diff --git a/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/evaluation/RegressionEvalTest.java b/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/evaluation/RegressionEvalTest.java index d182377fe..1bd6fd22c 100644 --- a/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/evaluation/RegressionEvalTest.java +++ b/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/evaluation/RegressionEvalTest.java @@ -291,7 +291,7 @@ public class RegressionEvalTest extends BaseNd4jTest { for (Metric m : Metric.values()) { double d1 = e4d.scoreForMetric(m); double d2 = e2d.scoreForMetric(m); - assertEquals(m.toString(), d2, d1, 1e-6); + assertEquals(m.toString(), d2, d1, 1e-5); } } @@ -385,7 +385,7 @@ public class RegressionEvalTest extends BaseNd4jTest { for(Metric m : Metric.values()){ double d1 = e4d_m1.scoreForMetric(m); double d2 = e2d_m1.scoreForMetric(m); - assertEquals(m.toString(), d2, d1, 1e-6); + assertEquals(m.toString(), d2, d1, 1e-5); } //Check per-output masking: diff --git a/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/linalg/crash/SpecialTests.java b/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/linalg/crash/SpecialTests.java index 75a91263d..cfff870a6 100644 --- a/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/linalg/crash/SpecialTests.java +++ b/nd4j/nd4j-backends/nd4j-tests/src/test/java/org/nd4j/linalg/crash/SpecialTests.java @@ -551,15 +551,13 @@ public class SpecialTests extends BaseNd4jTest { int[] inputShape = new int[]{1, 2, 2, 1}; int M = 2; - int[] blockShape = new int[]{M, 1}; - int[] paddingShape = new int[]{M, 2}; INDArray input = Nd4j.randn(inputShape).castTo(DataType.DOUBLE); - INDArray blocks = Nd4j.create(new float[]{2, 2}, blockShape).castTo(DataType.INT); - INDArray padding = Nd4j.create(new float[]{0, 0, 0, 0}, paddingShape).castTo(DataType.INT); + INDArray blocks = Nd4j.createFromArray(2, 2); + INDArray padding = Nd4j.createFromArray(0, 0, 0, 0).reshape(2,2); INDArray expOut = Nd4j.create(DataType.DOUBLE, miniBatch, 1, 1, 1); - val op = DynamicCustomOp.builder("space_to_batch") + val op = DynamicCustomOp.builder("space_to_batch_nd") .addInputs(input, blocks, padding) .addOutputs(expOut).build(); Nd4j.getExecutioner().execAndReturn(op); @@ -573,15 +571,13 @@ public class SpecialTests extends BaseNd4jTest { int[] inputShape = new int[]{miniBatch, 1, 1, 1}; int M = 2; - int[] blockShape = new int[]{M, 1}; - int[] cropShape = new int[]{M, 2}; INDArray input = Nd4j.randn(inputShape).castTo(DataType.DOUBLE); - INDArray blocks = Nd4j.create(new float[]{2, 2}, blockShape).castTo(DataType.INT); - INDArray crops = Nd4j.create(new float[]{0, 0, 0, 0}, cropShape).castTo(DataType.INT); + INDArray blocks = Nd4j.createFromArray(2, 2); + INDArray crops = Nd4j.createFromArray(0, 0, 0, 0).reshape(2,2); INDArray expOut = Nd4j.create(DataType.DOUBLE, 1, 2, 2, 1); - DynamicCustomOp op = DynamicCustomOp.builder("batch_to_space") + DynamicCustomOp op = DynamicCustomOp.builder("batch_to_space_nd") .addInputs(input, blocks, crops) .addOutputs(expOut).build(); Nd4j.getExecutioner().execAndReturn(op);