Implementation of cuda kernel for fake_quant_with_min_max_vars_per_channels op. Final revision.
parent
02d8616692
commit
d5b352273d
|
@ -81,19 +81,24 @@ namespace helpers {
|
||||||
static __global__ void fakeQuantWithMinMaxKernel(T* input, Nd4jLong* inputShape, T* min, T* max,
|
static __global__ void fakeQuantWithMinMaxKernel(T* input, Nd4jLong* inputShape, T* min, T* max,
|
||||||
int lowIntBound, int upperIntBound, Nd4jLong channels,
|
int lowIntBound, int upperIntBound, Nd4jLong channels,
|
||||||
T* output, Nd4jLong* outputShape, Nd4jLong length) {
|
T* output, Nd4jLong* outputShape, Nd4jLong length) {
|
||||||
|
__shared__ int block;
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
block = length / channels;
|
||||||
|
}
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
for (auto i = blockIdx.x; i < (int)channels; i += gridDim.x) {
|
for (auto i = blockIdx.x; i < (int)channels; i += gridDim.x) {
|
||||||
T scale, nudged_min, nudged_max;
|
T scale, nudged_min, nudged_max;
|
||||||
Nudge(min[i], max[i], lowIntBound, upperIntBound, &scale, &nudged_min, &nudged_max);
|
Nudge(min[i], max[i], lowIntBound, upperIntBound, &scale, &nudged_min, &nudged_max);
|
||||||
//auto wiseMinMaxAndSoOn = LAMBDA_T(x, nudged_min, nudged_max, scale) {
|
//auto wiseMinMaxAndSoOn = LAMBDA_T(x, nudged_min, nudged_max, scale) {
|
||||||
for (auto e = threadIdx.x; e < (int)length; e += (int)channels) {
|
for (auto e = threadIdx.x; e < block; e += blockDim.x) {
|
||||||
T val = input[shape::getIndexOffset(e + i, inputShape)];
|
T val = input[shape::getIndexOffset(e * channels + i, inputShape)];
|
||||||
if (val < nudged_min) {
|
if (val < nudged_min) {
|
||||||
val = nudged_min;
|
val = nudged_min;
|
||||||
} else if (val > nudged_max) {
|
} else if (val > nudged_max) {
|
||||||
val = nudged_max;
|
val = nudged_max;
|
||||||
}
|
}
|
||||||
output[shape::getIndexOffset(e + i, outputShape)] = (math::nd4j_floor<T, T>((val - nudged_min) / scale + T(0.5)) * scale + nudged_min);
|
output[shape::getIndexOffset(e* channels + i, outputShape)] = (math::nd4j_floor<T, T>((val - nudged_min) / scale + T(0.5)) * scale + nudged_min);
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -111,7 +116,7 @@ namespace helpers {
|
||||||
T* outputBuf = output->dataBuffer()->specialAsT<T>();
|
T* outputBuf = output->dataBuffer()->specialAsT<T>();
|
||||||
T* minBuf = min->dataBuffer()->specialAsT<T>();
|
T* minBuf = min->dataBuffer()->specialAsT<T>();
|
||||||
T* maxBuf = max->dataBuffer()->specialAsT<T>();
|
T* maxBuf = max->dataBuffer()->specialAsT<T>();
|
||||||
fakeQuantWithMinMaxKernel<<<1, 1, 256, *stream>>>(inputBuf, input->specialShapeInfo(),
|
fakeQuantWithMinMaxKernel<<<128, 256, 256, *stream>>>(inputBuf, input->specialShapeInfo(),
|
||||||
minBuf, maxBuf, lowIntBound, upperIntBound, channels, outputBuf, output->specialShapeInfo(), length);
|
minBuf, maxBuf, lowIntBound, upperIntBound, channels, outputBuf, output->specialShapeInfo(), length);
|
||||||
NDArray::registerSpecialUse({output}, {min, max, input});
|
NDArray::registerSpecialUse({output}, {min, max, input});
|
||||||
|
|
||||||
|
|
|
@ -2127,8 +2127,8 @@ TEST_F(DeclarableOpsTests10, FakeQuantWithMinMaxVars_Test_1) {
|
||||||
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
||||||
|
|
||||||
auto result = results->at(0);
|
auto result = results->at(0);
|
||||||
result->printBuffer("Quantized");
|
// result->printBuffer("Quantized");
|
||||||
exp.printBuffer("Expected");
|
// exp.printBuffer("Expected");
|
||||||
ASSERT_TRUE(exp.isSameShapeStrict(result));
|
ASSERT_TRUE(exp.isSameShapeStrict(result));
|
||||||
ASSERT_TRUE(exp.equalsTo(result));
|
ASSERT_TRUE(exp.equalsTo(result));
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue