
import org.nd4j.linalg.api.ops.NoOp;
|
||||
import org.nd4j.linalg.api.ops.impl.broadcast.BiasAdd;
|
||||
import org.nd4j.linalg.api.ops.impl.broadcast.BiasAddGrad;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Enter;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Exit;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Merge;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.NextIteration;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Switch;
|
||||
import org.nd4j.linalg.api.ops.impl.image.ExtractImagePatches;
|
||||
import org.nd4j.linalg.api.ops.impl.indexaccum.*;
|
||||
import org.nd4j.linalg.api.ops.impl.indexaccum.FirstIndex;
|
||||
import org.nd4j.linalg.api.ops.impl.indexaccum.IAMax;
|
||||
import org.nd4j.linalg.api.ops.impl.indexaccum.IAMin;
|
||||
import org.nd4j.linalg.api.ops.impl.indexaccum.IMax;
|
||||
import org.nd4j.linalg.api.ops.impl.indexaccum.IMin;
|
||||
import org.nd4j.linalg.api.ops.impl.indexaccum.LastIndex;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.ExternalErrorsFunction;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.*;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.*;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.*;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.*;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.*;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.AvgPooling2D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.BatchNorm;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Col2Im;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Conv1D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Conv2D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Conv3D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.DeConv2D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.DeConv3D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.DeConv3DDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.DepthToSpace;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Im2col;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Im2colBp;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.LocalResponseNormalization;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.MaxPooling2D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Pooling3D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.SConv2D;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.SpaceToDepth;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Upsampling2d;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.Upsampling2dDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.Conv1DConfig;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.Conv2DConfig;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.Conv3DConfig;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.DeConv2DConfig;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.DeConv3DConfig;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.LocalResponseNormalizationConfig;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.Pooling2DConfig;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.config.Pooling3DConfig;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.AbsoluteDifferenceLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.CosineDistanceLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.HingeLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.HuberLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.L2Loss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.LogLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.LogPoissonLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.MeanPairwiseSquaredErrorLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.MeanSquaredErrorLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.SigmoidCrossEntropyLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.SoftmaxCrossEntropyLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.SoftmaxCrossEntropyWithLogitsLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.SparseSoftmaxCrossEntropyLossWithLogits;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.WeightedCrossEntropyLoss;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.AbsoluteDifferenceLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.CosineDistanceLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.HingeLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.HuberLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.LogLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.LogPoissonLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.MeanPairwiseSquaredErrorLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.MeanSquaredErrorLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.SigmoidCrossEntropyLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.SoftmaxCrossEntropyLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.SoftmaxCrossEntropyWithLogitsLossBp;
|
||||
import org.nd4j.linalg.api.ops.impl.loss.bp.SparseSoftmaxCrossEntropyLossWithLogitsBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.Mmul;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.MmulBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.Moments;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.NormalizeMoments;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.TensorMmul;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.ZeroFraction;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bool.All;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bool.Any;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.*;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.CumProdBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.CumSumBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.DotBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.MaxBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.MeanBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.MinBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.Norm1Bp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.Norm2Bp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.NormMaxBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.ProdBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.SquaredNormBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.StandardDeviationBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.SumBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.bp.VarianceBp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.custom.BatchMmul;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.custom.LogSumExp;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.*;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.AMean;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.Entropy;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.LogEntropy;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.Mean;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.Norm1;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.Norm2;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.NormMax;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.ShannonEntropy;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.floating.SquaredNorm;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.longer.CountNonZero;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.longer.CountZero;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.longer.MatchCondition;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.same.AMax;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.same.AMin;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.same.ASum;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.same.Max;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.same.Min;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.same.*;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce3.*;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.same.Prod;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce.same.Sum;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce3.CosineDistance;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce3.CosineSimilarity;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce3.Dot;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce3.EuclideanDistance;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce3.HammingDistance;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce3.JaccardDistance;
|
||||
import org.nd4j.linalg.api.ops.impl.reduce3.ManhattanDistance;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.LeakyReLU;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.LogX;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.Pow;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.*;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.comparison.*;
|
||||
import org.nd4j.linalg.api.ops.impl.scatter.*;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.*;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.PowDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.RectifiedLinear;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.Relu6;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarAdd;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarDivision;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarFMod;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarMax;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarMin;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarMultiplication;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarReverseDivision;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarReverseSubtraction;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarSet;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.ScalarSubtraction;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.Step;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarEquals;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarGreaterThan;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarGreaterThanOrEqual;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarLessThan;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarLessThanOrEqual;
|
||||
import org.nd4j.linalg.api.ops.impl.scalar.comparison.ScalarNotEquals;
|
||||
import org.nd4j.linalg.api.ops.impl.scatter.ScatterAdd;
|
||||
import org.nd4j.linalg.api.ops.impl.scatter.ScatterDiv;
|
||||
import org.nd4j.linalg.api.ops.impl.scatter.ScatterMax;
|
||||
import org.nd4j.linalg.api.ops.impl.scatter.ScatterMin;
|
||||
import org.nd4j.linalg.api.ops.impl.scatter.ScatterMul;
|
||||
import org.nd4j.linalg.api.ops.impl.scatter.ScatterSub;
|
||||
import org.nd4j.linalg.api.ops.impl.scatter.ScatterUpdate;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Broadcast;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Concat;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.ConfusionMatrix;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Cross;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Diag;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.DiagPart;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.ExpandDims;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Gather;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.GatherNd;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.MergeAvg;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.MergeMax;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.MeshGrid;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.OneHot;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.OnesLike;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.ParallelStack;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Permute;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Rank;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.ReductionShape;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Repeat;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Reshape;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.SequenceMask;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Size;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.SizeAt;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Slice;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Squeeze;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Stack;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.StridedSlice;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Tile;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Transpose;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.Unstack;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.ZerosLike;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.bp.SliceBp;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.bp.StridedSliceBp;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.bp.TileBp;
|
||||
|
@ -77,37 +229,165 @@ import org.nd4j.linalg.api.ops.impl.transforms.clip.ClipByNorm;
|
|||
import org.nd4j.linalg.api.ops.impl.transforms.clip.ClipByValue;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.comparison.CompareAndReplace;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.comparison.CompareAndSet;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.segment.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.ATan2;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.Assign;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.BatchToSpace;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.CumProd;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.CumSum;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.Dilation2D;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.DotProductAttention;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.DotProductAttentionBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.DynamicPartition;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.DynamicStitch;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.EqualTo;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.Fill;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThan;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThanOrEqual;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.InvertPermutation;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.IsNonDecreasing;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.IsNumericTensor;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.IsStrictlyIncreasing;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.LayerNorm;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.LayerNormBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.LessThan;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.LessThanOrEqual;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.ListDiff;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.LogSoftMax;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.MatrixDeterminant;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.MatrixInverse;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.MatrixSetDiag;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.MultiHeadDotProductAttention;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.MultiHeadDotProductAttentionBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.NotEqualTo;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.Reverse;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.ReverseSequence;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.SoftMax;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.SpaceToBatch;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.Standardize;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.StandardizeBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.Trace;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.XwPlusB;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMax;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMean;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentMin;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentProd;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.segment.SegmentSum;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.dtype.Cast;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.floating.RSqrt;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.floating.Sqrt;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.CubeDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.DynamicPartitionBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.ELUDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.GradientBackwardsMarker;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.HardTanhDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.LeakyReLUDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.LogSoftMaxDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.RationalTanhDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.RectifiedTanhDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.Relu6Derivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.SELUDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.SigmoidDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.SoftSignDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.SoftmaxBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.AddOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.DivOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.FloorDivOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.FloorModOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.MergeAddOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.MulOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.RDivOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.RSubOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.SquaredDifferenceOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.SubOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.TruncateDivOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.AddBpOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.DivBpOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.FloorDivBpOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.FloorModBpOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.MulBpOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.RDivBpOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.RSubBpOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.bp.SubBpOp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool.And;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool.Or;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool.Xor;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Abs;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Ceil;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Cube;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Floor;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Identity;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Negative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Reciprocal;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Round;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Sign;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.same.Square;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMax;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMean;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentMin;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentProd;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentSqrtN;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.UnsortedSegmentSum;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.SegmentMaxBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.SegmentMeanBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.SegmentMinBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.SegmentProdBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.SegmentSumBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.UnsortedSegmentMaxBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.UnsortedSegmentMeanBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.UnsortedSegmentMinBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.UnsortedSegmentProdBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.UnsortedSegmentSqrtNBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.segment.bp.UnsortedSegmentSumBp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.ACos;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.ACosh;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.ASin;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.ASinh;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.ATan;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.ATanh;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Cos;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Cosh;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.ELU;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Erf;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Erfc;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Exp;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Expm1;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.GELU;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.GELUDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.HardSigmoid;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.HardTanh;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Log;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Log1p;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.LogSigmoid;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.PreciseGELU;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.PreciseGELUDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.RationalTanh;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.RectifiedTanh;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.SELU;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Sigmoid;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Sin;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Sinh;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.SoftPlus;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.SoftSign;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Swish;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.SwishDerivative;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Tan;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.strict.Tanh;
|
||||
import org.nd4j.linalg.api.ops.random.custom.DistributionUniform;
|
||||
import org.nd4j.linalg.api.ops.random.custom.RandomBernoulli;
|
||||
import org.nd4j.linalg.api.ops.random.custom.RandomExponential;
|
||||
import org.nd4j.linalg.api.ops.random.custom.RandomNormal;
|
||||
import org.nd4j.linalg.api.ops.random.impl.*;
|
||||
import org.nd4j.linalg.api.ops.random.impl.BernoulliDistribution;
|
||||
import org.nd4j.linalg.api.ops.random.impl.BinomialDistribution;
|
||||
import org.nd4j.linalg.api.ops.random.impl.DropOutInverted;
|
||||
import org.nd4j.linalg.api.ops.random.impl.GaussianDistribution;
|
||||
import org.nd4j.linalg.api.ops.random.impl.LogNormalDistribution;
|
||||
import org.nd4j.linalg.api.ops.random.impl.Range;
|
||||
import org.nd4j.linalg.api.ops.random.impl.TruncatedNormalDistribution;
|
||||
import org.nd4j.linalg.api.ops.random.impl.UniformDistribution;
|
||||
import org.nd4j.linalg.api.shape.Shape;
|
||||
import org.nd4j.linalg.indexing.conditions.Condition;
|
||||
import org.nd4j.linalg.util.ArrayUtil;
|
||||
|
||||
import java.lang.reflect.Method;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
*
|
||||
*/
|
||||
|
@ -1611,11 +1891,24 @@ public class DifferentialFunctionFactory {
|
|||
}
|
||||
|
||||
|
||||
public SDVariable logSoftmax(SDVariable i_v, int dimension) {
|
||||
validateDifferentialFunctionsameDiff(i_v);
|
||||
return new LogSoftMax(sameDiff(), i_v, dimension).outputVariable();
|
||||
|
||||
}
|
||||
|
||||
|
||||
public SDVariable logSoftmaxDerivative(SDVariable arg, SDVariable wrt) {
|
||||
validateDifferentialFunctionsameDiff(arg);
|
||||
return new LogSoftMaxDerivative(sameDiff(), arg, wrt).outputVariable();
|
||||
}
|
||||
|
||||
|
||||
public SDVariable logSoftmaxDerivative(SDVariable arg, SDVariable wrt, int dimension) {
|
||||
validateDifferentialFunctionsameDiff(arg);
|
||||
return new LogSoftMaxDerivative(sameDiff(), arg, wrt, dimension).outputVariable();
|
||||
}
|
||||
|
||||
public SDVariable logSumExp(SDVariable arg, boolean keepDims, int... dimension) {
|
||||
return new LogSumExp(sameDiff(), arg, keepDims, dimension).outputVariable();
|
||||
}
|
||||
|
@ -2296,6 +2589,22 @@ public class DifferentialFunctionFactory {
|
|||
return tile(func, ArrayUtil.toInts(input.getShape()));
|
||||
}
|
||||
|
||||
public SDVariable enter(SDVariable x, String frameName){
|
||||
return new Enter(sameDiff, frameName, x).outputVariable();
|
||||
}
|
||||
|
||||
public SDVariable enter(SDVariable x, String frameName, boolean isConstant){
|
||||
return new Enter(sameDiff, frameName, x, isConstant).outputVariable();
|
||||
}
|
||||
|
||||
public SDVariable exit(SDVariable x){
|
||||
return new Exit(sameDiff, x).outputVariable();
|
||||
}
|
||||
|
||||
public SDVariable nextIteration(SDVariable x){
|
||||
return new NextIteration(sameDiff, x).outputVariable();
|
||||
}
|
||||
|
||||
|
||||
public String toString() {
|
||||
return "DifferentialFunctionFactory{methodNames=" + methodNames + "}";
|
||||
|
|
|
@ -0,0 +1,30 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2019 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
package org.nd4j.autodiff.samediff;
|
||||
|
||||
/**
|
||||
* Internal interface used to apply a transform to any arguments used within a certain block
|
||||
*
|
||||
* Intended for internal use only.
|
||||
*
|
||||
* Managed with {@link SameDiff#addArgumentInterceptor(ArgumentInterceptor)}, {@link SameDiff#removeArgumentInterceptor()},
|
||||
* {@link SameDiff#pauseArgumentInterceptor()}, and {@link SameDiff#unpauseArgumentInterceptor()}
|
||||
*
|
||||
*/
|
||||
public interface ArgumentInterceptor {
|
||||
SDVariable intercept(SDVariable argument);
|
||||
}
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.nd4j.autodiff.samediff;
|
||||
|
||||
import java.util.Objects;
|
||||
import lombok.*;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import onnx.OnnxProto3;
|
||||
|
@ -91,7 +92,7 @@ public class SDVariable extends DifferentialFunction implements Serializable {
|
|||
Preconditions.checkState(dataType != DataType.UNKNOWN, "Unknown datatype is not allowed for SDVariables (variable name: %s)", varName);
|
||||
|
||||
String nameScope = sameDiff.currentNameScope();
|
||||
if(nameScope != null){
|
||||
if(nameScope != null && !varName.startsWith(nameScope + "/")){
|
||||
varName = nameScope + "/" + varName;
|
||||
}
|
||||
|
||||
|
@ -1785,26 +1786,6 @@ public class SDVariable extends DifferentialFunction implements Serializable {
|
|||
(variableType == VariableType.PLACEHOLDER && shape != null ? ",shape=" + Arrays.toString(shape): "") + ")";
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) return true;
|
||||
if (o == null || getClass() != o.getClass()) return false;
|
||||
if (!super.equals(o)) return false;
|
||||
|
||||
SDVariable that = (SDVariable) o;
|
||||
|
||||
if (varName != null ? !varName.equals(that.varName) : that.varName != null) return false;
|
||||
return weightInitScheme != null ? weightInitScheme.equals(that.weightInitScheme) : that.weightInitScheme == null;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
int result = super.hashCode();
|
||||
result = 31 * result + (varName != null ? varName.hashCode() : 0);
|
||||
result = 31 * result + (weightInitScheme != null ? weightInitScheme.hashCode() : 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String onnxName() {
|
||||
throw new NoOpNameFoundException("No onnx op opName found for " + opName());
|
||||
|
@ -1966,4 +1947,35 @@ public class SDVariable extends DifferentialFunction implements Serializable {
|
|||
return x;
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (this == o) {
|
||||
return true;
|
||||
}
|
||||
if (!(o instanceof SDVariable)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
SDVariable that = (SDVariable) o;
|
||||
|
||||
if (!Objects.equals(varName, that.varName)) {
|
||||
return false;
|
||||
}
|
||||
if (variableType != that.variableType) {
|
||||
return false;
|
||||
}
|
||||
if(sameDiff != that.sameDiff){
|
||||
return false;
|
||||
}
|
||||
return dataType == that.dataType;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
int result = super.hashCode();
|
||||
result = 31 * result + (varName != null ? varName.hashCode() : 0);
|
||||
result = 31 * result + (variableType != null ? variableType.hashCode() : 0);
|
||||
result = 31 * result + (dataType != null ? dataType.hashCode() : 0);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -53,6 +53,7 @@ import org.nd4j.linalg.api.ops.executioner.OpExecutioner;
|
|||
import org.nd4j.linalg.api.ops.impl.controlflow.If;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.While;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Enter;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Merge;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Switch;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.ExternalErrorsFunction;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.tensorops.TensorArray;
|
||||
|
@ -246,6 +247,14 @@ public class SameDiff extends SDBaseOps {
|
|||
private boolean resolvedVariables = false;
|
||||
|
||||
|
||||
|
||||
@Getter
|
||||
private Stack<ArgumentInterceptor> argumentInterceptors = new Stack<>();
|
||||
@Getter
|
||||
private Set<ArgumentInterceptor> pausedArgumentInterceptors = new HashSet<>();
|
||||
|
||||
private Set<String> blockNames = new HashSet<>();
|
||||
|
||||
@Getter
|
||||
@Setter
|
||||
boolean logExecution = true;
|
||||
|
@ -472,7 +481,10 @@ public class SameDiff extends SDBaseOps {
|
|||
if(scope == null){
|
||||
return name;
|
||||
}
|
||||
return scope + "/" + name;
|
||||
if(!name.startsWith(scope + "/"))
|
||||
return scope + "/" + name;
|
||||
else
|
||||
return name;
|
||||
}
|
||||
|
||||
//Intentionally package private
|
||||
|
@ -533,6 +545,24 @@ public class SameDiff extends SDBaseOps {
|
|||
}
|
||||
|
||||
|
||||
public List<SameDiffOp> getOpsInScope(NameScope scope){
|
||||
ArrayList<SameDiffOp> ops = new ArrayList<>();
|
||||
for(SameDiffOp v : this.ops.values()){
|
||||
if(v.getName().startsWith(scope.getName()))
|
||||
ops.add(v);
|
||||
}
|
||||
return ops;
|
||||
}
|
||||
|
||||
public List<SDVariable> getVariablesInScope(NameScope scope){
|
||||
ArrayList<SDVariable> vars = new ArrayList<>();
|
||||
for(SDVariable v : variables()){
|
||||
if(v.getVarName().startsWith(scope.getName()))
|
||||
vars.add(v);
|
||||
}
|
||||
return vars;
|
||||
}
|
||||
|
||||
/**
|
||||
* @param sameDiff
|
||||
* @return
|
||||
|
@ -1109,6 +1139,19 @@ public class SameDiff extends SDBaseOps {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Remove a property to resolve added with {@link #addPropertyToResolve(DifferentialFunction, String)}
|
||||
*
|
||||
* @param forFunction the function to add the property to resolve for
|
||||
* @param arrayName the array name
|
||||
*/
|
||||
public void removePropertyToResolve(DifferentialFunction forFunction, String arrayName) {
|
||||
if (propertiesToResolve.containsKey(forFunction.getOwnName())) {
|
||||
List<String> newVal = propertiesToResolve.get(forFunction.getOwnName());
|
||||
newVal.remove(arrayName);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the properties to resolve for the given function.
|
||||
* This is typically used right before execution in model import in
|
||||
|
@ -1272,6 +1315,92 @@ public class SameDiff extends SDBaseOps {
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a new argument interceptor to the interceptor stack
|
||||
*
|
||||
* For internal use only.
|
||||
*
|
||||
* When a op is added with arguments, most recent argument interceptor is called on it.
|
||||
* If ops are added in that interceptor, the next most recent will be called on their args, and so on.
|
||||
*
|
||||
* @param interceptor the argument interceptor to add
|
||||
*/
|
||||
public void addArgumentInterceptor(@NonNull ArgumentInterceptor interceptor){
|
||||
argumentInterceptors.push(interceptor);
|
||||
}
|
||||
|
||||
private boolean isArgumentInterceptorPaused(@NonNull ArgumentInterceptor interceptor){
|
||||
return pausedArgumentInterceptors.contains(interceptor);
|
||||
}
|
||||
|
||||
private ArgumentInterceptor getArgumentInterceptorToUse(){
|
||||
|
||||
if(argumentInterceptors.isEmpty())
|
||||
return null;
|
||||
|
||||
ArgumentInterceptor use = argumentInterceptors.peek();
|
||||
int i = 1;
|
||||
while(isArgumentInterceptorPaused(use)){
|
||||
if(argumentInterceptors.size() - i < 0)
|
||||
return null;
|
||||
|
||||
use = argumentInterceptors.elementAt(argumentInterceptors.size() - i);
|
||||
i++;
|
||||
}
|
||||
|
||||
return use;
|
||||
}
|
||||
|
||||
/**
|
||||
* Remote the top (most recently added) argument interceptor
|
||||
*
|
||||
* For internal use only.
|
||||
*/
|
||||
public void removeArgumentInterceptor(){
|
||||
if(!argumentInterceptors.isEmpty())
|
||||
argumentInterceptors.pop();
|
||||
}
|
||||
|
||||
/**
|
||||
* Pause the top (most recently added) argument interceptor
|
||||
*
|
||||
* For internal use only.
|
||||
*/
|
||||
public void pauseArgumentInterceptor(){
|
||||
pausedArgumentInterceptors.add(argumentInterceptors.peek());
|
||||
}
|
||||
|
||||
/**
|
||||
* Pause the given argument interceptor
|
||||
*
|
||||
* For internal use only.
|
||||
*
|
||||
* @param interceptor the argument interceptor to pause
|
||||
*/
|
||||
public void pauseArgumentInterceptor(@NonNull ArgumentInterceptor interceptor){
|
||||
pausedArgumentInterceptors.add(interceptor);
|
||||
}
|
||||
|
||||
/**
|
||||
* Unpause the top (most recently added) argument interceptor
|
||||
*
|
||||
* For internal use only.
|
||||
*/
|
||||
public void unpauseArgumentInterceptor(){
|
||||
pausedArgumentInterceptors.remove(argumentInterceptors.peek());
|
||||
}
|
||||
|
||||
/**
|
||||
* Unpause the top given argument interceptor
|
||||
*
|
||||
* For internal use only.
|
||||
*
|
||||
* @param interceptor the argument interceptor to unpause
|
||||
*/
|
||||
public void unpauseArgumentInterceptor(@NonNull ArgumentInterceptor interceptor){
|
||||
pausedArgumentInterceptors.remove(interceptor);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds incoming arguments for the specified differential function to the graph
|
||||
*
|
||||
|
@ -1279,6 +1408,17 @@ public class SameDiff extends SDBaseOps {
|
|||
* @param function Function
|
||||
*/
|
||||
public void addArgsFor(String[] variables, DifferentialFunction function) {
|
||||
|
||||
ArgumentInterceptor interceptor = getArgumentInterceptorToUse();
|
||||
|
||||
if(interceptor != null) {
|
||||
pauseArgumentInterceptor(interceptor);
|
||||
for (int i = 0; i < variables.length; i++) {
|
||||
variables[i] = interceptor.intercept(getVariable(variables[i])).getVarName();
|
||||
}
|
||||
unpauseArgumentInterceptor(interceptor);
|
||||
}
|
||||
|
||||
if (function.getOwnName() == null)
|
||||
throw new ND4JIllegalStateException("Instance id can not be null. Function not initialized properly");
|
||||
|
||||
|
@ -1309,7 +1449,6 @@ public class SameDiff extends SDBaseOps {
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Adds incoming arguments for the specified differential function to the graph
|
||||
*
|
||||
|
@ -1317,6 +1456,7 @@ public class SameDiff extends SDBaseOps {
|
|||
* @param function Function
|
||||
*/
|
||||
public void addArgsFor(SDVariable[] variables, DifferentialFunction function) {
|
||||
|
||||
String[] varNames = new String[variables.length];
|
||||
for (int i = 0; i < varNames.length; i++) {
|
||||
if (variables[i] == null)
|
||||
|
@ -1326,6 +1466,58 @@ public class SameDiff extends SDBaseOps {
|
|||
addArgsFor(varNames, function);
|
||||
}
|
||||
|
||||
/**
|
||||
* Replaces the argument at i with newArg for function
|
||||
* Does not use (or remove) ArgumentInterceptor stuff
|
||||
*/
|
||||
public void replaceArgFor(int i, @NonNull SDVariable newArg, @NonNull DifferentialFunction function){
|
||||
|
||||
Preconditions.checkArgument(i < function.args().length, "Index out of range: function " +
|
||||
function.getOwnName() + " only has " + function.args().length + " args but you are trying" +
|
||||
"to replace the argument at " + i);
|
||||
|
||||
String oldName = function.arg(i).getVarName();
|
||||
String newName = newArg.getVarName();
|
||||
|
||||
if(function.arg(i).isPlaceHolder() && !newArg.isPlaceHolder()){
|
||||
boolean otherPlaceholders = false;
|
||||
for(int j = 0 ; j < function.argNames().length ; j++){
|
||||
if(j == i)
|
||||
continue;
|
||||
|
||||
if(function.arg(j).isPlaceHolder())
|
||||
otherPlaceholders = true;
|
||||
}
|
||||
|
||||
if(!otherPlaceholders)
|
||||
placeHolderFunctions.remove(function.getOwnName());
|
||||
} else if(!function.arg(i).isPlaceHolder() && newArg.isPlaceHolder()){
|
||||
if(!placeHolderFunctions.contains(function.getOwnName()))
|
||||
placeHolderFunctions.add(function.getOwnName());
|
||||
}
|
||||
|
||||
List<String> oldArgs = ops.get(function.getOwnName()).getInputsToOp();
|
||||
oldArgs = new ArrayList<>(oldArgs);
|
||||
oldArgs.set(i, newName);
|
||||
ops.get(function.getOwnName()).setInputsToOp(oldArgs);
|
||||
|
||||
List<String> funcs = this.variables.get(newName).getInputsForOp();
|
||||
|
||||
if (funcs == null) {
|
||||
funcs = new ArrayList<>();
|
||||
this.variables.get(newName).setInputsForOp(funcs);
|
||||
}
|
||||
if(!funcs.contains(function.getOwnName())) //Avoid duplicates for function names.
|
||||
funcs.add(function.getOwnName());
|
||||
|
||||
List<String> oldFuncs = this.variables.get(oldName).getInputsForOp();
|
||||
if(oldFuncs != null) {
|
||||
if(!ArrayUtils.contains(function.argNames(), oldName))
|
||||
oldFuncs.remove(function.getOwnName());
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the differential function (if any) that this variable is the output for
|
||||
*
|
||||
|
@ -1519,6 +1711,7 @@ public class SameDiff extends SDBaseOps {
|
|||
|
||||
//A bit of a hack for TF import: some TF graphs have Switch ops, where the output of one branch isn't consumed
|
||||
// by any ops. Consequently, during execution this "output" might never be available. So we'll exclude the output of execution here
|
||||
// This applies to SameDiff while loops as well
|
||||
if(o.getOp() instanceof Switch){
|
||||
continue;
|
||||
}
|
||||
|
@ -2239,6 +2432,7 @@ public class SameDiff extends SDBaseOps {
|
|||
if (name == null || name.length() < 1)
|
||||
name = getNewVarName();
|
||||
SDVariable v = new SDVariable(name, VariableType.CONSTANT, this, constant.shape(), constant.dataType(), null);
|
||||
name = v.getVarName();
|
||||
variables.put(name, Variable.builder().name(name).variable(v).build());
|
||||
constantArrays.put(name, new DeviceLocalNDArray(constant));
|
||||
return v;
|
||||
|
@ -2305,6 +2499,7 @@ public class SameDiff extends SDBaseOps {
|
|||
public SDVariable var(@NonNull String name, @NonNull VariableType variableType, WeightInitScheme weightInitScheme,
|
||||
org.nd4j.linalg.api.buffer.DataType dataType, long... shape) {
|
||||
String withScope = nameWithScope(name);
|
||||
|
||||
if (variables.containsKey(withScope)) {
|
||||
if(nameScopes.isEmpty()){
|
||||
throw new IllegalArgumentException("Another variable with the name " + name + " already exists (current name scope: \""
|
||||
|
@ -3414,12 +3609,9 @@ public class SameDiff extends SDBaseOps {
|
|||
|
||||
|
||||
/**
|
||||
* Creates a while statement
|
||||
*
|
||||
* @param sameDiffConditional
|
||||
* @param loopBody
|
||||
* @return
|
||||
* @deprecated Use {@link SDBaseOps#whileLoop(String[], String, SDVariable[], SameDiffSingleLambda, SameDiffLambda)}
|
||||
*/
|
||||
@Deprecated
|
||||
public While whileStatement(SameDiffConditional sameDiffConditional,
|
||||
SameDiffFunctionDefinition conditionBody,
|
||||
SameDiffFunctionDefinition loopBody
|
||||
|
@ -3435,11 +3627,9 @@ public class SameDiff extends SDBaseOps {
|
|||
}
|
||||
|
||||
/**
|
||||
* @param conditional
|
||||
* @param trueBody
|
||||
* @param falseBody
|
||||
* @return
|
||||
* @deprecated Use {@link SDBaseOps#ifCond(String, String, SameDiffNoArgSingleLambda, SameDiffNoArgSingleLambda, SameDiffNoArgSingleLambda)}
|
||||
*/
|
||||
@Deprecated
|
||||
public If ifStatement(SameDiffConditional conditional,
|
||||
SameDiffFunctionDefinition conditionBody,
|
||||
SameDiffFunctionDefinition trueBody,
|
||||
|
@ -5466,5 +5656,27 @@ public class SameDiff extends SDBaseOps {
|
|||
return out;
|
||||
}
|
||||
|
||||
/**
|
||||
* For internal use only.
|
||||
* Creates a new discinct block name from baseName.
|
||||
* Block names are used by If and While
|
||||
*/
|
||||
public String newBlockName(String baseName){
|
||||
|
||||
if(baseName == null)
|
||||
return null;
|
||||
|
||||
if(!blockNames.contains(baseName)){
|
||||
blockNames.add(baseName);
|
||||
return baseName;
|
||||
} else {
|
||||
int i = 1;
|
||||
while(blockNames.contains(baseName + "_" + i)){
|
||||
i++;
|
||||
}
|
||||
blockNames.add(baseName + "_" + i);
|
||||
return baseName + "_" + i;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -0,0 +1,24 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2019 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
package org.nd4j.autodiff.samediff;
|
||||
|
||||
/**
|
||||
* A basic SameDiff lambda, used in while loop creation (the body).
|
||||
*/
|
||||
public interface SameDiffLambda {
|
||||
SDVariable[] define(SameDiff sameDiff, SDVariable[] inputs);
|
||||
}
|
|
@ -0,0 +1,24 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2019 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
package org.nd4j.autodiff.samediff;
|
||||
|
||||
/**
|
||||
* A SameDiff lambda with only one output and no arguments. Used in if condition creation (the condition and bodies).
|
||||
*/
|
||||
public interface SameDiffNoArgSingleLambda {
|
||||
SDVariable define(SameDiff sameDiff);
|
||||
}
|
|
@ -0,0 +1,24 @@
|
|||
/*******************************************************************************
|
||||
* Copyright (c) 2015-2019 Skymind, Inc.
|
||||
*
|
||||
* This program and the accompanying materials are made available under the
|
||||
* terms of the Apache License, Version 2.0 which is available at
|
||||
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||
* License for the specific language governing permissions and limitations
|
||||
* under the License.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
******************************************************************************/
|
||||
|
||||
package org.nd4j.autodiff.samediff;
|
||||
|
||||
/**
|
||||
* A SameDiff lambda with only one output, used in while loop creation (the condition).
|
||||
*/
|
||||
public interface SameDiffSingleLambda {
|
||||
SDVariable define(SameDiff sameDiff, SDVariable[] inputs);
|
||||
}
|
|
@ -16,12 +16,25 @@
|
|||
|
||||
package org.nd4j.autodiff.samediff.ops;
|
||||
|
||||
import com.google.common.collect.Sets;
|
||||
import java.util.HashMap;
|
||||
import java.util.HashSet;
|
||||
import java.util.Map;
|
||||
import java.util.Set;
|
||||
import lombok.NonNull;
|
||||
import org.nd4j.autodiff.functions.DifferentialFunctionFactory;
|
||||
import org.nd4j.autodiff.samediff.ArgumentInterceptor;
|
||||
import org.nd4j.autodiff.samediff.NameScope;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.autodiff.samediff.SameDiffFunctionDefinition;
|
||||
import org.nd4j.autodiff.samediff.SameDiffLambda;
|
||||
import org.nd4j.autodiff.samediff.SameDiffNoArgSingleLambda;
|
||||
import org.nd4j.autodiff.samediff.SameDiffSingleLambda;
|
||||
import org.nd4j.autodiff.samediff.internal.SameDiffOp;
|
||||
import org.nd4j.linalg.api.blas.params.MMulTranspose;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Merge;
|
||||
import org.nd4j.linalg.api.ops.impl.shape.OneHot;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.gradient.GradientBackwardsMarker;
|
||||
import org.nd4j.linalg.indexing.conditions.Condition;
|
||||
|
@ -3142,4 +3155,304 @@ public abstract class SDBaseOps {
|
|||
SDVariable ret = f().zerosLike(name, input);
|
||||
return updateVariableNameAndReference(ret, name);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* See {@link #any(String, SDVariable, int...)}
|
||||
*/
|
||||
public SDVariable any(SDVariable x, int... dimensions){
|
||||
return any(null, x, dimensions);
|
||||
}
|
||||
//TODO check any w/ no dimensions
|
||||
|
||||
/**
|
||||
* Boolean or array reduction operation, optionally along specified dimensions
|
||||
*
|
||||
* @param name Name of the output variable
|
||||
* @param x Input variable
|
||||
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed
|
||||
* @return Output variable: reduced array of rank (input rank - num dimensions)
|
||||
*/
|
||||
public SDVariable any(String name, SDVariable x, int... dimensions){
|
||||
validateBool("any", x);
|
||||
SDVariable ret = f().any(x, dimensions);
|
||||
return updateVariableNameAndReference(ret, name);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* See {@link #all(String, SDVariable, int...)}
|
||||
*/
|
||||
public SDVariable all(SDVariable x, int... dimensions){
|
||||
return all(null, x, dimensions);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Boolean and array reduction operation, optionally along specified dimensions
|
||||
*
|
||||
* @param name Name of the output variable
|
||||
* @param x Input variable
|
||||
* @param dimensions Dimensions to reduce over. If dimensions are not specified, full array reduction is performed
|
||||
* @return Output variable: reduced array of rank (input rank - num dimensions)
|
||||
*/
|
||||
public SDVariable all(String name, SDVariable x, int... dimensions){
|
||||
validateBool("all", x);
|
||||
SDVariable ret = f().all(x, dimensions);
|
||||
return updateVariableNameAndReference(ret, name);
|
||||
}
|
||||
|
||||
/**
|
||||
* See {@link #whileLoop(String[], String, SDVariable[], SameDiffSingleLambda, SameDiffLambda)}
|
||||
*/
|
||||
public SDVariable[] whileLoop(@NonNull SDVariable[] loopVars,
|
||||
@NonNull SameDiffSingleLambda cond, @NonNull SameDiffLambda body){
|
||||
return whileLoop(null, null, loopVars, cond, body);
|
||||
}
|
||||
|
||||
/**
|
||||
* See {@link #whileLoop(String[], String, SDVariable[], SameDiffSingleLambda, SameDiffLambda)}
|
||||
*/
|
||||
public SDVariable[] whileLoop(String loopName, @NonNull SDVariable[] loopVars,
|
||||
@NonNull SameDiffSingleLambda cond, @NonNull SameDiffLambda body){
|
||||
return whileLoop(null, loopName, loopVars, cond, body);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a While loop using the tensorflow style control flow operations (Switch, Merge, Enter, Exit, and NextIteration)
|
||||
*
|
||||
* Repeatedly executes body on the loop variables and updates them with the results, until cond evaluates to false
|
||||
*
|
||||
* Note that cond and body lambdas are only called once to construct the graph. The constructed graph is used for further iterations.
|
||||
*
|
||||
* See <a href="http://download.tensorflow.org/paper/white_paper_tf_control_flow_implementation_2017_11_1.pdf">Tensorflow Control Flow Implementation</a>
|
||||
*
|
||||
* @param outputNames Names to give the output variables. If null, doesn't rename
|
||||
* @param loopName The name of the loop block and frame (must be unique). If null, uses "if"
|
||||
* @param loopVars Loop variables' inputs
|
||||
* @param cond A lambda evaluating to the loop condition
|
||||
* @param body A lambda doing the loop operation and returning the new loop variable values
|
||||
* @return The values of the loop variables once condition is false
|
||||
*/
|
||||
public SDVariable[] whileLoop(String[] outputNames, final String loopName, @NonNull SDVariable[] loopVars,
|
||||
@NonNull SameDiffSingleLambda cond, @NonNull SameDiffLambda body){
|
||||
|
||||
final String frameName = sd().newBlockName(loopName == null ? "while" : loopName);
|
||||
|
||||
NameScope loopScope = sd().withNameScope(frameName);
|
||||
|
||||
//SDVariable counter = SD.scalar(SD.generateNewVarName("counter", 0), 0);
|
||||
|
||||
SDVariable[] entered = new SDVariable[loopVars.length];
|
||||
for(int i = 0 ; i < loopVars.length ; i++){
|
||||
entered[i] = f().enter(loopVars[i], frameName);
|
||||
}
|
||||
|
||||
//counter = SD.f().enter(counter, frameName);
|
||||
|
||||
SDVariable[] merged = new SDVariable[loopVars.length];
|
||||
Merge[] mergeOps = new Merge[loopVars.length];
|
||||
for(int i = 0 ; i < loopVars.length ; i++){
|
||||
// the second arg will later be replaced with the output of NextIteration
|
||||
// but that isn't available yet (and can't be, as it depends on this)
|
||||
mergeOps[i] = new Merge(sd(), entered[i], entered[i]);
|
||||
merged[i] = mergeOps[i].outputVariable();
|
||||
}
|
||||
|
||||
//Merge counterMerge = new Merge(SD, counter, counter);
|
||||
//counter = counterMerge.outputVariable();
|
||||
|
||||
NameScope condScope = sd().withNameScope("cond");
|
||||
SDVariable cond_result = cond.define(sd(), merged);
|
||||
condScope.close();
|
||||
|
||||
|
||||
if (cond_result.dataType() != DataType.BOOL)
|
||||
throw new IllegalStateException("Can not use " + cond_result.getVarName() + " as the condition of an While loop, the condition must be a boolean.");
|
||||
|
||||
|
||||
final Set<String> alreadyEntered = Sets.newHashSet();
|
||||
SDVariable[] trueSwitches = new SDVariable[loopVars.length];
|
||||
SDVariable[] exits = new SDVariable[loopVars.length];
|
||||
for(int i = 0 ; i < loopVars.length ; i++){
|
||||
SDVariable[] s = f().switchOp(merged[i], cond_result);
|
||||
trueSwitches[i] = s[1];
|
||||
alreadyEntered.add(s[1].getVarName());
|
||||
exits[i] = f().exit(s[0]);
|
||||
}
|
||||
|
||||
//SDVariable[] cs = SD.f().switchOp(counter, cond_result);
|
||||
//SDVariable counterExit = SD.f().exit(cs[0]);
|
||||
//counter = cs[1];
|
||||
|
||||
final Set<String> declared = Sets.newHashSet(sd().variableMap().keySet());
|
||||
final Map<String, SDVariable> done = new HashMap<>();
|
||||
|
||||
sd().addArgumentInterceptor(new ArgumentInterceptor() {
|
||||
@Override
|
||||
public SDVariable intercept(SDVariable argument) {
|
||||
|
||||
if(!declared.contains(argument.getVarName()))
|
||||
return argument;
|
||||
|
||||
if(alreadyEntered.contains(argument.getVarName()))
|
||||
return argument;
|
||||
|
||||
if(done.containsKey(argument.getVarName()))
|
||||
return done.get(argument.getVarName());
|
||||
|
||||
SDVariable e = f().enter(argument, frameName, true);
|
||||
done.put(argument.getVarName(), e);
|
||||
return e;
|
||||
}
|
||||
});
|
||||
|
||||
NameScope bodyScope = sd().withNameScope("body");
|
||||
SDVariable[] outs = body.define(sd(), trueSwitches);
|
||||
bodyScope.close();
|
||||
sd().removeArgumentInterceptor();
|
||||
|
||||
//counter.add(1);
|
||||
|
||||
for(int i = 0 ; i < loopVars.length ; i++){
|
||||
SDVariable n = f().nextIteration(outs[i]);
|
||||
mergeOps[i].replaceArg(1,n);
|
||||
}
|
||||
|
||||
//counterMerge.replaceArg(1, counter);
|
||||
|
||||
loopScope.close();
|
||||
return updateVariableNamesAndReferences(exits, outputNames);
|
||||
}
|
||||
|
||||
/**
|
||||
* See {@link #ifCond(String, String, SameDiffNoArgSingleLambda, SameDiffNoArgSingleLambda, SameDiffNoArgSingleLambda)}
|
||||
*/
|
||||
public SDVariable ifCond(@NonNull SameDiffNoArgSingleLambda cond,
|
||||
@NonNull SameDiffNoArgSingleLambda trueBody, @NonNull SameDiffNoArgSingleLambda falseBody){
|
||||
return ifCond(null, null, cond, trueBody, falseBody);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* See {@link #ifCond(String, String, SameDiffNoArgSingleLambda, SameDiffNoArgSingleLambda, SameDiffNoArgSingleLambda)}
|
||||
*/
|
||||
public SDVariable ifCond(String ifName, @NonNull SameDiffNoArgSingleLambda cond,
|
||||
@NonNull SameDiffNoArgSingleLambda trueBody, @NonNull SameDiffNoArgSingleLambda falseBody){
|
||||
return ifCond(null, ifName, cond, trueBody, falseBody);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a If statement using the tensorflow style control flow operations (Switch and Merge)
|
||||
*
|
||||
* If the result of cond is true, returns the result of trueBody, otherwise returns the result of falseBody
|
||||
*
|
||||
* Note that cond and body lambdas are only called once to construct the graph. The constructed graph is used to evaluate.
|
||||
*
|
||||
* See <a href="http://download.tensorflow.org/paper/white_paper_tf_control_flow_implementation_2017_11_1.pdf">Tensorflow Control Flow Implementation</a>
|
||||
*
|
||||
* @param outputName Name to give the output variable. If null, doesn't rename
|
||||
* @param ifName The name of the if block. If null, uses "if"
|
||||
* @param cond A lambda evaluating to the if condition
|
||||
* @param trueBody A lambda to be executed if cond is true (the if block)
|
||||
* @param falseBody A lambda to be executed if cond is false (the else block)
|
||||
* @return The value of trueBody if cond is true, or falseBody if it isn't
|
||||
*/
|
||||
public SDVariable ifCond(String outputName, String ifName, @NonNull SameDiffNoArgSingleLambda cond,
|
||||
@NonNull SameDiffNoArgSingleLambda trueBody, @NonNull SameDiffNoArgSingleLambda falseBody){
|
||||
|
||||
ifName = sd().newBlockName(ifName == null ? "if" : ifName);
|
||||
|
||||
NameScope ifScope = sd().withNameScope(ifName);
|
||||
|
||||
NameScope condScope = sd().withNameScope("cond");
|
||||
final SDVariable pred = cond.define(sd());
|
||||
condScope.close();
|
||||
|
||||
if (pred.dataType() != DataType.BOOL) {
|
||||
//cleanup partially added block
|
||||
|
||||
for(SDVariable v : sd().getVariablesInScope(ifScope))
|
||||
sd().getVariables().remove(v.getVarName());
|
||||
|
||||
for(SameDiffOp op : sd().getOpsInScope(ifScope)) {
|
||||
for(String in : op.getInputsToOp()){
|
||||
sd().removeArgFromFunction(in, op.getOp());
|
||||
}
|
||||
sd().getOps().remove(op.getName());
|
||||
}
|
||||
|
||||
|
||||
throw new IllegalStateException("Can not use " + pred.getVarName()
|
||||
+ " as the condition of an If statement, the condition must be a boolean.");
|
||||
}
|
||||
|
||||
final Map<String, SDVariable[]> switches = new HashMap<>();
|
||||
|
||||
final Set<String> declared = Sets.newHashSet(sd().variableMap().keySet());
|
||||
|
||||
sd().addArgumentInterceptor(new ArgumentInterceptor() {
|
||||
@Override
|
||||
public SDVariable intercept(SDVariable argument) {
|
||||
|
||||
// if its declared in the if, we don't care acout it
|
||||
if(!declared.contains(argument.getVarName()))
|
||||
return argument;
|
||||
|
||||
// if we've already added a switch, move on
|
||||
if(switches.containsKey(argument.getVarName()))
|
||||
return switches.get(argument.getVarName())[1];
|
||||
|
||||
SDVariable[] s = f().switchOp(argument, pred);
|
||||
switches.put(argument.getVarName(), s);
|
||||
return s[1];
|
||||
}
|
||||
});
|
||||
NameScope trueScope = sd().withNameScope("trueBody");
|
||||
SDVariable trueOut = trueBody.define(sd());
|
||||
sd().removeArgumentInterceptor();
|
||||
|
||||
if(declared.contains(trueOut.getVarName())) {
|
||||
SDVariable[] s = f().switchOp(trueOut, pred);
|
||||
switches.put(trueOut.getVarName(), s);
|
||||
trueOut = s[1];
|
||||
}
|
||||
|
||||
trueScope.close();
|
||||
|
||||
final Set<String> declared2 = Sets.newHashSet(sd().variableMap().keySet());
|
||||
sd().addArgumentInterceptor(new ArgumentInterceptor() {
|
||||
@Override
|
||||
public SDVariable intercept(SDVariable argument) {
|
||||
|
||||
// if its declared in the if, we don't care acout it
|
||||
if(!declared2.contains(argument.getVarName()))
|
||||
return argument;
|
||||
|
||||
// if we've already added a switch, move on
|
||||
if(switches.containsKey(argument.getVarName()))
|
||||
return switches.get(argument.getVarName())[0];
|
||||
|
||||
SDVariable[] s = f().switchOp(argument, pred);
|
||||
switches.put(argument.getVarName(), s);
|
||||
return s[0];
|
||||
}
|
||||
});
|
||||
NameScope falseScope = sd().withNameScope("falseBody");
|
||||
SDVariable falseOut = falseBody.define(sd());
|
||||
sd().removeArgumentInterceptor();
|
||||
|
||||
if(declared2.contains(falseOut.getVarName())) {
|
||||
SDVariable[] s = f().switchOp(falseOut, pred);
|
||||
switches.put(falseOut.getVarName(), s);
|
||||
falseOut = s[0];
|
||||
}
|
||||
falseScope.close();
|
||||
|
||||
SDVariable output = f().merge(trueOut, falseOut);
|
||||
|
||||
ifScope.close();
|
||||
|
||||
return updateVariableNameAndReference(output, outputName);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -411,6 +411,29 @@ public class SDNN extends SDOps {
|
|||
return updateVariableNameAndReference(ret, name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Log softmax activation
|
||||
*
|
||||
* @param x Input variable
|
||||
* @return Output variable
|
||||
*/
|
||||
public SDVariable logSoftmax(SDVariable x, int dimension) {
|
||||
return logSoftmax(null, x, dimension);
|
||||
}
|
||||
|
||||
/**
|
||||
* Log softmax activation
|
||||
*
|
||||
* @param name Variable name
|
||||
* @param x Input variable
|
||||
* @return Output variable
|
||||
*/
|
||||
public SDVariable logSoftmax(String name, SDVariable x, int dimension) {
|
||||
validateFloatingPoint("log softmax", x);
|
||||
SDVariable ret = f().logSoftmax(x, dimension);
|
||||
return updateVariableNameAndReference(ret, name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Element-wise rectified linear function with specified cutoff:<br>
|
||||
* out[i] = in[i] if in[i] >= cutoff
|
||||
|
@ -591,6 +614,28 @@ public class SDNN extends SDOps {
|
|||
return updateVariableNameAndReference(result, name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Softmax activation
|
||||
*
|
||||
* @param x Input variable
|
||||
* @return Output variable
|
||||
*/
|
||||
public SDVariable softmax(SDVariable x, int dimension) {
|
||||
return softmax(null, x, dimension);
|
||||
}
|
||||
|
||||
/**
|
||||
* Softmax activation
|
||||
*
|
||||
* @param x Input variable
|
||||
* @return Output variable
|
||||
*/
|
||||
public SDVariable softmax(String name, SDVariable x, int dimension) {
|
||||
validateFloatingPoint("softmax", x);
|
||||
SDVariable result = f().softmax(x, dimension);
|
||||
return updateVariableNameAndReference(result, name);
|
||||
}
|
||||
|
||||
/**
|
||||
* @param x
|
||||
* @return
|
||||
|
|
|
@ -17,36 +17,47 @@
|
|||
package org.nd4j.autodiff.samediff.serde;
|
||||
|
||||
import com.google.flatbuffers.FlatBufferBuilder;
|
||||
import java.nio.ByteOrder;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import lombok.NonNull;
|
||||
import lombok.val;
|
||||
import org.nd4j.autodiff.functions.DifferentialFunction;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.autodiff.samediff.VariableType;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.graph.*;
|
||||
import org.nd4j.graph.DataType;
|
||||
import org.nd4j.graph.FlatArray;
|
||||
import org.nd4j.graph.FlatNode;
|
||||
import org.nd4j.graph.FlatProperties;
|
||||
import org.nd4j.graph.IntPair;
|
||||
import org.nd4j.graph.OpType;
|
||||
import org.nd4j.graph.VarType;
|
||||
import org.nd4j.imports.converters.DifferentialFunctionClassHolder;
|
||||
import org.nd4j.linalg.api.buffer.DataBuffer;
|
||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||
import org.nd4j.linalg.api.ops.*;
|
||||
|
||||
import org.nd4j.linalg.api.ops.BaseIndexAccumulation;
|
||||
import org.nd4j.linalg.api.ops.BaseReduceOp;
|
||||
import org.nd4j.linalg.api.ops.CustomOp;
|
||||
import org.nd4j.linalg.api.ops.Op;
|
||||
import org.nd4j.linalg.api.ops.Op.Type;
|
||||
import org.nd4j.linalg.api.ops.ScalarOp;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Enter;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Exit;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Merge;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.NextIteration;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Switch;
|
||||
import org.nd4j.linalg.api.shape.Shape;
|
||||
import org.nd4j.linalg.exception.ND4JIllegalStateException;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.primitives.Pair;
|
||||
import org.nd4j.linalg.util.ArrayUtil;
|
||||
|
||||
import java.nio.ByteOrder;
|
||||
import java.util.*;
|
||||
|
||||
public class FlatBuffersMapper {
|
||||
|
||||
private FlatBuffersMapper(){ }
|
||||
private FlatBuffersMapper() {
|
||||
}
|
||||
|
||||
/**
|
||||
* This method converts enums for DataType
|
||||
*
|
||||
* @param type
|
||||
* @return
|
||||
*/
|
||||
public static byte getDataTypeAsByte(@NonNull org.nd4j.linalg.api.buffer.DataType type) {
|
||||
switch (type) {
|
||||
|
@ -84,88 +95,87 @@ public class FlatBuffersMapper {
|
|||
|
||||
/**
|
||||
* This method converts enums for DataType
|
||||
*
|
||||
* @param val
|
||||
* @return
|
||||
*/
|
||||
public static org.nd4j.linalg.api.buffer.DataType getDataTypeFromByte(byte val) {
|
||||
if (val == DataType.FLOAT)
|
||||
if (val == DataType.FLOAT) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.FLOAT;
|
||||
else if (val == DataType.DOUBLE)
|
||||
} else if (val == DataType.DOUBLE) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.DOUBLE;
|
||||
else if (val == DataType.HALF)
|
||||
return org.nd4j.linalg.api.buffer.DataType.HALF;
|
||||
else if (val == DataType.INT32)
|
||||
} else if (val == DataType.HALF) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.HALF;
|
||||
} else if (val == DataType.INT32) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.INT;
|
||||
else if (val == DataType.INT64)
|
||||
} else if (val == DataType.INT64) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.LONG;
|
||||
else if (val == DataType.INT8)
|
||||
} else if (val == DataType.INT8) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.BYTE;
|
||||
else if (val == DataType.BOOL)
|
||||
} else if (val == DataType.BOOL) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.BOOL;
|
||||
else if (val == DataType.UINT8)
|
||||
} else if (val == DataType.UINT8) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.UBYTE;
|
||||
else if (val == DataType.INT16)
|
||||
} else if (val == DataType.INT16) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.SHORT;
|
||||
else if (val == DataType.UTF8)
|
||||
} else if (val == DataType.UTF8) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.UTF8;
|
||||
else if (val == DataType.UINT16)
|
||||
} else if (val == DataType.UINT16) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.UINT16;
|
||||
else if (val == DataType.UINT32)
|
||||
} else if (val == DataType.UINT32) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.UINT32;
|
||||
else if (val == DataType.UINT64)
|
||||
} else if (val == DataType.UINT64) {
|
||||
return org.nd4j.linalg.api.buffer.DataType.UINT64;
|
||||
else
|
||||
} else {
|
||||
throw new RuntimeException("Unknown datatype: " + val);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* This method return operation ID for given op name/type pair.
|
||||
*
|
||||
* @param name
|
||||
* @param type
|
||||
* @return
|
||||
*/
|
||||
public static long getOpNum(String name, Op.Type type) {
|
||||
if (type == Op.Type.LOOP) {
|
||||
return 0;
|
||||
} else if (type == Op.Type.RETURN) {
|
||||
return 40;
|
||||
} else if (type == Op.Type.IF) {
|
||||
return 30;
|
||||
} else if (type == Op.Type.CONDITIONAL) {
|
||||
return 10;
|
||||
} else if (type == Op.Type.MERGE) {
|
||||
return 60L;
|
||||
} else if (type == Op.Type.LOOP_COND) {
|
||||
return 70L;
|
||||
} else if (type == Op.Type.NEXT_ITERATION) {
|
||||
return 80L;
|
||||
} else if (type == Op.Type.EXIT) {
|
||||
return 90L;
|
||||
} else if (type == Op.Type.ENTER) {
|
||||
return 100L;
|
||||
} else if (type == Type.LOGIC) {
|
||||
switch (name) {
|
||||
case Enter.OP_NAME:
|
||||
return Enter.OP_NUM;
|
||||
case Exit.OP_NAME:
|
||||
return Exit.OP_NUM;
|
||||
case NextIteration.OP_NAME:
|
||||
return NextIteration.OP_NUM;
|
||||
case Merge.OP_NAME:
|
||||
return Merge.OP_NUM;
|
||||
case Switch.OP_NAME:
|
||||
return Switch.OP_NUM;
|
||||
default:
|
||||
throw new IllegalStateException("Unknown LOGIC op with name: " + name);
|
||||
}
|
||||
} else if (type == Op.Type.CUSTOM) {
|
||||
val name2 = Nd4j.getExecutioner().getCustomOperations().get(name.toLowerCase());
|
||||
if (name2 == null) {
|
||||
val name3 = Nd4j.getExecutioner().getCustomOperations().get(name);
|
||||
if (name3 == null)
|
||||
if (name3 == null) {
|
||||
return 0;
|
||||
else
|
||||
} else {
|
||||
return name3.getHash();
|
||||
} else
|
||||
}
|
||||
} else {
|
||||
return name2.getHash();
|
||||
}
|
||||
//return Nd4j.getExecutioner().getCustomOperations().get(name.toLowerCase()).getHash();
|
||||
|
||||
} else {
|
||||
try {
|
||||
DifferentialFunction op = DifferentialFunctionClassHolder.getInstance().getInstance(name);
|
||||
return op.opNum();
|
||||
DifferentialFunction op = DifferentialFunctionClassHolder.getInstance().getInstance(name);
|
||||
return op.opNum();
|
||||
} catch (Exception e) {
|
||||
throw new RuntimeException("Could not find op number for operation: [" + name + "]",e);
|
||||
throw new RuntimeException("Could not find op number for operation: [" + name + "]", e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -212,7 +222,7 @@ public class FlatBuffersMapper {
|
|||
case OpType.RANDOM:
|
||||
return Op.Type.RANDOM;
|
||||
case OpType.LOGIC:
|
||||
return Op.Type.META;
|
||||
return Type.LOGIC;
|
||||
case OpType.CUSTOM:
|
||||
return Op.Type.CUSTOM;
|
||||
case OpType.PAIRWISE:
|
||||
|
@ -269,15 +279,11 @@ public class FlatBuffersMapper {
|
|||
return OpType.INDEX_REDUCE;
|
||||
case RANDOM:
|
||||
return OpType.RANDOM;
|
||||
case MERGE:
|
||||
case CONDITIONAL:
|
||||
case LOOP:
|
||||
case RETURN:
|
||||
case ENTER:
|
||||
case EXIT:
|
||||
case NEXT_ITERATION:
|
||||
case LOOP_COND:
|
||||
case IF:
|
||||
case LOGIC:
|
||||
return OpType.LOGIC;
|
||||
case CUSTOM:
|
||||
return OpType.CUSTOM;
|
||||
|
@ -295,88 +301,87 @@ public class FlatBuffersMapper {
|
|||
|
||||
/**
|
||||
* This method just converts enums
|
||||
*
|
||||
* @param val
|
||||
* @return
|
||||
*/
|
||||
public static ByteOrder getOrderFromByte(byte val) {
|
||||
if (val == org.nd4j.graph.ByteOrder.LE)
|
||||
if (val == org.nd4j.graph.ByteOrder.LE) {
|
||||
return ByteOrder.LITTLE_ENDIAN;
|
||||
else
|
||||
} else {
|
||||
return ByteOrder.BIG_ENDIAN;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* This method returns current byte order for this JVM as libnd4j enum
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
public static byte getOrderAsByte() {
|
||||
if (ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN))
|
||||
if (ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN)) {
|
||||
return org.nd4j.graph.ByteOrder.BE;
|
||||
else
|
||||
} else {
|
||||
return org.nd4j.graph.ByteOrder.LE;
|
||||
}
|
||||
}
|
||||
|
||||
public static DifferentialFunction fromFlatNode(FlatNode fn){
|
||||
public static DifferentialFunction fromFlatNode(FlatNode fn) {
|
||||
|
||||
int id = fn.id(); //ID of the node
|
||||
String name = fn.name(); //Name of the node, NOT the name of the op
|
||||
Op.Type opType = FlatBuffersMapper.getTypeFromByte(fn.opType());
|
||||
long opNum = fn.opNum(); //Op num: hash for custom, number for legacy
|
||||
int[] input = new int[fn.inputLength()];
|
||||
for( int i=0; i<input.length; i++ ){
|
||||
for (int i = 0; i < input.length; i++) {
|
||||
input[i] = fn.input(i);
|
||||
}
|
||||
IntPair[] inputPaired = new IntPair[fn.inputPairedLength()];
|
||||
for( int i=0; i<inputPaired.length; i++ ){
|
||||
for (int i = 0; i < inputPaired.length; i++) {
|
||||
inputPaired[i] = fn.inputPaired(i);
|
||||
}
|
||||
int[] output = new int[fn.outputLength()];
|
||||
for( int i=0; i<output.length; i++ ){
|
||||
for (int i = 0; i < output.length; i++) {
|
||||
output[i] = fn.output(i);
|
||||
}
|
||||
double[] extraParams = new double[fn.extraParamsLength()];
|
||||
for( int i=0; i<extraParams.length; i++ ){
|
||||
for (int i = 0; i < extraParams.length; i++) {
|
||||
extraParams[i] = fn.extraParams(i);
|
||||
}
|
||||
long[] extraInteger = new long[fn.extraIntegerLength()];
|
||||
for( int i=0; i<extraInteger.length; i++ ){
|
||||
for (int i = 0; i < extraInteger.length; i++) {
|
||||
extraInteger[i] = fn.extraInteger(i);
|
||||
}
|
||||
boolean[] extraBools = new boolean[fn.extraBoolsLength()];
|
||||
for( int i=0; i<extraBools.length; i++ ){
|
||||
for (int i = 0; i < extraBools.length; i++) {
|
||||
extraBools[i] = fn.extraBools(i);
|
||||
}
|
||||
int[] dimensions = new int[fn.dimensionsLength()];
|
||||
for( int i=0; i<dimensions.length; i++ ){
|
||||
for (int i = 0; i < dimensions.length; i++) {
|
||||
dimensions[i] = fn.dimensions(i);
|
||||
}
|
||||
FlatArray fa = fn.scalar();
|
||||
INDArray scalar = null;
|
||||
if(fa != null){
|
||||
if (fa != null) {
|
||||
scalar = Nd4j.createFromFlatArray(fa);
|
||||
}
|
||||
|
||||
FlatProperties[] flatProperties = new FlatProperties[fn.propertiesLength()];
|
||||
for( int i=0; i<flatProperties.length; i++ ){
|
||||
for (int i = 0; i < flatProperties.length; i++) {
|
||||
flatProperties[i] = fn.properties(i);
|
||||
}
|
||||
Map<String,Object> props = FlatBuffersMapper.mapFlatPropertiesToFunctionProperties(Arrays.asList(flatProperties));
|
||||
Map<String, Object> props = FlatBuffersMapper
|
||||
.mapFlatPropertiesToFunctionProperties(Arrays.asList(flatProperties));
|
||||
|
||||
|
||||
if(opType == Op.Type.CUSTOM) {
|
||||
if (opType == Op.Type.CUSTOM || opType == Type.LOGIC) {
|
||||
String opName = fn.opName();
|
||||
|
||||
DifferentialFunction op;
|
||||
Class<?> c = DifferentialFunctionClassHolder.getInstance().customOpClassForHashAndName(opNum, opName);
|
||||
|
||||
Preconditions.checkNotNull(c, "Could not find class for hash %s", opNum);
|
||||
|
||||
DifferentialFunction op;
|
||||
try {
|
||||
op = (DifferentialFunction) c.newInstance();
|
||||
} catch (IllegalAccessException | InstantiationException e) {
|
||||
throw new RuntimeException("Error creating differential function instance of type " + c);
|
||||
}
|
||||
|
||||
op.setOwnName(name);
|
||||
|
||||
//Set input SDVariables:
|
||||
|
@ -390,7 +395,7 @@ public class FlatBuffersMapper {
|
|||
op.setPropertiesForFunction(props);
|
||||
return op;
|
||||
} else {
|
||||
Class<?> c = LegacyOpMapper.getLegacyOpClassForId(opType, (int)opNum);
|
||||
Class<?> c = LegacyOpMapper.getLegacyOpClassForId(opType, (int) opNum);
|
||||
Op op;
|
||||
try {
|
||||
op = (Op) c.newInstance();
|
||||
|
@ -398,7 +403,7 @@ public class FlatBuffersMapper {
|
|||
throw new RuntimeException("Error creating differential function (Op) instance of type " + c);
|
||||
}
|
||||
|
||||
if(extraParams.length > 0) {
|
||||
if (extraParams.length > 0) {
|
||||
//Assume that extraParams length 0 means extraArgs was originally null, NOT originally length 0
|
||||
Object[] extraParamsObj = new Object[extraParams.length];
|
||||
for (int i = 0; i < extraParams.length; i++) {
|
||||
|
@ -406,16 +411,18 @@ public class FlatBuffersMapper {
|
|||
}
|
||||
op.setExtraArgs(extraParamsObj);
|
||||
}
|
||||
if(opType == Op.Type.SCALAR || opType == Op.Type.SCALAR_BOOL){
|
||||
ScalarOp sOp = (ScalarOp)op;
|
||||
if (opType == Op.Type.SCALAR || opType == Op.Type.SCALAR_BOOL) {
|
||||
ScalarOp sOp = (ScalarOp) op;
|
||||
sOp.setScalar(scalar);
|
||||
} else if(opType == Op.Type.REDUCE_FLOAT || opType == Op.Type.REDUCE3 || opType == Op.Type.SUMMARYSTATS || opType == Op.Type.VARIANCE
|
||||
|| opType == Op.Type.REDUCE_BOOL || opType == Op.Type.REDUCE_LONG || opType == Op.Type.REDUCE_SAME) {
|
||||
} else if (opType == Op.Type.REDUCE_FLOAT || opType == Op.Type.REDUCE3 || opType == Op.Type.SUMMARYSTATS
|
||||
|| opType == Op.Type.VARIANCE
|
||||
|| opType == Op.Type.REDUCE_BOOL || opType == Op.Type.REDUCE_LONG
|
||||
|| opType == Op.Type.REDUCE_SAME) {
|
||||
val ba = (BaseReduceOp) op; //Reduce3 ops are also all BaseAccumulations
|
||||
ba.setDimensions(dimensions);
|
||||
ba.setDimensionz(Shape.ndArrayDimFromInt(dimensions));
|
||||
} else if(opType == Op.Type.INDEXREDUCE){
|
||||
BaseIndexAccumulation bia = (BaseIndexAccumulation)op;
|
||||
} else if (opType == Op.Type.INDEXREDUCE) {
|
||||
BaseIndexAccumulation bia = (BaseIndexAccumulation) op;
|
||||
bia.setDimensions(dimensions);
|
||||
bia.setDimensionz(Shape.ndArrayDimFromInt(dimensions));
|
||||
}
|
||||
|
@ -428,8 +435,8 @@ public class FlatBuffersMapper {
|
|||
TRANSFORM_SAME - Abs, Ceil, etc
|
||||
*/
|
||||
|
||||
((DifferentialFunction)op).setPropertiesForFunction(props);
|
||||
return (DifferentialFunction)op;
|
||||
((DifferentialFunction) op).setPropertiesForFunction(props);
|
||||
return (DifferentialFunction) op;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -438,11 +445,11 @@ public class FlatBuffersMapper {
|
|||
private static final long[] EMPTY_LONG = new long[0];
|
||||
private static final double[] EMPTY_DOUBLE = new double[0];
|
||||
|
||||
public static int[] mapFunctionPropertiesToFlatProperties(FlatBufferBuilder fbb, Map<String,Object> fnProps){
|
||||
public static int[] mapFunctionPropertiesToFlatProperties(FlatBufferBuilder fbb, Map<String, Object> fnProps) {
|
||||
|
||||
int[] outIdxs = new int[fnProps.size()];
|
||||
int count = 0;
|
||||
for(Map.Entry<String,Object> e : fnProps.entrySet()){
|
||||
for (Map.Entry<String, Object> e : fnProps.entrySet()) {
|
||||
//Possible types here: primitives (as Number objects), primitive arrays, Strings, String arrays, multi-dimensional string/primitives
|
||||
Object v = e.getValue();
|
||||
int iname = fbb.createString(e.getKey());
|
||||
|
@ -455,13 +462,11 @@ public class FlatBuffersMapper {
|
|||
int[] sIdx = null;
|
||||
int[] shape = null;
|
||||
|
||||
|
||||
|
||||
if(v == null) {
|
||||
if (v == null) {
|
||||
//No op
|
||||
} else if(v instanceof Boolean){
|
||||
b = new boolean[]{(Boolean)v};
|
||||
} else if(v instanceof Number) {
|
||||
} else if (v instanceof Boolean) {
|
||||
b = new boolean[]{(Boolean) v};
|
||||
} else if (v instanceof Number) {
|
||||
if (v instanceof Double) {
|
||||
d = new double[]{(Double) v};
|
||||
} else if (v instanceof Integer) {
|
||||
|
@ -469,39 +474,41 @@ public class FlatBuffersMapper {
|
|||
} else if (v instanceof Long) {
|
||||
l = new long[]{(Long) v};
|
||||
} else {
|
||||
throw new UnsupportedOperationException("Unable to map property \"" + e.getKey() + "\" of type " + v.getClass());
|
||||
throw new UnsupportedOperationException(
|
||||
"Unable to map property \"" + e.getKey() + "\" of type " + v.getClass());
|
||||
}
|
||||
} else if(v instanceof String) {
|
||||
} else if (v instanceof String) {
|
||||
String str = (String) v;
|
||||
int strOffset = fbb.createString(str);
|
||||
sIdx = new int[]{strOffset};
|
||||
} else if(v instanceof org.nd4j.linalg.api.buffer.DataType ) {
|
||||
} else if (v instanceof org.nd4j.linalg.api.buffer.DataType) {
|
||||
String str = v.toString();
|
||||
int strOffset = fbb.createString(str);
|
||||
sIdx = new int[]{strOffset};
|
||||
} else if(v instanceof Enum){
|
||||
} else if (v instanceof Enum) {
|
||||
String str = v.toString();
|
||||
int strOffset = fbb.createString(str);
|
||||
sIdx = new int[]{strOffset};
|
||||
} else if(v instanceof INDArray){
|
||||
INDArray arr = (INDArray)v;
|
||||
} else if (v instanceof INDArray) {
|
||||
INDArray arr = (INDArray) v;
|
||||
aIdx = new int[]{arr.toFlatArray(fbb)};
|
||||
} else if(v.getClass().isArray()){
|
||||
if(v.getClass().getComponentType().isPrimitive()){
|
||||
if(v instanceof boolean[]) {
|
||||
b = (boolean[])v;
|
||||
} else if (v.getClass().isArray()) {
|
||||
if (v.getClass().getComponentType().isPrimitive()) {
|
||||
if (v instanceof boolean[]) {
|
||||
b = (boolean[]) v;
|
||||
shape = new int[]{b.length};
|
||||
} else if(v instanceof double[]){
|
||||
d = (double[])v;
|
||||
} else if (v instanceof double[]) {
|
||||
d = (double[]) v;
|
||||
shape = new int[]{d.length};
|
||||
} else if(v instanceof int[]){
|
||||
i = (int[])v;
|
||||
} else if (v instanceof int[]) {
|
||||
i = (int[]) v;
|
||||
shape = new int[]{i.length};
|
||||
} else if(v instanceof long[]){
|
||||
l = (long[])v;
|
||||
} else if (v instanceof long[]) {
|
||||
l = (long[]) v;
|
||||
shape = new int[]{l.length};
|
||||
} else {
|
||||
throw new UnsupportedOperationException("Unable to map property \"" + e.getKey() + "\" of type " + v.getClass());
|
||||
throw new UnsupportedOperationException(
|
||||
"Unable to map property \"" + e.getKey() + "\" of type " + v.getClass());
|
||||
}
|
||||
} else if (v instanceof String[]) {
|
||||
//String[]
|
||||
|
@ -511,33 +518,35 @@ public class FlatBuffersMapper {
|
|||
sIdx[j] = fbb.createString(strArr[j]);
|
||||
}
|
||||
shape = new int[]{strArr.length};
|
||||
} else if (v instanceof INDArray[]){
|
||||
INDArray[] arrArr = (INDArray[])v;
|
||||
} else if (v instanceof INDArray[]) {
|
||||
INDArray[] arrArr = (INDArray[]) v;
|
||||
aIdx = new int[arrArr.length];
|
||||
for( int j=0; j<arrArr.length; j++){
|
||||
for (int j = 0; j < arrArr.length; j++) {
|
||||
aIdx[j] = arrArr[j].toFlatArray(fbb);
|
||||
}
|
||||
} else if(v.getClass().getComponentType().isArray()){
|
||||
} else if (v.getClass().getComponentType().isArray()) {
|
||||
shape = ArrayUtil.arrayShape(v, true);
|
||||
//Multi-dimensional array
|
||||
if(v instanceof boolean[][]) {
|
||||
if (v instanceof boolean[][]) {
|
||||
b = ArrayUtil.flatten((boolean[][]) v);
|
||||
} else if(v instanceof boolean[][][]){
|
||||
} else if (v instanceof boolean[][][]) {
|
||||
b = ArrayUtil.flatten((boolean[][][]) v);
|
||||
} else if(v instanceof double[][]){
|
||||
} else if (v instanceof double[][]) {
|
||||
d = ArrayUtil.flatten((double[][]) v);
|
||||
} else if(v instanceof double[][][]){
|
||||
} else if (v instanceof double[][][]) {
|
||||
d = ArrayUtil.flatten((double[][][]) v);
|
||||
} else if(v instanceof int[][]){
|
||||
i = ArrayUtil.flatten((int[][])v);
|
||||
} else if(v instanceof int[][][]){
|
||||
i = ArrayUtil.flatten((int[][][])v);
|
||||
} else if(v instanceof long[][]){
|
||||
l = ArrayUtil.flatten((long[][])v);
|
||||
} else if(v instanceof long[][][]){
|
||||
l = ArrayUtil.flatten((long[][][])v);
|
||||
} else if (v instanceof int[][]) {
|
||||
i = ArrayUtil.flatten((int[][]) v);
|
||||
} else if (v instanceof int[][][]) {
|
||||
i = ArrayUtil.flatten((int[][][]) v);
|
||||
} else if (v instanceof long[][]) {
|
||||
l = ArrayUtil.flatten((long[][]) v);
|
||||
} else if (v instanceof long[][][]) {
|
||||
l = ArrayUtil.flatten((long[][][]) v);
|
||||
} else {
|
||||
throw new UnsupportedOperationException("Unable to map multidimensional array property \"" + e.getKey() + "\" of type " + v.getClass());
|
||||
throw new UnsupportedOperationException(
|
||||
"Unable to map multidimensional array property \"" + e.getKey() + "\" of type " + v
|
||||
.getClass());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -550,21 +559,22 @@ public class FlatBuffersMapper {
|
|||
int idxS = FlatProperties.createSVector(fbb, sIdx != null ? sIdx : EMPTY_INT);
|
||||
int idxShape = FlatProperties.createShapeVector(fbb, shape != null ? shape : EMPTY_INT);
|
||||
|
||||
outIdxs[count++] = FlatProperties.createFlatProperties(fbb, iname, idxI, idxL, idxD, idxA, idxB, idxS, idxShape);
|
||||
outIdxs[count++] = FlatProperties
|
||||
.createFlatProperties(fbb, iname, idxI, idxL, idxD, idxA, idxB, idxS, idxShape);
|
||||
}
|
||||
return outIdxs;
|
||||
}
|
||||
|
||||
public static Map<String,Object> mapFlatPropertiesToFunctionProperties(Iterable<FlatProperties> list){
|
||||
Map<String,Object> out = new HashMap<>();
|
||||
for(FlatProperties p : list){
|
||||
public static Map<String, Object> mapFlatPropertiesToFunctionProperties(Iterable<FlatProperties> list) {
|
||||
Map<String, Object> out = new HashMap<>();
|
||||
for (FlatProperties p : list) {
|
||||
|
||||
String name = p.name();
|
||||
//Work out type:
|
||||
if(p.shapeLength() > 0){
|
||||
if (p.shapeLength() > 0) {
|
||||
//Array type
|
||||
int[] shape = new int[p.shapeLength()];
|
||||
for( int i=0; i<shape.length; i++ ){
|
||||
for (int i = 0; i < shape.length; i++) {
|
||||
shape[i] = p.shape(i);
|
||||
}
|
||||
// if(shape.length != 1){
|
||||
|
@ -572,96 +582,96 @@ public class FlatBuffersMapper {
|
|||
// throw new IllegalStateException("Multi-dimensional arrays not yet implemented");
|
||||
// }
|
||||
|
||||
if(p.iLength() > 0){
|
||||
if (p.iLength() > 0) {
|
||||
int[] iArr = new int[p.iLength()];
|
||||
for( int i=0; i<iArr.length; i++ ){
|
||||
for (int i = 0; i < iArr.length; i++) {
|
||||
iArr[i] = p.i(i);
|
||||
}
|
||||
if(shape.length == 0 || shape.length == 1) {
|
||||
if (shape.length == 0 || shape.length == 1) {
|
||||
out.put(name, iArr);
|
||||
} else if(shape.length == 2){
|
||||
} else if (shape.length == 2) {
|
||||
out.put(name, ArrayUtil.reshapeInt(iArr, shape[0], shape[1]));
|
||||
} else if(shape.length == 3){
|
||||
} else if (shape.length == 3) {
|
||||
out.put(name, ArrayUtil.reshapeInt(iArr, shape[0], shape[1], shape[2]));
|
||||
}
|
||||
} else if(p.dLength() > 0){
|
||||
} else if (p.dLength() > 0) {
|
||||
double[] dArr = new double[p.dLength()];
|
||||
for( int i=0; i<dArr.length; i++ ){
|
||||
for (int i = 0; i < dArr.length; i++) {
|
||||
dArr[i] = p.d(i);
|
||||
}
|
||||
if(shape.length == 0 || shape.length == 1) {
|
||||
if (shape.length == 0 || shape.length == 1) {
|
||||
out.put(name, dArr);
|
||||
} else if(shape.length == 2){
|
||||
} else if (shape.length == 2) {
|
||||
out.put(name, ArrayUtil.reshapeDouble(dArr, shape[0], shape[1]));
|
||||
} else if(shape.length == 3){
|
||||
} else if (shape.length == 3) {
|
||||
out.put(name, ArrayUtil.reshapeDouble(dArr, shape[0], shape[1], shape[2]));
|
||||
}
|
||||
} else if(p.lLength() > 0) {
|
||||
} else if (p.lLength() > 0) {
|
||||
long[] lArr = new long[p.lLength()];
|
||||
for (int i = 0; i < lArr.length; i++) {
|
||||
lArr[i] = p.l(i);
|
||||
}
|
||||
if(shape.length == 0 || shape.length == 1) {
|
||||
if (shape.length == 0 || shape.length == 1) {
|
||||
out.put(name, lArr);
|
||||
} else if(shape.length == 2){
|
||||
} else if (shape.length == 2) {
|
||||
out.put(name, ArrayUtil.reshapeLong(lArr, shape[0], shape[1]));
|
||||
} else if(shape.length == 3){
|
||||
} else if (shape.length == 3) {
|
||||
out.put(name, ArrayUtil.reshapeLong(lArr, shape[0], shape[1], shape[2]));
|
||||
}
|
||||
} else if(p.bLength() > 0){
|
||||
} else if (p.bLength() > 0) {
|
||||
boolean[] bArr = new boolean[p.bLength()];
|
||||
for( int i=0; i<bArr.length; i++ ){
|
||||
for (int i = 0; i < bArr.length; i++) {
|
||||
bArr[i] = p.b(i);
|
||||
}
|
||||
if(shape.length == 0 || shape.length == 1) {
|
||||
if (shape.length == 0 || shape.length == 1) {
|
||||
out.put(name, bArr);
|
||||
} else if(shape.length == 2){
|
||||
} else if (shape.length == 2) {
|
||||
out.put(name, ArrayUtil.reshapeBoolean(bArr, shape[0], shape[1]));
|
||||
} else if(shape.length == 3){
|
||||
} else if (shape.length == 3) {
|
||||
out.put(name, ArrayUtil.reshapeBoolean(bArr, shape[0], shape[1], shape[2]));
|
||||
}
|
||||
} else if(p.sLength() > 0){
|
||||
} else if (p.sLength() > 0) {
|
||||
String[] sArr = new String[p.sLength()];
|
||||
for( int i=0; i<sArr.length; i++ ){
|
||||
for (int i = 0; i < sArr.length; i++) {
|
||||
sArr[i] = p.s(i);
|
||||
}
|
||||
if(shape.length == 0 || shape.length == 1) {
|
||||
if (shape.length == 0 || shape.length == 1) {
|
||||
out.put(name, sArr);
|
||||
} else if(shape.length == 2){
|
||||
} else if (shape.length == 2) {
|
||||
out.put(name, ArrayUtil.reshapeObject(sArr, shape[0], shape[1]));
|
||||
} else if(shape.length == 3){
|
||||
} else if (shape.length == 3) {
|
||||
out.put(name, ArrayUtil.reshapeObject(sArr, shape[0], shape[1], shape[2]));
|
||||
}
|
||||
} else if(p.aLength() > 0){
|
||||
} else if (p.aLength() > 0) {
|
||||
INDArray[] iArr = new INDArray[p.aLength()];
|
||||
for( int i=0; i<iArr.length; i++ ){
|
||||
for (int i = 0; i < iArr.length; i++) {
|
||||
FlatArray fa = p.a(0);
|
||||
iArr[i] = Nd4j.createFromFlatArray(fa);
|
||||
}
|
||||
if(shape.length == 0 || shape.length == 1) {
|
||||
if (shape.length == 0 || shape.length == 1) {
|
||||
out.put(name, iArr);
|
||||
} else if(shape.length == 2){
|
||||
} else if (shape.length == 2) {
|
||||
out.put(name, ArrayUtil.reshapeObject(iArr, shape[0], shape[1]));
|
||||
} else if(shape.length == 3){
|
||||
} else if (shape.length == 3) {
|
||||
out.put(name, ArrayUtil.reshapeObject(iArr, shape[0], shape[1], shape[2]));
|
||||
}
|
||||
} else {
|
||||
} else {
|
||||
//null property case
|
||||
out.put(name, null);
|
||||
}
|
||||
} else {
|
||||
//non-array primitive, String or INDArray
|
||||
if(p.bLength() > 0) {
|
||||
if (p.bLength() > 0) {
|
||||
out.put(name, p.b(0));
|
||||
} else if(p.iLength() > 0){
|
||||
} else if (p.iLength() > 0) {
|
||||
out.put(name, p.i(0));
|
||||
} else if(p.lLength() > 0){
|
||||
} else if (p.lLength() > 0) {
|
||||
out.put(name, p.l(0));
|
||||
} else if(p.dLength() > 0){
|
||||
} else if (p.dLength() > 0) {
|
||||
out.put(name, p.d(0));
|
||||
} else if(p.sLength() > 0){
|
||||
} else if (p.sLength() > 0) {
|
||||
out.put(name, p.s(0));
|
||||
} else if(p.aLength() > 0){
|
||||
} else if (p.aLength() > 0) {
|
||||
FlatArray fa = p.a(0);
|
||||
out.put(name, Nd4j.createFromFlatArray(fa));
|
||||
} else {
|
||||
|
@ -673,8 +683,8 @@ public class FlatBuffersMapper {
|
|||
return out;
|
||||
}
|
||||
|
||||
public static byte toVarType(VariableType variableType){
|
||||
switch (variableType){
|
||||
public static byte toVarType(VariableType variableType) {
|
||||
switch (variableType) {
|
||||
case VARIABLE:
|
||||
return VarType.VARIABLE;
|
||||
case CONSTANT:
|
||||
|
@ -688,8 +698,8 @@ public class FlatBuffersMapper {
|
|||
}
|
||||
}
|
||||
|
||||
public static VariableType fromVarType(byte varType){
|
||||
switch (varType){
|
||||
public static VariableType fromVarType(byte varType) {
|
||||
switch (varType) {
|
||||
case VarType.VARIABLE:
|
||||
return VariableType.VARIABLE;
|
||||
case VarType.CONSTANT:
|
||||
|
|
|
@ -126,12 +126,7 @@ public class LegacyOpMapper {
|
|||
case CONDITIONAL:
|
||||
case LOOP:
|
||||
case LOOP_COND:
|
||||
case IF:
|
||||
case RETURN:
|
||||
case ENTER:
|
||||
case EXIT:
|
||||
case NEXT_ITERATION:
|
||||
case MERGE:
|
||||
default:
|
||||
throw new UnsupportedOperationException("Unable to map op " + opNum + " of type " + opType);
|
||||
}
|
||||
|
|
|
@ -25,6 +25,11 @@ import org.nd4j.imports.descriptors.onnx.OnnxDescriptorParser;
|
|||
import org.nd4j.imports.descriptors.onnx.OpDescriptor;
|
||||
import org.nd4j.imports.descriptors.tensorflow.TensorflowDescriptorParser;
|
||||
import org.nd4j.linalg.api.ops.*;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Enter;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Exit;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Merge;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.NextIteration;
|
||||
import org.nd4j.linalg.api.ops.impl.controlflow.compat.Switch;
|
||||
import org.nd4j.linalg.api.ops.impl.layers.convolution.*;
|
||||
import org.nd4j.linalg.exception.ND4JIllegalStateException;
|
||||
import org.nd4j.linalg.factory.Nd4j;
|
||||
|
@ -331,13 +336,27 @@ public class DifferentialFunctionClassHolder {
|
|||
}
|
||||
|
||||
public Class<?> customOpClassForHashAndName(long customOpHash, String name){
|
||||
if(customOpHashToClasses.containsKey(customOpHash)){
|
||||
return customOpHashToClasses.get(customOpHash).get(name);
|
||||
} else if(customOpHashToClass.containsKey(customOpHash)){
|
||||
return customOpHashToClass.get(customOpHash);
|
||||
} else {
|
||||
throw new IllegalStateException("No op known for hash: " + customOpHash);
|
||||
switch (name) {
|
||||
case Enter.OP_NAME:
|
||||
return Enter.class;
|
||||
case Exit.OP_NAME:
|
||||
return Exit.class;
|
||||
case NextIteration.OP_NAME:
|
||||
return NextIteration.class;
|
||||
case Merge.OP_NAME:
|
||||
return Merge.class;
|
||||
case Switch.OP_NAME:
|
||||
return Switch.class;
|
||||
default:
|
||||
if(customOpHashToClasses.containsKey(customOpHash)){
|
||||
return customOpHashToClasses.get(customOpHash).get(name);
|
||||
} else if(customOpHashToClass.containsKey(customOpHash)){
|
||||
return customOpHashToClass.get(customOpHash);
|
||||
} else {
|
||||
throw new IllegalStateException("No op known for hash: " + customOpHash);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
public static DifferentialFunctionClassHolder getInstance() {
|
||||
|
|
|
@ -69,14 +69,10 @@ public interface Op {
|
|||
CONDITIONAL,
|
||||
LOOP,
|
||||
LOOP_COND,
|
||||
IF,
|
||||
RETURN,
|
||||
ENTER,
|
||||
EXIT,
|
||||
NEXT_ITERATION,
|
||||
RANDOM,
|
||||
MERGE,
|
||||
SUMMARYSTATS,
|
||||
LOGIC
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -17,11 +17,13 @@
|
|||
package org.nd4j.linalg.api.ops.impl.controlflow.compat;
|
||||
|
||||
import lombok.Data;
|
||||
import lombok.NoArgsConstructor;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ops.Op;
|
||||
import org.nd4j.linalg.api.ops.Op.Type;
|
||||
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
|
@ -32,13 +34,38 @@ import java.util.List;
|
|||
import java.util.Map;
|
||||
|
||||
@Data
|
||||
@NoArgsConstructor
|
||||
public class Enter extends BaseCompatOp {
|
||||
|
||||
protected boolean isConstant;
|
||||
|
||||
public Enter(SameDiff sameDiff, SDVariable[] inputs){
|
||||
super(sameDiff, inputs);
|
||||
}
|
||||
|
||||
public Enter(SameDiff sameDiff, String frameName, SDVariable input){
|
||||
super(sameDiff, new SDVariable[]{input});
|
||||
this.frameName = frameName;
|
||||
isConstant = input.isConstant();
|
||||
}
|
||||
|
||||
public Enter(SameDiff sameDiff, String frameName, SDVariable input, boolean isConstant){
|
||||
super(sameDiff, new SDVariable[]{input});
|
||||
this.frameName = frameName;
|
||||
this.isConstant = isConstant;
|
||||
}
|
||||
|
||||
/**
|
||||
* WARNING: do not change without changing serialization methods
|
||||
* See {@link org.nd4j.autodiff.samediff.serde.FlatBuffersMapper#getOpNum(String, Type)}
|
||||
* and {@link org.nd4j.imports.converters.DifferentialFunctionClassHolder#customOpClassForHashAndName(long, String)}
|
||||
*/
|
||||
public static final String OP_NAME = "enter";
|
||||
public static final int OP_NUM = 100;
|
||||
|
||||
@Override
|
||||
public String opName() {
|
||||
return "enter";
|
||||
return OP_NAME;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -62,7 +89,7 @@ public class Enter extends BaseCompatOp {
|
|||
|
||||
@Override
|
||||
public Op.Type opType() {
|
||||
return Op.Type.ENTER;
|
||||
return Type.LOGIC;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
package org.nd4j.linalg.api.ops.impl.controlflow.compat;
|
||||
|
||||
import lombok.NoArgsConstructor;
|
||||
import lombok.NonNull;
|
||||
import lombok.val;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
|
@ -24,6 +25,7 @@ import org.nd4j.base.Preconditions;
|
|||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
||||
import org.nd4j.linalg.api.ops.Op;
|
||||
import org.nd4j.linalg.api.ops.Op.Type;
|
||||
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
|
@ -34,10 +36,24 @@ import java.util.Collections;
|
|||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
@NoArgsConstructor
|
||||
public class Exit extends BaseCompatOp {
|
||||
|
||||
public Exit(SameDiff sameDiff, SDVariable x) {
|
||||
super(sameDiff, new SDVariable[]{x});
|
||||
}
|
||||
|
||||
/**
|
||||
* WARNING: do not change without changing serialization methods
|
||||
* See {@link org.nd4j.autodiff.samediff.serde.FlatBuffersMapper#getOpNum(String, Type)}
|
||||
* and {@link org.nd4j.imports.converters.DifferentialFunctionClassHolder#customOpClassForHashAndName(long, String)}
|
||||
*/
|
||||
public static final String OP_NAME = "exit";
|
||||
public static final int OP_NUM = 90;
|
||||
|
||||
@Override
|
||||
public String opName() {
|
||||
return "exit";
|
||||
return OP_NAME;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -61,7 +77,7 @@ public class Exit extends BaseCompatOp {
|
|||
|
||||
@Override
|
||||
public Op.Type opType() {
|
||||
return Op.Type.EXIT;
|
||||
return Type.LOGIC;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -21,6 +21,7 @@ import org.nd4j.autodiff.samediff.SameDiff;
|
|||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ops.Op;
|
||||
import org.nd4j.linalg.api.ops.Op.Type;
|
||||
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
|
@ -41,9 +42,21 @@ public class Merge extends BaseCompatOp {
|
|||
|
||||
}
|
||||
|
||||
/**
|
||||
* WARNING: do not change without changing serialization methods
|
||||
* See {@link org.nd4j.autodiff.samediff.serde.FlatBuffersMapper#getOpNum(String, Type)}
|
||||
* and {@link org.nd4j.imports.converters.DifferentialFunctionClassHolder#customOpClassForHashAndName(long, String)}
|
||||
*/
|
||||
public static final String OP_NAME = "merge";
|
||||
public static final int OP_NUM = 60;
|
||||
|
||||
public Merge(SameDiff sd, SDVariable a, SDVariable b){
|
||||
this(sd, new SDVariable[]{a, b});
|
||||
}
|
||||
|
||||
@Override
|
||||
public String opName() {
|
||||
return "merge";
|
||||
return OP_NAME;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -72,7 +85,7 @@ public class Merge extends BaseCompatOp {
|
|||
|
||||
@Override
|
||||
public Op.Type opType() {
|
||||
return Op.Type.MERGE;
|
||||
return Type.LOGIC;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -16,11 +16,13 @@
|
|||
|
||||
package org.nd4j.linalg.api.ops.impl.controlflow.compat;
|
||||
|
||||
import lombok.NoArgsConstructor;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ops.Op;
|
||||
import org.nd4j.linalg.api.ops.Op.Type;
|
||||
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
|
@ -31,10 +33,24 @@ import java.util.Collections;
|
|||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
@NoArgsConstructor
|
||||
public class NextIteration extends BaseCompatOp {
|
||||
|
||||
public NextIteration(SameDiff sameDiff, SDVariable x) {
|
||||
super(sameDiff, new SDVariable[]{x});
|
||||
}
|
||||
|
||||
/**
|
||||
* WARNING: do not change without changing serialization methods
|
||||
* See {@link org.nd4j.autodiff.samediff.serde.FlatBuffersMapper#getOpNum(String, Type)}
|
||||
* and {@link org.nd4j.imports.converters.DifferentialFunctionClassHolder#customOpClassForHashAndName(long, String)}
|
||||
*/
|
||||
public static final String OP_NAME = "next_iteration";
|
||||
public static final int OP_NUM = 80;
|
||||
|
||||
@Override
|
||||
public String opName() {
|
||||
return "next_iteration";
|
||||
return OP_NAME;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -58,7 +74,7 @@ public class NextIteration extends BaseCompatOp {
|
|||
|
||||
@Override
|
||||
public Op.Type opType() {
|
||||
return Op.Type.NEXT_ITERATION;
|
||||
return Type.LOGIC;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -16,12 +16,15 @@
|
|||
|
||||
package org.nd4j.linalg.api.ops.impl.controlflow.compat;
|
||||
|
||||
import com.google.common.collect.Lists;
|
||||
import lombok.Getter;
|
||||
import lombok.val;
|
||||
import org.nd4j.autodiff.samediff.SDVariable;
|
||||
import org.nd4j.autodiff.samediff.SameDiff;
|
||||
import org.nd4j.base.Preconditions;
|
||||
import org.nd4j.linalg.api.buffer.DataType;
|
||||
import org.nd4j.linalg.api.ops.Op;
|
||||
import org.nd4j.linalg.api.ops.Op.Type;
|
||||
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
|
||||
import org.tensorflow.framework.AttrValue;
|
||||
import org.tensorflow.framework.GraphDef;
|
||||
|
@ -37,15 +40,27 @@ import java.util.Map;
|
|||
*/
|
||||
public class Switch extends BaseCompatOp {
|
||||
|
||||
@Getter
|
||||
private SDVariable predicate;
|
||||
|
||||
public Switch(SameDiff sameDiff, SDVariable input, SDVariable predicate){
|
||||
super(sameDiff, new SDVariable[]{input, predicate});
|
||||
this.predicate = predicate;
|
||||
}
|
||||
|
||||
public Switch(){ }
|
||||
|
||||
/**
|
||||
* WARNING: do not change without changing serialization methods
|
||||
* See {@link org.nd4j.autodiff.samediff.serde.FlatBuffersMapper#getOpNum(String, Type)}
|
||||
* and {@link org.nd4j.imports.converters.DifferentialFunctionClassHolder#customOpClassForHashAndName(long, String)}
|
||||
*/
|
||||
public static final String OP_NAME = "switch";
|
||||
public static final int OP_NUM = 30;
|
||||
|
||||
@Override
|
||||
public String opName() {
|
||||
return "switch";
|
||||
return OP_NAME;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -72,7 +87,7 @@ public class Switch extends BaseCompatOp {
|
|||
|
||||
@Override
|
||||
public Op.Type opType() {
|
||||
return Op.Type.IF;
|
||||
return Type.LOGIC;
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -39,6 +39,9 @@ import java.util.List;
|
|||
*/
|
||||
|
||||
public class LogSoftMax extends DynamicCustomOp {
|
||||
|
||||
private Integer dimension = null;
|
||||
|
||||
public LogSoftMax(SameDiff sameDiff, SDVariable i_v) {
|
||||
super(sameDiff, i_v);
|
||||
}
|
||||
|
@ -54,6 +57,12 @@ public class LogSoftMax extends DynamicCustomOp {
|
|||
this(x, x);
|
||||
}
|
||||
|
||||
public LogSoftMax(SameDiff sameDiff, SDVariable i_v, int dimension) {
|
||||
this(sameDiff, i_v);
|
||||
this.dimension = dimension;
|
||||
addIArgument(dimension);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public String opName() {
|
||||
|
@ -66,8 +75,13 @@ public class LogSoftMax extends DynamicCustomOp {
|
|||
|
||||
@Override
|
||||
public List<SDVariable> doDiff(List<SDVariable> i_v) {
|
||||
SDVariable ret = f().logSoftmaxDerivative(arg(), i_v.get(0));
|
||||
return Collections.singletonList(ret);
|
||||
if(dimension == null) {
|
||||
SDVariable ret = f().logSoftmaxDerivative(arg(), i_v.get(0));
|
||||
return Collections.singletonList(ret);
|
||||
} else {
|
||||
SDVariable ret = f().logSoftmaxDerivative(arg(), i_v.get(0), dimension);
|
||||
return Collections.singletonList(ret);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
|
|
|
@ -43,6 +43,11 @@ public class LogSoftMaxDerivative extends DynamicCustomOp {
|
|||
super(null, new INDArray[]{in, gradO}, new INDArray[]{out});
|
||||
}
|
||||
|
||||
public LogSoftMaxDerivative(SameDiff sameDiff, SDVariable arg, SDVariable wrt, int dimension) {
|
||||
this(sameDiff, arg, wrt);
|
||||
this.addIArgument(dimension);
|
||||
}
|
||||
|
||||
/**
|
||||
* The opName of this operation
|
||||
*
|
||||
|
|
|
@ -129,4 +129,39 @@ public class NameScopeTests extends BaseNd4jTest {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testNoNesting(){
|
||||
SameDiff SD = SameDiff.create();
|
||||
|
||||
SDVariable a = SD.constant(4);
|
||||
|
||||
NameScope scope = SD.withNameScope("test");
|
||||
|
||||
SDVariable out = SD.argmax(a);
|
||||
|
||||
out.add(45);
|
||||
|
||||
scope.close();
|
||||
|
||||
assertTrue("Var with name test/imax_1 exists", SD.variableMap().containsKey("test/imax_1"));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testNoTesting2(){
|
||||
SameDiff SD = SameDiff.create();
|
||||
|
||||
SDVariable a = SD.constant(4);
|
||||
SDVariable b = SD.constant(5).lt(4);
|
||||
|
||||
NameScope scope = SD.withNameScope("test");
|
||||
|
||||
SDVariable out = SD.f().switchOp(a, b)[0];
|
||||
|
||||
out.add(45);
|
||||
|
||||
scope.close();
|
||||
|
||||
assertTrue("Var with name test/switch:1 exists", SD.variableMap().containsKey("test/switch:1"));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,12 +16,30 @@
|
|||
|
||||
package org.nd4j.autodiff.samediff;
|
||||
|
||||
import static org.junit.Assert.assertEquals;
|
||||
import static org.junit.Assert.assertNotEquals;
|
||||
import static org.junit.Assert.assertNotNull;
|
||||
import static org.junit.Assert.assertNull;
|
||||
import static org.junit.Assert.assertTrue;
|
||||
import static org.junit.Assert.fail;
|
||||
import static org.junit.Assume.assumeNotNull;
|
||||
import static org.nd4j.linalg.indexing.NDArrayIndex.all;
|
||||
|
||||
import com.google.common.collect.Lists;
|
||||
import com.google.common.collect.Maps;
|
||||
import java.io.IOException;
|
||||
import java.lang.reflect.Field;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import lombok.val;
|
||||
import org.junit.After;
|
||||
import org.junit.Before;
|
||||
import org.junit.ClassRule;
|
||||
import org.junit.Ignore;
|
||||
import org.junit.Test;
|
||||
import org.junit.rules.TemporaryFolder;
|
||||
import org.nd4j.OpValidationSuite;
|
||||
|
@ -43,7 +61,11 @@ import org.nd4j.linalg.api.ops.impl.shape.tensorops.TensorArray;
|
|||
import org.nd4j.linalg.api.ops.impl.transforms.any.IsMax;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.comparison.OldMax;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.comparison.OldMin;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.*;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.GreaterThanOrEqual;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.IsNonDecreasing;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.IsNumericTensor;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.IsStrictlyIncreasing;
|
||||
import org.nd4j.linalg.api.ops.impl.transforms.custom.LessThanOrEqual;
|
||||
import org.nd4j.linalg.api.ops.random.impl.BernoulliDistribution;
|
||||
import org.nd4j.linalg.api.shape.LongShapeDescriptor;
|
||||
import org.nd4j.linalg.checkutil.NDArrayCreationUtil;
|
||||
|
@ -53,9 +75,7 @@ import org.nd4j.linalg.dataset.adapter.SingletonMultiDataSetIterator;
|
|||
import org.nd4j.linalg.factory.Nd4j;
|
||||
import org.nd4j.linalg.factory.Nd4jBackend;
|
||||
import org.nd4j.linalg.indexing.NDArrayIndex;
|
||||
import org.nd4j.linalg.learning.GradientUpdater;
|
||||
import org.nd4j.linalg.learning.config.Adam;
|
||||
import org.nd4j.linalg.learning.config.Nesterovs;
|
||||
import org.nd4j.linalg.ops.transforms.Transforms;
|
||||
import org.nd4j.linalg.primitives.Pair;
|
||||
import org.nd4j.nativeblas.NativeOpsHolder;
|
||||
|
@ -63,29 +83,20 @@ import org.nd4j.weightinit.impl.OneInitScheme;
|
|||
import org.nd4j.weightinit.impl.UniformInitScheme;
|
||||
import org.nd4j.weightinit.impl.ZeroInitScheme;
|
||||
|
||||
import java.io.BufferedOutputStream;
|
||||
import java.io.File;
|
||||
import java.io.FileOutputStream;
|
||||
import java.lang.reflect.Field;
|
||||
import java.util.*;
|
||||
|
||||
import static org.junit.Assert.*;
|
||||
import static org.junit.Assume.assumeNotNull;
|
||||
import static org.nd4j.linalg.indexing.NDArrayIndex.all;
|
||||
|
||||
/**
|
||||
* Created by agibsonccc on 4/11/17.
|
||||
*/
|
||||
@Slf4j
|
||||
public class SameDiffTests extends BaseNd4jTest {
|
||||
|
||||
private DataType initialType;
|
||||
|
||||
public SameDiffTests(Nd4jBackend b){
|
||||
public SameDiffTests(Nd4jBackend b) {
|
||||
super(b);
|
||||
}
|
||||
|
||||
@Override
|
||||
public char ordering(){
|
||||
public char ordering() {
|
||||
return 'c';
|
||||
}
|
||||
|
||||
|
@ -317,7 +328,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
SameDiff first = SameDiff.create();
|
||||
SameDiff second = SameDiff.create();
|
||||
|
||||
|
||||
SDVariable firstVar = first.var("one", new long[]{2, 2});
|
||||
SDVariable secondVar = second.var(firstVar);
|
||||
assertTrue(firstVar.getArr() == secondVar.getArr());
|
||||
|
@ -330,7 +340,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
SameDiff first = SameDiff.create();
|
||||
SameDiff second = SameDiff.create();
|
||||
|
||||
|
||||
SDVariable firstVar = first.var("one", new long[]{2, 2});
|
||||
SDVariable secondVar = second.var(firstVar);
|
||||
assumeNotNull(firstVar.getArr());
|
||||
|
@ -418,7 +427,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
}, xAndY);
|
||||
|
||||
|
||||
INDArray assertionForDiv = Nd4j.valueArrayOf(4, 4.0);
|
||||
INDArray assertionForRDiv = Nd4j.valueArrayOf(4, 0.25);
|
||||
assertEquals(assertionForDiv, sameDiff.getFunction("div").execAndEndResult());
|
||||
|
@ -463,7 +471,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}, inputs);
|
||||
|
||||
INDArray assertion = sumInput.sum(1);
|
||||
INDArray out = sameDiff.getFunction("sum").exec(Collections.emptyMap(), Collections.singletonList("sum")).get("sum");
|
||||
INDArray out = sameDiff.getFunction("sum").exec(Collections.emptyMap(), Collections.singletonList("sum"))
|
||||
.get("sum");
|
||||
assertEquals(assertion, out);
|
||||
}
|
||||
|
||||
|
@ -563,7 +572,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
}, inputVars);
|
||||
|
||||
|
||||
//1 input plus 2 outputs
|
||||
assertEquals(3, functionDef.variables().size());
|
||||
|
||||
|
@ -573,7 +581,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
@Test
|
||||
public void testIfStatementTrueBodyBackwards() {
|
||||
OpValidationSuite.ignoreFailing(); //2019/01/14 AB: Disabled pending overhaul of SameDiff-defined conditional operations
|
||||
OpValidationSuite
|
||||
.ignoreFailing(); //2019/01/14 AB: Disabled pending overhaul of SameDiff-defined conditional operations
|
||||
SameDiff sameDiff = SameDiff.create();
|
||||
SameDiffFunctionDefinition conditionBody = new SameDiffFunctionDefinition() {
|
||||
@Override
|
||||
|
@ -584,7 +593,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
SameDiffFunctionDefinition trueBody = new SameDiffFunctionDefinition() {
|
||||
@Override
|
||||
public SDVariable[] define(SameDiff sameDiff, Map<String, INDArray> inputs, SDVariable[] variableInputs) {
|
||||
|
@ -607,7 +615,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
};
|
||||
|
||||
|
||||
sameDiff.ifStatement(new DefaultSameDiffConditional(), conditionBody, trueBody, falseBody, firstInputs);
|
||||
sameDiff.execBackwards(Collections.emptyMap());
|
||||
SameDiff grad = sameDiff.getFunction("grad");
|
||||
|
@ -625,7 +632,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
@Test
|
||||
public void testIfStatementTrueBody() {
|
||||
OpValidationSuite.ignoreFailing(); //2019/01/14 AB: Disabled pending overhaul of SameDiff-defined conditional operations
|
||||
OpValidationSuite
|
||||
.ignoreFailing(); //2019/01/14 AB: Disabled pending overhaul of SameDiff-defined conditional operations
|
||||
SameDiff sameDiff = SameDiff.create();
|
||||
|
||||
SameDiffFunctionDefinition conditionBody = new SameDiffFunctionDefinition() {
|
||||
|
@ -637,7 +645,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
SameDiffFunctionDefinition trueBody = new SameDiffFunctionDefinition() {
|
||||
@Override
|
||||
public SDVariable[] define(SameDiff sameDiff, Map<String, INDArray> inputs, SDVariable[] variableInputs) {
|
||||
|
@ -660,7 +667,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
};
|
||||
|
||||
|
||||
sameDiff.ifStatement(new DefaultSameDiffConditional(), conditionBody, trueBody, falseBody, firstInputs);
|
||||
sameDiff.exec(Collections.emptyMap());
|
||||
}
|
||||
|
@ -668,7 +674,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
@Test
|
||||
public void testIfStatementFalseBody() {
|
||||
OpValidationSuite.ignoreFailing(); //2019/01/14 AB: Disabled pending overhaul of SameDiff-defined conditional operations
|
||||
OpValidationSuite
|
||||
.ignoreFailing(); //2019/01/14 AB: Disabled pending overhaul of SameDiff-defined conditional operations
|
||||
SameDiff sameDiff = SameDiff.create();
|
||||
|
||||
SameDiffFunctionDefinition conditionBody = new SameDiffFunctionDefinition() {
|
||||
|
@ -680,7 +687,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
SameDiffFunctionDefinition trueBody = new SameDiffFunctionDefinition() {
|
||||
@Override
|
||||
public SDVariable[] define(SameDiff sameDiff, Map<String, INDArray> inputs, SDVariable[] variableInputs) {
|
||||
|
@ -697,7 +703,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
//false body trigger
|
||||
SDVariable[] secondInputs = new SDVariable[]{
|
||||
sameDiff.setupFunction(sameDiff.var("two", new long[]{1, 1}))
|
||||
|
@ -790,7 +795,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
SDVariable weights = sd.var("W", new long[]{nIn, nOut});
|
||||
SDVariable bias = sd.var("b", new long[]{1, nOut});
|
||||
|
||||
|
||||
SDVariable mmul = sd.mmul("mmul", input, weights);
|
||||
SDVariable z = mmul.add("z", bias);
|
||||
SDVariable out = sd.math().tanh(z);
|
||||
|
@ -888,7 +892,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
val f = m.add(2.0);
|
||||
val s = in2.add(5.0);
|
||||
|
||||
|
||||
val arr = sd.execSingle(null, s.getVarName());
|
||||
log.info("Result M: {}", m.getArr());
|
||||
log.info("Result F: {}", f.getArr());
|
||||
|
@ -939,7 +942,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
val vector = Nd4j.linspace(1, 4, 4).reshape(4, 1);
|
||||
val input1 = sd.var("input", matrix);
|
||||
val input2 = sd.var("input2", vector);
|
||||
val output = sd.mmul("output", input1, input2, MMulTranspose.builder().transposeA(true).transposeB(false).build());
|
||||
val output = sd
|
||||
.mmul("output", input1, input2, MMulTranspose.builder().transposeA(true).transposeB(false).build());
|
||||
output.eval();
|
||||
assertArrayEquals(new long[]{3, 1}, output.getShape());
|
||||
}
|
||||
|
@ -1026,12 +1030,11 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
}, inputs);
|
||||
|
||||
|
||||
SameDiff logisticGraph = sameDiffOuter.getFunction("oneminuspredictions");
|
||||
Map<String, INDArray> inputsSubset = new HashMap<>();
|
||||
inputsSubset.put("y", inputs.get("y"));
|
||||
INDArray output = logisticGraph.exec(inputsSubset, Collections.singletonList("rsub")).get("rsub");
|
||||
INDArray assertion = Nd4j.create(new double[]{0, 0, 1, 0}, new int[]{4,1});
|
||||
INDArray assertion = Nd4j.create(new double[]{0, 0, 1, 0}, new int[]{4, 1});
|
||||
assertEquals(assertion, output);
|
||||
|
||||
}
|
||||
|
@ -1076,7 +1079,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
}, inputs);
|
||||
|
||||
|
||||
SameDiff logisticPrediction = sameDiffOuter.getFunction("logisticPredictions");
|
||||
List<String> logisticOpNameAssertions = Arrays.asList("mmul", "sigmoid");
|
||||
|
||||
|
@ -1146,7 +1148,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
Activation.SOFTPLUS,
|
||||
Activation.SOFTSIGN,
|
||||
Activation.HARDTANH,
|
||||
Activation.CUBE, //WRONG output - see issue https://github.com/deeplearning4j/nd4j/issues/2426
|
||||
Activation.CUBE,
|
||||
//WRONG output - see issue https://github.com/deeplearning4j/nd4j/issues/2426
|
||||
Activation.RELU, //JVM crash
|
||||
Activation.LEAKYRELU //JVM crash
|
||||
};
|
||||
|
@ -1289,8 +1292,9 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
sd.exec(Collections.emptyMap(), sd.outputs());
|
||||
|
||||
for (int i = 0; i < 4; i++)
|
||||
for (int i = 0; i < 4; i++) {
|
||||
assertEquals(1, out.getArr().get(all(), NDArrayIndex.point(i), all(), all()).getInt(0));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
@ -1327,7 +1331,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
INDArray means = Nd4j.create(new float[]{2, 4}, new long[]{1, 2});
|
||||
INDArray vars = Nd4j.create(new float[]{6, 8}, new long[]{1, 2});
|
||||
|
||||
|
||||
SDVariable sdCounts = sd.var("counts", counts);
|
||||
SDVariable sdMeans = sd.var("means", means);
|
||||
SDVariable sdVars = sd.var("vars", vars);
|
||||
|
@ -1363,7 +1366,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
int imgH = 28;
|
||||
int imgW = 28;
|
||||
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
INDArray depthWeightArr = Nd4j.create(kH, kW, nIn, depthWise);
|
||||
|
||||
|
@ -1720,7 +1722,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
SDVariable in1 = sd.var("in1", ia);
|
||||
SDVariable in2 = sd.var("in2", ib);
|
||||
|
||||
|
||||
SDVariable t;
|
||||
INDArray expOut;
|
||||
switch (i) {
|
||||
|
@ -1835,7 +1836,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
val origShape = new long[]{3, 4};
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (Pair<INDArray, String> p : NDArrayCreationUtil.getAllTestMatricesWithShape(origShape[0], origShape[1], 12345, DataType.FLOAT)) {
|
||||
for (Pair<INDArray, String> p : NDArrayCreationUtil
|
||||
.getAllTestMatricesWithShape(origShape[0], origShape[1], 12345, DataType.FLOAT)) {
|
||||
INDArray inArr = p.getFirst().muli(100);
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
|
@ -1875,7 +1877,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
val shape = origShape.clone();
|
||||
shape[i] = 1;
|
||||
|
||||
for (Pair<INDArray, String> p : NDArrayCreationUtil.getAll3dTestArraysWithShape(12345, shape, DataType.FLOAT)) {
|
||||
for (Pair<INDArray, String> p : NDArrayCreationUtil
|
||||
.getAll3dTestArraysWithShape(12345, shape, DataType.FLOAT)) {
|
||||
INDArray inArr = p.getFirst().muli(100);
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
|
@ -1912,7 +1915,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
val origShape = new long[]{3, 4};
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (Pair<INDArray, String> p : NDArrayCreationUtil.getAllTestMatricesWithShape(origShape[0], origShape[1], 12345, DataType.FLOAT)) {
|
||||
for (Pair<INDArray, String> p : NDArrayCreationUtil
|
||||
.getAllTestMatricesWithShape(origShape[0], origShape[1], 12345, DataType.FLOAT)) {
|
||||
INDArray inArr = p.getFirst().muli(100);
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
|
@ -1939,7 +1943,8 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
val shape = origShape.clone();
|
||||
shape[i] = 1;
|
||||
|
||||
for (Pair<INDArray, String> p : NDArrayCreationUtil.getAll3dTestArraysWithShape(12345, shape, DataType.FLOAT)) {
|
||||
for (Pair<INDArray, String> p : NDArrayCreationUtil
|
||||
.getAll3dTestArraysWithShape(12345, shape, DataType.FLOAT)) {
|
||||
INDArray inArr = p.getFirst().muli(100);
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
|
@ -2214,7 +2219,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
SDVariable in = sd.var("in", 1, 2);
|
||||
sd.associateArrayWithVariable(ia, in);
|
||||
|
||||
|
||||
INDArray expFinite = Nd4j.create(new boolean[]{true, true});
|
||||
SDVariable finite = sd.math().isFinite(in);
|
||||
|
||||
|
@ -2259,11 +2263,10 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
SDVariable result2 = x.get(SDIndex.point(4), SDIndex.all());
|
||||
assertEquals(expOut2, result2.eval());
|
||||
|
||||
INDArray expOut3 = arr.get(NDArrayIndex.interval(3, 8)).reshape(5,10);
|
||||
INDArray expOut3 = arr.get(NDArrayIndex.interval(3, 8)).reshape(5, 10);
|
||||
SDVariable result3 = x.get(SDIndex.interval(3, 8));
|
||||
assertEquals(expOut3, result3.eval());
|
||||
|
||||
|
||||
INDArray expOut4 = arr.get(NDArrayIndex.point(5), NDArrayIndex.interval(3, 8)).reshape(5);
|
||||
SDVariable result4 = x.get(SDIndex.point(5), SDIndex.interval(3, 8));
|
||||
assertEquals(expOut4, result4.eval());
|
||||
|
@ -2295,7 +2298,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
INDArray s3a = s3.eval();
|
||||
assertEquals(s3a, y3);
|
||||
|
||||
|
||||
INDArray y4 = arr.get(NDArrayIndex.point(2), NDArrayIndex.all(), NDArrayIndex.interval(3, 5));
|
||||
SDVariable s4 = x.get(SDIndex.point(2), SDIndex.all(), SDIndex.interval(3, 5));
|
||||
INDArray s4a = s4.eval();
|
||||
|
@ -2409,7 +2411,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
},
|
||||
new int[]{3, 2, 4});
|
||||
|
||||
|
||||
SDVariable x = sd.var(arr);
|
||||
SDVariable result = sd.permute(x, 1, 0, 2);
|
||||
assertEquals(expOut, result.eval());
|
||||
|
@ -2470,7 +2471,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
ExternalErrorsFunction fn = sd.f().externalErrors(out);
|
||||
|
||||
sd.execAndEndResult();
|
||||
Map<String,INDArray> m = new HashMap<>();
|
||||
Map<String, INDArray> m = new HashMap<>();
|
||||
m.put("out-grad", externalGrad);
|
||||
sd.execBackwards(m);
|
||||
|
||||
|
@ -2488,7 +2489,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
assertEquals(externalGrad.mul(0.5), gradVar);
|
||||
|
||||
|
||||
//Test model serialization:
|
||||
}
|
||||
|
||||
|
@ -2620,7 +2620,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
b.setArray(bA);
|
||||
|
||||
INDArray grad = Nd4j.linspace(1, 12, 12, DataType.FLOAT).reshape(3, 4);
|
||||
Map<String,INDArray> phMap = new HashMap<>();
|
||||
Map<String, INDArray> phMap = new HashMap<>();
|
||||
phMap.put(fn.getGradPlaceholderName(), grad);
|
||||
|
||||
log.info("--------------- sd.execAndEndResult() ---------------");
|
||||
|
@ -2723,7 +2723,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
.build();
|
||||
sd.setTrainingConfig(c);
|
||||
|
||||
|
||||
sd.fit(new SingletonMultiDataSetIterator(new DataSet(inArr, null).toMultiDataSet()), 1);
|
||||
|
||||
INDArray out = tanh.eval();
|
||||
|
@ -2757,7 +2756,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
INDArray inArr = Nd4j.rand(DataType.FLOAT, 1, 3);
|
||||
in.setArray(inArr);
|
||||
INDArray inArr2 = Nd4j.rand(DataType.FLOAT, 3,4);
|
||||
INDArray inArr2 = Nd4j.rand(DataType.FLOAT, 3, 4);
|
||||
|
||||
TrainingConfig c = TrainingConfig.builder()
|
||||
.updater(new Adam(0.1))
|
||||
|
@ -2767,7 +2766,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
.build();
|
||||
sd.setTrainingConfig(c);
|
||||
|
||||
|
||||
sd.fit(new SingletonMultiDataSetIterator(new MultiDataSet(new INDArray[]{inArr, inArr2}, null)), 1);
|
||||
|
||||
INDArray out = tanh.eval();
|
||||
|
@ -2859,7 +2857,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
final INDArray out = Nd4j.concat(2, output).norm2();
|
||||
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
final SDVariable sdInput = sd.var("input", input);
|
||||
|
||||
|
@ -2905,7 +2902,6 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
final INDArray out = Nd4j.concat(2, output).norm2();
|
||||
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
final SDVariable sdInput = sd.var("input", input);
|
||||
|
||||
|
@ -2917,13 +2913,11 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
outputSlices[0] = x_0;
|
||||
outputSlices[0] = sd.expandDims("X_0-e", outputSlices[0], 2);
|
||||
|
||||
|
||||
final val x_1 = inputSlices[1];
|
||||
outputSlices[1] = x_1;
|
||||
outputSlices[1] = outputSlices[1].add(sd.squeeze("X_0-s", outputSlices[0], 2));
|
||||
outputSlices[1] = sd.expandDims("X_1-e", outputSlices[1], 2);
|
||||
|
||||
|
||||
SDVariable t = sd.concat(2, outputSlices);
|
||||
t.norm2("out");
|
||||
String err = OpValidation.validate(new TestCase(sd)
|
||||
|
@ -3036,7 +3030,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void testSameDiffBackprop1(){
|
||||
public void testSameDiffBackprop1() {
|
||||
SameDiff sd = SameDiff.create();
|
||||
final SDVariable a = sd.var("a", Nd4j.rand(4, 4));
|
||||
final SDVariable b = sd.var("b", Nd4j.rand(4, 4));
|
||||
|
@ -3050,7 +3044,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void testSameDiffNoGradForConstantAndPlaceholder(){
|
||||
public void testSameDiffNoGradForConstantAndPlaceholder() {
|
||||
SameDiff sd = SameDiff.create();
|
||||
final SDVariable a = sd.var("a", Nd4j.rand(4, 4));
|
||||
final SDVariable b = sd.constant("b", Nd4j.rand(4, 4));
|
||||
|
@ -3058,16 +3052,16 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
a.add(b.add(c)).sum().markAsLoss();
|
||||
|
||||
sd.execBackwards(Collections.singletonMap("c", Nd4j.rand(4,4 )));
|
||||
sd.execBackwards(Collections.singletonMap("c", Nd4j.rand(4, 4)));
|
||||
assertNotNull(sd.grad("a"));
|
||||
assertNull(sd.grad("b"));
|
||||
assertNull(sd.grad("c"));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testDuplicateNamePlaceholder(){
|
||||
public void testDuplicateNamePlaceholder() {
|
||||
|
||||
for( int i=0; i<2; i++ ) {
|
||||
for (int i = 0; i < 2; i++) {
|
||||
SameDiff sd = SameDiff.create();
|
||||
SDVariable x1 = i == 0 ? sd.placeHolder("a", DataType.FLOAT, 5, 3) : sd.var("a", DataType.FLOAT, 5, 3);
|
||||
SDVariable x2 = i == 0 ? sd.placeHolder("b", DataType.FLOAT, 5, 3) : sd.var("b", DataType.FLOAT, 5, 3);
|
||||
|
@ -3119,7 +3113,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void testSameDiffGetArrayScalar(){
|
||||
public void testSameDiffGetArrayScalar() {
|
||||
final INDArray array = Nd4j.rand(1, 1);
|
||||
final SameDiff sd = SameDiff.create();
|
||||
final SDVariable a = sd.var("a", array.shape());
|
||||
|
@ -3128,11 +3122,11 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void testVariableRenaming(){
|
||||
public void testVariableRenaming() {
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
SDVariable v1 = sd.var("x", Nd4j.rand(DataType.FLOAT, 3,4));
|
||||
SDVariable v2 = sd.var("y", Nd4j.rand(DataType.FLOAT, 4,5));
|
||||
SDVariable v1 = sd.var("x", Nd4j.rand(DataType.FLOAT, 3, 4));
|
||||
SDVariable v2 = sd.var("y", Nd4j.rand(DataType.FLOAT, 4, 5));
|
||||
SDVariable v3 = v1.mmul("oldName", v2);
|
||||
|
||||
INDArray out = sd.execSingle(null, "oldName");
|
||||
|
@ -3150,11 +3144,11 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void testVariableRenaming2(){
|
||||
public void testVariableRenaming2() {
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
SDVariable v1 = sd.placeHolder("x", DataType.FLOAT,3,4);
|
||||
SDVariable v2 = sd.var("y", Nd4j.rand(DataType.FLOAT, 4,5));
|
||||
SDVariable v1 = sd.placeHolder("x", DataType.FLOAT, 3, 4);
|
||||
SDVariable v2 = sd.var("y", Nd4j.rand(DataType.FLOAT, 4, 5));
|
||||
SDVariable v3 = v1.mmul("oldName", v2);
|
||||
SDVariable v4 = v3.std("out", false);
|
||||
|
||||
|
@ -3172,7 +3166,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void testPlaceholderShapeValidation(){
|
||||
public void testPlaceholderShapeValidation() {
|
||||
SameDiff sd = SameDiff.create();
|
||||
SDVariable ph1 = sd.placeHolder("ph1", DataType.FLOAT, 3, 4);
|
||||
SDVariable ph2 = sd.placeHolder("ph2", DataType.FLOAT, -1, 4);
|
||||
|
@ -3183,33 +3177,36 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
INDArray wrongShape = Nd4j.create(DataType.FLOAT, 2, 3);
|
||||
INDArray wrongRank1 = Nd4j.create(DataType.FLOAT, 1);
|
||||
INDArray wrongRank2 = Nd4j.create(DataType.FLOAT, 3, 4, 5);
|
||||
for(SDVariable v : new SDVariable[]{ph1, ph2, ph3, ph4}){
|
||||
for (SDVariable v : new SDVariable[]{ph1, ph2, ph3, ph4}) {
|
||||
v.setArray(correctShape);
|
||||
|
||||
if(v != ph4) {
|
||||
if (v != ph4) {
|
||||
try {
|
||||
v.setArray(wrongShape);
|
||||
fail("Expected exception");
|
||||
} catch (Exception t) {
|
||||
String msg = t.getMessage();
|
||||
assertTrue(msg, msg.contains("shape") && msg.contains("[2, 3]") && msg.contains(Arrays.toString(v.placeholderShape())));
|
||||
assertTrue(msg, msg.contains("shape") && msg.contains("[2, 3]") && msg
|
||||
.contains(Arrays.toString(v.placeholderShape())));
|
||||
}
|
||||
}
|
||||
|
||||
try{
|
||||
try {
|
||||
v.setArray(wrongRank1);
|
||||
fail("Expected exception");
|
||||
} catch (Exception t){
|
||||
} catch (Exception t) {
|
||||
String msg = t.getMessage();
|
||||
assertTrue(msg, msg.contains("shape") && msg.contains("[1]") && msg.contains(Arrays.toString(v.placeholderShape())));
|
||||
assertTrue(msg, msg.contains("shape") && msg.contains("[1]") && msg
|
||||
.contains(Arrays.toString(v.placeholderShape())));
|
||||
}
|
||||
|
||||
try{
|
||||
try {
|
||||
v.setArray(wrongRank2);
|
||||
fail("Expected exception");
|
||||
} catch (Exception t){
|
||||
} catch (Exception t) {
|
||||
String msg = t.getMessage();
|
||||
assertTrue(msg, msg.contains("shape") && msg.contains("[3, 4, 5]") && msg.contains(Arrays.toString(v.placeholderShape())));
|
||||
assertTrue(msg, msg.contains("shape") && msg.contains("[3, 4, 5]") && msg
|
||||
.contains(Arrays.toString(v.placeholderShape())));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -3223,9 +3220,9 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
.markLabelsUnused()
|
||||
.updater(new Adam(1e-3)).build());
|
||||
|
||||
try{
|
||||
try {
|
||||
sd.fit(mds);
|
||||
} catch (Exception t){
|
||||
} catch (Exception t) {
|
||||
String msg = t.getMessage();
|
||||
assertTrue(msg, msg.contains("shape") && msg.contains("[2, 3]"));
|
||||
}
|
||||
|
@ -3233,7 +3230,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
|
||||
@Test
|
||||
public void testInferenceWithoutLabel(){
|
||||
public void testInferenceWithoutLabel() {
|
||||
//We don't need a value for the label placeholder to calculate most values here
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
|
@ -3252,15 +3249,14 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
INDArray inputArr = Nd4j.rand(DataType.FLOAT, minibatch, nIn);
|
||||
|
||||
Map<String,INDArray> m = sd.exec(Collections.singletonMap("in", inputArr), "softmax");
|
||||
Map<String, INDArray> m = sd.exec(Collections.singletonMap("in", inputArr), "softmax");
|
||||
assertEquals(1, m.size());
|
||||
assertTrue(m.containsKey("softmax"));
|
||||
|
||||
INDArray out = m.get("softmax");
|
||||
|
||||
|
||||
INDArray labelUnused = Nd4j.rand(DataType.FLOAT, minibatch, 3);
|
||||
Map<String,INDArray> allPh = new HashMap<>();
|
||||
Map<String, INDArray> allPh = new HashMap<>();
|
||||
allPh.put("in", inputArr);
|
||||
allPh.put("label", labelUnused);
|
||||
m = sd.exec(allPh, "softmax");
|
||||
|
@ -3271,7 +3267,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void testInferenceWithoutUnnecessaryPlaceholders(){
|
||||
public void testInferenceWithoutUnnecessaryPlaceholders() {
|
||||
//We don't need an array for 2 of the placeholders to calculate the
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
|
@ -3293,15 +3289,14 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
INDArray inputArr = Nd4j.rand(DataType.FLOAT, minibatch, nIn);
|
||||
|
||||
Map<String,INDArray> m = sd.exec(Collections.singletonMap("in", inputArr), "softmax");
|
||||
Map<String, INDArray> m = sd.exec(Collections.singletonMap("in", inputArr), "softmax");
|
||||
assertEquals(1, m.size());
|
||||
assertTrue(m.containsKey("softmax"));
|
||||
|
||||
INDArray out = m.get("softmax");
|
||||
|
||||
|
||||
INDArray labelUnused = Nd4j.rand(DataType.FLOAT, minibatch, 3);
|
||||
Map<String,INDArray> allPh = new HashMap<>();
|
||||
Map<String, INDArray> allPh = new HashMap<>();
|
||||
allPh.put("in", inputArr);
|
||||
allPh.put("label", labelUnused);
|
||||
allPh.put("in2", Nd4j.scalar(1.0f));
|
||||
|
@ -3314,7 +3309,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
|
||||
@Test
|
||||
public void testConvertDTypes1(){
|
||||
public void testConvertDTypes1() {
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
SDVariable x = sd.var("x", Nd4j.rand(DataType.FLOAT, 3, 4));
|
||||
|
@ -3329,15 +3324,15 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
assertEquals(DataType.FLOAT, tanh.dataType());
|
||||
assertEquals(DataType.FLOAT, stdev.dataType());
|
||||
|
||||
Map<String,INDArray> out = sd.exec(null, "x", "y", "z", "tanh", "stdev");
|
||||
for(Map.Entry<String,INDArray> e : out.entrySet()){
|
||||
Map<String, INDArray> out = sd.exec(null, "x", "y", "z", "tanh", "stdev");
|
||||
for (Map.Entry<String, INDArray> e : out.entrySet()) {
|
||||
assertEquals(e.getKey(), DataType.FLOAT, e.getValue().dataType());
|
||||
}
|
||||
|
||||
assertEquals(DataType.FLOAT, x.getArr().dataType());
|
||||
assertEquals(DataType.FLOAT, y.getArr().dataType());
|
||||
|
||||
Map<String,DataType> toConvert = new HashMap<>();
|
||||
Map<String, DataType> toConvert = new HashMap<>();
|
||||
toConvert.put("x", DataType.DOUBLE);
|
||||
toConvert.put("y", DataType.DOUBLE);
|
||||
sd.convertDataTypes(toConvert);
|
||||
|
@ -3349,7 +3344,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
assertEquals(DataType.DOUBLE, stdev.dataType());
|
||||
|
||||
out = sd.exec(null, "x", "y", "z", "tanh", "stdev");
|
||||
for(Map.Entry<String,INDArray> e : out.entrySet()){
|
||||
for (Map.Entry<String, INDArray> e : out.entrySet()) {
|
||||
assertEquals(e.getKey(), DataType.DOUBLE, e.getValue().dataType());
|
||||
}
|
||||
|
||||
|
@ -3358,7 +3353,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
@Test
|
||||
public void testConvertDTypes2(){
|
||||
public void testConvertDTypes2() {
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
SDVariable x = sd.placeHolder("x", DataType.FLOAT, 3, 4);
|
||||
|
@ -3375,11 +3370,11 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
assertEquals(DataType.DOUBLE, add.dataType());
|
||||
assertEquals(DataType.DOUBLE, relu.dataType());
|
||||
|
||||
Map<String,INDArray> ph = Collections.singletonMap("x", Nd4j.rand(DataType.FLOAT, 3, 4));
|
||||
Map<String, INDArray> ph = Collections.singletonMap("x", Nd4j.rand(DataType.FLOAT, 3, 4));
|
||||
|
||||
Map<String,INDArray> out = sd.exec(ph, "x", "y", "xD", "yD", "a", "r");
|
||||
for(Map.Entry<String,INDArray> e : out.entrySet()){
|
||||
if(e.getKey().equals("x") || e.getKey().equals("y")){
|
||||
Map<String, INDArray> out = sd.exec(ph, "x", "y", "xD", "yD", "a", "r");
|
||||
for (Map.Entry<String, INDArray> e : out.entrySet()) {
|
||||
if (e.getKey().equals("x") || e.getKey().equals("y")) {
|
||||
assertEquals(e.getKey(), DataType.FLOAT, e.getValue().dataType());
|
||||
} else {
|
||||
assertEquals(e.getKey(), DataType.DOUBLE, e.getValue().dataType());
|
||||
|
@ -3388,7 +3383,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
assertEquals(DataType.FLOAT, y.getArr().dataType());
|
||||
|
||||
Map<String,DataType> toConvert = new HashMap<>();
|
||||
Map<String, DataType> toConvert = new HashMap<>();
|
||||
toConvert.put("x", DataType.DOUBLE);
|
||||
toConvert.put("y", DataType.DOUBLE);
|
||||
sd.convertDataTypes(toConvert);
|
||||
|
@ -3401,7 +3396,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
assertEquals(DataType.DOUBLE, relu.dataType());
|
||||
|
||||
out = sd.exec(ph, "x", "y", "xD", "yD", "a", "r");
|
||||
for(Map.Entry<String,INDArray> e : out.entrySet()){
|
||||
for (Map.Entry<String, INDArray> e : out.entrySet()) {
|
||||
assertEquals(e.getKey(), DataType.DOUBLE, e.getValue().dataType());
|
||||
}
|
||||
|
||||
|
@ -3410,11 +3405,11 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
|
||||
@Test
|
||||
public void testGradFnRequiredVars(){
|
||||
public void testGradFnRequiredVars() {
|
||||
//User can explicitly request that gradients for specific vars are available when differentiating (creating grad function),
|
||||
// even if they normally wouldn't be needed or calculated
|
||||
|
||||
for(boolean reqPhVar : new boolean[]{false, true}){
|
||||
for (boolean reqPhVar : new boolean[]{false, true}) {
|
||||
// for(boolean reqPhVar : new boolean[]{true}){
|
||||
|
||||
SameDiff sd = SameDiff.create();
|
||||
|
@ -3429,7 +3424,7 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
|
||||
INDArray in = Nd4j.rand(DataType.FLOAT, 1, 5);
|
||||
|
||||
if(reqPhVar){
|
||||
if (reqPhVar) {
|
||||
sd.createGradFunction("in");
|
||||
assertNotNull(ph.gradient());
|
||||
assertNotNull(w.gradient());
|
||||
|
@ -3447,6 +3442,129 @@ public class SameDiffTests extends BaseNd4jTest {
|
|||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testIf() throws IOException {
|
||||
SameDiff SD = SameDiff.create();
|
||||
SDVariable a = SD.placeHolder("a", DataType.DOUBLE);
|
||||
SDVariable b = SD.var("b", Nd4j.createFromArray(5.0));
|
||||
SDVariable c = SD.var("c", Nd4j.createFromArray(9.0));
|
||||
|
||||
SDVariable output = SD.ifCond("out", null, (sd) -> a.lt(b), (sd) -> c, (sd) -> c.add(5));
|
||||
|
||||
Map<String, INDArray> firstBranch = Maps.newHashMap();
|
||||
firstBranch.put("a", Nd4j.createFromArray(3.0));
|
||||
assertEquals(Nd4j.createFromArray(9.0), SD.exec(firstBranch, "out").get("out"));
|
||||
|
||||
Map<String, INDArray> secondBranch = Maps.newHashMap();
|
||||
secondBranch.put("a", Nd4j.createFromArray(7.0));
|
||||
assertEquals(Nd4j.createFromArray(14.0), SD.exec(secondBranch, "out").get("out"));
|
||||
|
||||
//TODO complains that it can't deserialize a meta type, but there are no meta type ops here
|
||||
// looks like a difference between Op.Type and OpType. Switch is saved as a OpType.LOGIC
|
||||
SD = SameDiff.fromFlatBuffers(SD.asFlatBuffers(false));
|
||||
|
||||
assertEquals(Nd4j.createFromArray(9.0), SD.exec(firstBranch, "out").get("out"));
|
||||
assertEquals(Nd4j.createFromArray(14.0), SD.exec(secondBranch, "out").get("out"));
|
||||
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testNestedIf() throws IOException {
|
||||
SameDiff SD = SameDiff.create();
|
||||
SDVariable a = SD.var("a", Nd4j.createFromArray(2.0));
|
||||
SDVariable b = SD.var("b", Nd4j.createFromArray(5.0));
|
||||
SDVariable c = SD.var("c", Nd4j.createFromArray(9.0));
|
||||
SDVariable d = SD.var("d", Nd4j.createFromArray(-7.0));
|
||||
|
||||
SDVariable output = SD.ifCond("out", null,
|
||||
(sd) -> a.lt(b),
|
||||
(sd) -> sd.ifCond(
|
||||
(sd2) -> d.lte(0),
|
||||
(sd2) -> c.add(1),
|
||||
(sd2) -> d),
|
||||
(sd) -> c.add(5));
|
||||
INDArray out = output.eval();
|
||||
assertEquals(Nd4j.createFromArray(10.0), out);
|
||||
|
||||
SD = SameDiff.fromFlatBuffers(SD.asFlatBuffers(false));
|
||||
|
||||
assertEquals(Nd4j.createFromArray(10.0), SD.exec(null, "out").get("out"));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testWhile() throws IOException {
|
||||
|
||||
SameDiff SD = SameDiff.create();
|
||||
SDVariable countIn = SD.constant(5);
|
||||
SDVariable sumIn = SD.constant(0);
|
||||
|
||||
SDVariable[] sum = SD.whileLoop("while_1", new SDVariable[]{countIn, sumIn},
|
||||
(sd, vars) -> vars[0].gt(0),
|
||||
(sd, vars) -> new SDVariable[]{vars[0].sub(1), vars[1].add(vars[0])});
|
||||
|
||||
INDArray out = sum[1].eval();
|
||||
assertEquals(15, out.getInt(0));
|
||||
|
||||
String outName = sum[1].getVarName();
|
||||
|
||||
SD = SameDiff.fromFlatBuffers(SD.asFlatBuffers(false));
|
||||
|
||||
assertEquals(15, SD.exec(null, outName).get(outName).getInt(0));
|
||||
}
|
||||
|
||||
@Test
|
||||
@Ignore
|
||||
public void testNestedWhile() throws IOException {
|
||||
SameDiff SD = SameDiff.create();
|
||||
SDVariable countIn = SD.constant(5);
|
||||
SDVariable sumIn = SD.constant(0);
|
||||
SDVariable sum2 = SD.constant(0);
|
||||
//TODO creating constant instead of using sum2 causes errors
|
||||
|
||||
SDVariable[] sum = SD.whileLoop(new SDVariable[]{countIn, sumIn},
|
||||
(sd, vars) -> vars[0].gt(0),
|
||||
(sd, vars) -> new SDVariable[]{vars[0].sub(1),
|
||||
vars[1].add(sd.whileLoop(new SDVariable[]{vars[0], sum2},
|
||||
(sd2, vars2) -> vars2[0].gt(0),
|
||||
(sd2, vars2) -> new SDVariable[]{vars2[0].sub(1), vars2[1].add(vars2[0])})[1])});
|
||||
|
||||
INDArray out = sum[1].eval();
|
||||
assertEquals(35, out.getInt(0));
|
||||
|
||||
String outName = sum[1].getVarName();
|
||||
|
||||
SD = SameDiff.fromFlatBuffers(SD.asFlatBuffers(false));
|
||||
|
||||
assertEquals(35, SD.exec(null, outName).get(outName).getInt(0));
|
||||
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testNestedWhileIf() throws IOException {
|
||||
SameDiff SD = SameDiff.create();
|
||||
SDVariable countIn = SD.constant(5);
|
||||
SDVariable sumIn = SD.constant(0);
|
||||
SDVariable hundred = SD.constant(100);
|
||||
|
||||
SDVariable[] sum = SD.whileLoop(new SDVariable[]{countIn, sumIn},
|
||||
(sd, vars) -> vars[0].gte(0),
|
||||
(sd, vars) -> new SDVariable[]{vars[0].sub(1), vars[1].add(
|
||||
sd.ifCond((sd2) -> vars[0].eq(0),
|
||||
(sd2) -> vars[0].add(100), //TODO replace with hundred and things break
|
||||
(sd2) -> vars[0])
|
||||
)});
|
||||
|
||||
INDArray out = sum[1].eval();
|
||||
assertEquals(115, out.getInt(0));
|
||||
|
||||
String outName = sum[1].getVarName();
|
||||
|
||||
SD = SameDiff.fromFlatBuffers(SD.asFlatBuffers(false));
|
||||
|
||||
assertEquals(115, SD.exec(null, outName).get(outName).getInt(0));
|
||||
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue