parent
0ef373fe45
commit
cc6063402e
|
@ -3879,6 +3879,19 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the normmax along the specified dimension
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the norm1 along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the norm1 along the specified dimension
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public INDArray normmax(boolean keepDims, int... dimension) {
|
||||||
|
validateNumericalArray("normmax", false);
|
||||||
|
return Nd4j.getExecutioner().exec(new NormMax(this, keepDims, dimension));
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the normmax along the specified dimension
|
* Returns the normmax along the specified dimension
|
||||||
*
|
*
|
||||||
|
@ -3887,8 +3900,7 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public INDArray normmax(int... dimension) {
|
public INDArray normmax(int... dimension) {
|
||||||
validateNumericalArray("normmax", false);
|
return normmax(false, dimension);
|
||||||
return Nd4j.getExecutioner().exec(new NormMax(this, dimension));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -4608,6 +4620,19 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
return reshape(Nd4j.order(), shape);
|
return reshape(Nd4j.order(), shape);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the product along a given dimension
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the product along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the product along the specified dimension
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public INDArray prod(boolean keepDims, int... dimension) {
|
||||||
|
validateNumericalArray("prod", false);
|
||||||
|
return Nd4j.getExecutioner().exec(new Prod(this, keepDims, dimension));
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the product along a given dimension
|
* Returns the product along a given dimension
|
||||||
*
|
*
|
||||||
|
@ -4616,8 +4641,20 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public INDArray prod(int... dimension) {
|
public INDArray prod(int... dimension) {
|
||||||
validateNumericalArray("prod", false);
|
return prod(false, dimension);
|
||||||
return Nd4j.getExecutioner().exec(new Prod(this, dimension));
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the overall mean of this ndarray
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the mean along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the mean along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public INDArray mean(boolean keepDims, int... dimension) {
|
||||||
|
validateNumericalArray("mean", false);
|
||||||
|
return Nd4j.getExecutioner().exec(new Mean(this, keepDims, dimension));
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -4628,8 +4665,7 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public INDArray mean(int... dimension) {
|
public INDArray mean(int... dimension) {
|
||||||
validateNumericalArray("mean", false);
|
return mean(false, dimension);
|
||||||
return Nd4j.getExecutioner().exec(new Mean(this, dimension));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -4639,9 +4675,14 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public INDArray mean(@NonNull INDArray result, int... dimension) {
|
public INDArray mean(@NonNull INDArray result, boolean keepDims, int... dimension) {
|
||||||
validateNumericalArray("mean", false);
|
validateNumericalArray("mean", false);
|
||||||
return Nd4j.getExecutioner().exec(new Mean(this, result, dimension));
|
return Nd4j.getExecutioner().exec(new Mean(this, result, keepDims, dimension));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray mean(@NonNull INDArray result, int... dimension) {
|
||||||
|
return mean(result, false, dimension);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -4669,6 +4710,19 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
return Nd4j.getExecutioner().exec(new Variance(this, biasCorrected, dimension));
|
return Nd4j.getExecutioner().exec(new Variance(this, biasCorrected, dimension));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the overall max of this ndarray
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the mean along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the mean along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public INDArray max(boolean keepDims, int... dimension) {
|
||||||
|
validateNumericalArray("max", false);
|
||||||
|
return Nd4j.getExecutioner().exec(new Max(this, keepDims, dimension));
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the overall max of this ndarray
|
* Returns the overall max of this ndarray
|
||||||
*
|
*
|
||||||
|
@ -4677,8 +4731,7 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public INDArray max(int... dimension) {
|
public INDArray max(int... dimension) {
|
||||||
validateNumericalArray("max", false);
|
return max(false, dimension);
|
||||||
return Nd4j.getExecutioner().exec(new Max(this, dimension));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -4687,6 +4740,19 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
return Nd4j.getExecutioner().exec(new AMax(this, dimension));
|
return Nd4j.getExecutioner().exec(new AMax(this, dimension));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the overall min of this ndarray
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the mean along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the mean along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public INDArray min(boolean keepDims, int... dimension) {
|
||||||
|
validateNumericalArray("min", false);
|
||||||
|
return Nd4j.getExecutioner().exec(new Min(this, keepDims, dimension));
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the overall min of this ndarray
|
* Returns the overall min of this ndarray
|
||||||
*
|
*
|
||||||
|
@ -4695,8 +4761,7 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public INDArray min(int... dimension) {
|
public INDArray min(int... dimension) {
|
||||||
validateNumericalArray("min", false);
|
return min(false, dimension);
|
||||||
return Nd4j.getExecutioner().exec(new Min(this, dimension));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -4764,9 +4829,14 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public INDArray sum(@NonNull INDArray result, int... dimension) {
|
public INDArray sum(@NonNull INDArray result, boolean keepDims, int... dimension) {
|
||||||
validateNumericalArray("sum", true);
|
validateNumericalArray("sum", true);
|
||||||
return Nd4j.getExecutioner().exec(new Sum(this, result, dimension));
|
return Nd4j.getExecutioner().exec(new Sum(this, result, keepDims, dimension));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray sum(@NonNull INDArray result, int... dimension) {
|
||||||
|
return sum(result, false, dimension);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -4778,8 +4848,21 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public INDArray norm1(int... dimension) {
|
public INDArray norm1(int... dimension) {
|
||||||
|
return norm1(false, dimension);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the norm1 along the specified dimension
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the norm1 along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the norm1 along the specified dimension
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public INDArray norm1(boolean keepDims, int... dimension) {
|
||||||
validateNumericalArray("norm1", false);
|
validateNumericalArray("norm1", false);
|
||||||
return Nd4j.getExecutioner().exec(new Norm1(this, dimension));
|
return Nd4j.getExecutioner().exec(new Norm1(this, keepDims, dimension));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -4796,8 +4879,13 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public INDArray std(boolean biasCorrected, int... dimension) {
|
public INDArray std(boolean biasCorrected, int... dimension) {
|
||||||
|
return std(biasCorrected, false, dimension);
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray std(boolean biasCorrected, boolean keepDims, int... dimension) {
|
||||||
validateNumericalArray("std", false);
|
validateNumericalArray("std", false);
|
||||||
return Nd4j.getExecutioner().exec(new StandardDeviation(this, biasCorrected, dimension));
|
return Nd4j.getExecutioner().exec(new StandardDeviation(this, biasCorrected, keepDims, dimension));
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
@ -4806,6 +4894,19 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
return Nd4j.getExecutioner().exec(new StandardDeviation(this, biasCorrected)).getDouble(0);
|
return Nd4j.getExecutioner().exec(new StandardDeviation(this, biasCorrected)).getDouble(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the norm2 along the specified dimension
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the norm2 along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the norm2 along the specified dimension
|
||||||
|
*/
|
||||||
|
@Override
|
||||||
|
public INDArray norm2(boolean keepDims, int... dimension) {
|
||||||
|
validateNumericalArray("norm2", false);
|
||||||
|
return Nd4j.getExecutioner().exec(new Norm2(this, keepDims, dimension));
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the norm2 along the specified dimension
|
* Returns the norm2 along the specified dimension
|
||||||
*
|
*
|
||||||
|
@ -4814,8 +4915,7 @@ public abstract class BaseNDArray implements INDArray, Iterable {
|
||||||
*/
|
*/
|
||||||
@Override
|
@Override
|
||||||
public INDArray norm2(int... dimension) {
|
public INDArray norm2(int... dimension) {
|
||||||
validateNumericalArray("norm2", false);
|
return norm2(false, dimension);
|
||||||
return Nd4j.getExecutioner().exec(new Norm2(this, dimension));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1250,6 +1250,58 @@ public abstract class BaseSparseNDArray implements ISparseNDArray {
|
||||||
return null;
|
return null;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray normmax(boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray norm2(boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray norm1(boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray std(boolean biasCorrected, boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray prod(boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray mean(boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray mean(INDArray result, boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray max(boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray min(boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
|
@Override
|
||||||
|
public INDArray sum(INDArray result, boolean keepDims, int... dimension) {
|
||||||
|
return null;
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public void setShapeAndStride(int[] shape, int[] stride) {
|
public void setShapeAndStride(int[] shape, int[] stride) {
|
||||||
|
|
||||||
|
|
|
@ -1518,6 +1518,16 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
*/
|
*/
|
||||||
INDArray normmax(int... dimension);
|
INDArray normmax(int... dimension);
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the max norm (aka infinity norm, equal to the maximum absolute value) along the specified dimension(s)
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to the max norm along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return Max norm along the specified dimension
|
||||||
|
*/
|
||||||
|
INDArray normmax(boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Return the max norm (aka infinity norm, equal to the maximum absolute value) for the entire array
|
* Return the max norm (aka infinity norm, equal to the maximum absolute value) for the entire array
|
||||||
*
|
*
|
||||||
|
@ -1533,6 +1543,15 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
*/
|
*/
|
||||||
INDArray norm2(int... dimension);
|
INDArray norm2(int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the norm2 (L2 norm, sqrt(sum(x_i^2), also known as Euclidean norm) along the specified dimension(s)
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the norm2 along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the norm2 along the specified dimension
|
||||||
|
*/
|
||||||
|
INDArray norm2(boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Return the norm2 (L2 norm, sqrt(sum(x_i^2), also known as Euclidean norm) for the entire array
|
* Return the norm2 (L2 norm, sqrt(sum(x_i^2), also known as Euclidean norm) for the entire array
|
||||||
*
|
*
|
||||||
|
@ -1549,6 +1568,16 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
*/
|
*/
|
||||||
INDArray norm1(int... dimension);
|
INDArray norm1(int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the norm1 (L1 norm, i.e., sum of absolute values; also known as Taxicab or Manhattan norm) along the
|
||||||
|
* specified dimension
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the norm1 along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the norm1 along the specified dimension
|
||||||
|
*/
|
||||||
|
INDArray norm1(boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Calculate and return norm1 (L1 norm, i.e., sum of absolute values; also known as Taxicab or Manhattan norm) for
|
* Calculate and return norm1 (L1 norm, i.e., sum of absolute values; also known as Taxicab or Manhattan norm) for
|
||||||
* the entire array
|
* the entire array
|
||||||
|
@ -1580,6 +1609,15 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
*/
|
*/
|
||||||
INDArray std(boolean biasCorrected, int... dimension);
|
INDArray std(boolean biasCorrected, int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Standard deviation of an ndarray along a dimension
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the std along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the standard deviation along a particular dimension
|
||||||
|
*/
|
||||||
|
INDArray std(boolean biasCorrected, boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Calculate the standard deviation for the entire array, specifying whether it is bias corrected or not
|
* Calculate the standard deviation for the entire array, specifying whether it is bias corrected or not
|
||||||
*
|
*
|
||||||
|
@ -1596,6 +1634,15 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
*/
|
*/
|
||||||
INDArray prod(int... dimension);
|
INDArray prod(int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the product along a given dimension
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the product along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the product along the specified dimension
|
||||||
|
*/
|
||||||
|
INDArray prod(boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Calculate the product of all values in the array
|
* Calculate the product of all values in the array
|
||||||
*
|
*
|
||||||
|
@ -1619,11 +1666,29 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
*/
|
*/
|
||||||
INDArray mean(INDArray result, int... dimension);
|
INDArray mean(INDArray result, int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the overall mean of this ndarray
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the mean along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the mean along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
|
INDArray mean(boolean keepDims, int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the overall mean of this ndarray
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the mean along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the mean along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
|
INDArray mean(INDArray result, boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the absolute overall mean of this ndarray
|
* Returns the absolute overall mean of this ndarray
|
||||||
*
|
*
|
||||||
* @param dimension the dimension to getScalar the mean along
|
* @param dimension the dimension to getScalar the mean along
|
||||||
* @return the mean along the specified dimension of this ndarray
|
* @return the absolute mean along the specified dimension of this ndarray
|
||||||
*/
|
*/
|
||||||
INDArray amean(int... dimension);
|
INDArray amean(int... dimension);
|
||||||
|
|
||||||
|
@ -1644,8 +1709,8 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
/**
|
/**
|
||||||
* Returns the overall variance of this ndarray
|
* Returns the overall variance of this ndarray
|
||||||
*
|
*
|
||||||
* @param dimension the dimension to getScalar the mean along
|
* @param dimension the dimension to getScalar the variance along
|
||||||
* @return the mean along the specified dimension of this ndarray
|
* @return the variance along the specified dimension of this ndarray
|
||||||
*/
|
*/
|
||||||
INDArray var(int... dimension);
|
INDArray var(int... dimension);
|
||||||
|
|
||||||
|
@ -1653,8 +1718,8 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
* Returns the overall variance of this ndarray
|
* Returns the overall variance of this ndarray
|
||||||
*
|
*
|
||||||
* @param biasCorrected boolean on whether to apply corrected bias
|
* @param biasCorrected boolean on whether to apply corrected bias
|
||||||
* @param dimension the dimension to getScalar the mean along
|
* @param dimension the dimension to getScalar the variance along
|
||||||
* @return the mean along the specified dimension of this ndarray
|
* @return the variance along the specified dimension of this ndarray
|
||||||
*/
|
*/
|
||||||
INDArray var(boolean biasCorrected, int... dimension);
|
INDArray var(boolean biasCorrected, int... dimension);
|
||||||
|
|
||||||
|
@ -1668,16 +1733,25 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
/**
|
/**
|
||||||
* Returns the overall max of this ndarray along given dimensions
|
* Returns the overall max of this ndarray along given dimensions
|
||||||
*
|
*
|
||||||
* @param dimension the dimension to getScalar the mean along
|
* @param dimension the dimension to getScalar the max along
|
||||||
* @return the mean along the specified dimension of this ndarray
|
* @return the max along the specified dimension of this ndarray
|
||||||
*/
|
*/
|
||||||
INDArray max(int... dimension);
|
INDArray max(int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the overall max of this ndarray along given dimensions
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the max along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the max along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
|
INDArray max(boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns the absolute overall max of this ndarray along given dimensions
|
* Returns the absolute overall max of this ndarray along given dimensions
|
||||||
*
|
*
|
||||||
* @param dimension the dimension to getScalar the mean along
|
* @param dimension the dimension to getScalar the amax along
|
||||||
* @return the mean along the specified dimension of this ndarray
|
* @return the amax along the specified dimension of this ndarray
|
||||||
*/
|
*/
|
||||||
INDArray amax(int... dimension);
|
INDArray amax(int... dimension);
|
||||||
|
|
||||||
|
@ -1696,11 +1770,20 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
/**
|
/**
|
||||||
* Returns the overall min of this ndarray
|
* Returns the overall min of this ndarray
|
||||||
*
|
*
|
||||||
* @param dimension the dimension to getScalar the mean along
|
* @param dimension the dimension to getScalar the min along
|
||||||
* @return the mean along the specified dimension of this ndarray
|
* @return the min along the specified dimension of this ndarray
|
||||||
*/
|
*/
|
||||||
INDArray min(int... dimension);
|
INDArray min(int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the overall min of this ndarray
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the min along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the min along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
|
INDArray min(boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Returns minimum (absolute) value in this INDArray, along the specified dimensions
|
* Returns minimum (absolute) value in this INDArray, along the specified dimensions
|
||||||
*
|
*
|
||||||
|
@ -1729,6 +1812,13 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
*/
|
*/
|
||||||
INDArray sum(int... dimension);
|
INDArray sum(int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the sum along the last dimension of this ndarray
|
||||||
|
*
|
||||||
|
* @param dimension the dimension to getScalar the sum along
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @return the sum along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
INDArray sum(boolean keepDims, int... dimension);
|
INDArray sum(boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -1748,6 +1838,16 @@ public interface INDArray extends Serializable, AutoCloseable {
|
||||||
*/
|
*/
|
||||||
INDArray sum(INDArray result, int... dimension);
|
INDArray sum(INDArray result, int... dimension);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Returns the sum along the last dimension of this ndarray
|
||||||
|
*
|
||||||
|
* @param result result of this operation will be stored here
|
||||||
|
* @param keepDims whether to keep reduced dimensions as dimensions of size 1
|
||||||
|
* @param dimension the dimension to getScalar the sum along
|
||||||
|
* @return the sum along the specified dimension of this ndarray
|
||||||
|
*/
|
||||||
|
INDArray sum(INDArray result, boolean keepDims, int... dimension);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Sum the entire array
|
* Sum the entire array
|
||||||
* @return Sum of array
|
* @return Sum of array
|
||||||
|
|
|
@ -69,6 +69,11 @@ public abstract class BaseReduceFloatOp extends BaseReduceOp implements ReduceFl
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
public BaseReduceFloatOp(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
super(x, keepDims, dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
public BaseReduceFloatOp(INDArray x, int... dimensions) {
|
public BaseReduceFloatOp(INDArray x, int... dimensions) {
|
||||||
super(x, dimensions);
|
super(x, dimensions);
|
||||||
}
|
}
|
||||||
|
|
|
@ -144,6 +144,11 @@ public abstract class BaseReduceOp extends BaseOp implements ReduceOp {
|
||||||
this(x, null, dimensions);
|
this(x, null, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public BaseReduceOp(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
this(x, null, dimensions);
|
||||||
|
this.keepDims = keepDims;
|
||||||
|
}
|
||||||
|
|
||||||
public BaseReduceOp(INDArray x, INDArray y, int... dimensions) {
|
public BaseReduceOp(INDArray x, INDArray y, int... dimensions) {
|
||||||
this(x, y, null, dimensions);
|
this(x, y, null, dimensions);
|
||||||
}
|
}
|
||||||
|
|
|
@ -58,6 +58,10 @@ public abstract class BaseReduceSameOp extends BaseReduceOp implements ReduceSam
|
||||||
super(x, dimensions);
|
super(x, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public BaseReduceSameOp(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
super(x, keepDims, dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
protected BaseReduceSameOp() {
|
protected BaseReduceSameOp() {
|
||||||
super();
|
super();
|
||||||
}
|
}
|
||||||
|
|
|
@ -45,6 +45,10 @@ public class Mean extends BaseReduceFloatOp {
|
||||||
super(x, dimensions);
|
super(x, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public Mean(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
super(x, keepDims, dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
public Mean(INDArray x, INDArray z, boolean keepDims, int... dimensions) {
|
public Mean(INDArray x, INDArray z, boolean keepDims, int... dimensions) {
|
||||||
super(x, z, keepDims, dimensions);
|
super(x, z, keepDims, dimensions);
|
||||||
}
|
}
|
||||||
|
|
|
@ -47,6 +47,10 @@ public class Norm1 extends BaseReduceFloatOp {
|
||||||
super(x, dimensions);
|
super(x, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public Norm1(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
super(x, keepDims, dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public INDArray noOp() {
|
public INDArray noOp() {
|
||||||
return Transforms.abs(x());
|
return Transforms.abs(x());
|
||||||
|
|
|
@ -47,6 +47,10 @@ public class Norm2 extends BaseReduceFloatOp {
|
||||||
super(x, dimensions);
|
super(x, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public Norm2(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
super(x, keepDims, dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public INDArray noOp() {
|
public INDArray noOp() {
|
||||||
return Transforms.abs(x());
|
return Transforms.abs(x());
|
||||||
|
|
|
@ -52,6 +52,10 @@ public class NormMax extends BaseReduceFloatOp {
|
||||||
super(x, dimensions);
|
super(x, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public NormMax(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
super(x, keepDims, dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public INDArray noOp() {
|
public INDArray noOp() {
|
||||||
return Transforms.abs(x());
|
return Transforms.abs(x());
|
||||||
|
|
|
@ -54,6 +54,9 @@ public class Max extends BaseReduceSameOp {
|
||||||
public Max(INDArray x, int... axis) {
|
public Max(INDArray x, int... axis) {
|
||||||
super(x, null, null, axis);
|
super(x, null, null, axis);
|
||||||
}
|
}
|
||||||
|
public Max(INDArray x, boolean keepDims, int... axis) {
|
||||||
|
super(x, keepDims, axis);
|
||||||
|
}
|
||||||
|
|
||||||
public Max(INDArray x, INDArray z, int... axis) {
|
public Max(INDArray x, INDArray z, int... axis) {
|
||||||
super(x, null, z, axis);
|
super(x, null, z, axis);
|
||||||
|
|
|
@ -41,6 +41,10 @@ public class Min extends BaseReduceSameOp {
|
||||||
super(x, dimensions);
|
super(x, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public Min(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
super(x, keepDims, dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
public Min(INDArray x, INDArray z, int... dimensions) {
|
public Min(INDArray x, INDArray z, int... dimensions) {
|
||||||
super(x, null, z, dimensions);
|
super(x, null, z, dimensions);
|
||||||
}
|
}
|
||||||
|
|
|
@ -18,6 +18,7 @@ package org.nd4j.linalg.api.ops.impl.reduce.same;
|
||||||
|
|
||||||
import org.nd4j.autodiff.samediff.SDVariable;
|
import org.nd4j.autodiff.samediff.SDVariable;
|
||||||
import org.nd4j.autodiff.samediff.SameDiff;
|
import org.nd4j.autodiff.samediff.SameDiff;
|
||||||
|
import org.nd4j.linalg.api.ndarray.BaseNDArray;
|
||||||
import org.nd4j.linalg.api.ndarray.INDArray;
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||||||
import org.nd4j.linalg.api.ops.BaseReduceSameOp;
|
import org.nd4j.linalg.api.ops.BaseReduceSameOp;
|
||||||
|
|
||||||
|
@ -53,6 +54,10 @@ public class Prod extends BaseReduceSameOp {
|
||||||
super(x, z, keepDims, dimensions);
|
super(x, z, keepDims, dimensions);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public Prod(INDArray x, boolean keepDims, int... dimensions) {
|
||||||
|
super(x, keepDims, dimensions);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public int opNum() {
|
public int opNum() {
|
||||||
|
|
|
@ -39,6 +39,11 @@ public class StandardDeviation extends Variance {
|
||||||
super(sameDiff, i_v, biasCorrected, keepDims, dimensions );
|
super(sameDiff, i_v, biasCorrected, keepDims, dimensions );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public StandardDeviation(INDArray x, boolean biasCorrected, boolean keepDims, int... dimension) {
|
||||||
|
super(x, biasCorrected, dimension);
|
||||||
|
this.keepDims = keepDims;
|
||||||
|
}
|
||||||
|
|
||||||
public StandardDeviation(INDArray x, boolean biasCorrected, int... dimension) {
|
public StandardDeviation(INDArray x, boolean biasCorrected, int... dimension) {
|
||||||
super(x, biasCorrected, dimension);
|
super(x, biasCorrected, dimension);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue