More pre-release fixes (#456)
* - numPrefixBlocks fix for threshold_encoding - temparrays pointers fixed Signed-off-by: raver119@gmail.com <raver119@gmail.com> * auto configuration of memory workspace for gradients sharing Signed-off-by: raver119@gmail.com <raver119@gmail.com> * limit sparse encoding message size Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more workspace test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more CUDA-specific test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more CUDA-specific workspace test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more CUDA-specific workspace test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more CUDA-specific workspace test Signed-off-by: raver119@gmail.com <raver119@gmail.com> * add separate host/device reset for circular workspace mode Signed-off-by: raver119@gmail.com <raver119@gmail.com> * new PW builder method for encoder memory amount Signed-off-by: raver119@gmail.com <raver119@gmail.com> * "inplace" execution for threshold encoding Signed-off-by: raver119@gmail.com <raver119@gmail.com>master
parent
f547f783d9
commit
c396fcb960
|
@ -20,6 +20,8 @@ import lombok.*;
|
||||||
import lombok.extern.slf4j.Slf4j;
|
import lombok.extern.slf4j.Slf4j;
|
||||||
import org.deeplearning4j.core.storage.StatsStorageRouter;
|
import org.deeplearning4j.core.storage.StatsStorageRouter;
|
||||||
import org.deeplearning4j.core.storage.listener.RoutingIterationListener;
|
import org.deeplearning4j.core.storage.listener.RoutingIterationListener;
|
||||||
|
import org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler;
|
||||||
|
import org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm;
|
||||||
import org.nd4j.linalg.dataset.AsyncDataSetIterator;;
|
import org.nd4j.linalg.dataset.AsyncDataSetIterator;;
|
||||||
import org.nd4j.linalg.dataset.AsyncMultiDataSetIterator;
|
import org.nd4j.linalg.dataset.AsyncMultiDataSetIterator;
|
||||||
import org.deeplearning4j.datasets.iterator.DummyBlockDataSetIterator;
|
import org.deeplearning4j.datasets.iterator.DummyBlockDataSetIterator;
|
||||||
|
@ -688,6 +690,7 @@ public class ParallelWrapper implements AutoCloseable {
|
||||||
protected Supplier<INDArray> updaterParamsSupplier;
|
protected Supplier<INDArray> updaterParamsSupplier;
|
||||||
protected ThresholdAlgorithm thresholdAlgorithm;
|
protected ThresholdAlgorithm thresholdAlgorithm;
|
||||||
protected ResidualPostProcessor residualPostProcessor;
|
protected ResidualPostProcessor residualPostProcessor;
|
||||||
|
protected Long encoderMemory = -1L;
|
||||||
|
|
||||||
protected GradientsAccumulator accumulator;
|
protected GradientsAccumulator accumulator;
|
||||||
|
|
||||||
|
@ -872,6 +875,19 @@ public class ParallelWrapper implements AutoCloseable {
|
||||||
return this;
|
return this;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This method allows to define amount of temporary memory that will be used for gradients sharing.
|
||||||
|
* Typically it's safe to keep default value.
|
||||||
|
*
|
||||||
|
* Default value: -1, amount of temporary memory will be calculated automatically
|
||||||
|
* @param numBytes number of bytes to be used
|
||||||
|
* @return
|
||||||
|
*/
|
||||||
|
public Builder temporaryMemory(@NonNull Long numBytes) {
|
||||||
|
this.encoderMemory = numBytes;
|
||||||
|
return this;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Set the residual post processor algorithm. Not used for single machine training (only for PW used in a
|
* Set the residual post processor algorithm. Not used for single machine training (only for PW used in a
|
||||||
* distributed setting), and should not be set by users in most cases.
|
* distributed setting), and should not be set by users in most cases.
|
||||||
|
@ -907,11 +923,23 @@ public class ParallelWrapper implements AutoCloseable {
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case SHARED_GRADIENTS: {
|
case SHARED_GRADIENTS: {
|
||||||
Preconditions.checkState(thresholdAlgorithm != null, "Cannot use SHARED_GRADIENTS training mode without setting a threshold algorithm");
|
if (thresholdAlgorithm == null)
|
||||||
|
thresholdAlgorithm = new AdaptiveThresholdAlgorithm();
|
||||||
|
|
||||||
this.trainerContext = new SymmetricTrainerContext();
|
this.trainerContext = new SymmetricTrainerContext();
|
||||||
if (this.accumulator == null) {
|
if (this.accumulator == null) {
|
||||||
log.info("Creating new GradientsAccumulator instance with default threshold of [5e-4]");
|
log.info("Creating new GradientsAccumulator instance with default threshold of [5e-4]");
|
||||||
this.accumulator = new EncodedGradientsAccumulator(workers, thresholdAlgorithm, residualPostProcessor, false);
|
val numParams = model.numParams();
|
||||||
|
|
||||||
|
// we're limiting max size of updates for Sparse encoding to the size of bitmap encoded message
|
||||||
|
val maxUpdate = (int) (numParams / 16 + 5);
|
||||||
|
|
||||||
|
// memory sie in number of bytes
|
||||||
|
long memorySize = encoderMemory == null || encoderMemory < 0
|
||||||
|
? maxUpdate * 4 * (workers + 3)
|
||||||
|
: encoderMemory;
|
||||||
|
|
||||||
|
this.accumulator = new EncodedGradientsAccumulator(workers, new EncodingHandler(thresholdAlgorithm, residualPostProcessor, maxUpdate, false), memorySize, workers + 2, Integer.MAX_VALUE, false);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
|
@ -163,14 +163,13 @@ namespace sd {
|
||||||
// here we just calculate number of sumBlock arrays
|
// here we just calculate number of sumBlock arrays
|
||||||
do {
|
do {
|
||||||
int numPrefixBlocks = sd::math::nd4j_max<int>(1, sd::math::nd4j_ceil<float, int>((float) numElts / (2.0f * prefixThreads)));
|
int numPrefixBlocks = sd::math::nd4j_max<int>(1, sd::math::nd4j_ceil<float, int>((float) numElts / (2.0f * prefixThreads)));
|
||||||
if (numBlocks > 1) {
|
if (numPrefixBlocks > 1) {
|
||||||
level++;
|
level++;
|
||||||
}
|
}
|
||||||
numElts = numPrefixBlocks;
|
numElts = numPrefixBlocks;
|
||||||
} while (numElts > 1);
|
} while (numElts > 1);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
std::vector<NDArray> tempArrays(level);
|
std::vector<NDArray> tempArrays(level);
|
||||||
std::vector<Nd4jPointer> pointers(level);
|
std::vector<Nd4jPointer> pointers(level);
|
||||||
|
|
||||||
|
@ -181,13 +180,13 @@ namespace sd {
|
||||||
int numPrefixBlocks = sd::math::nd4j_max<int>(1, sd::math::nd4j_ceil<float, int>((float) numElts / (2.0f * prefixThreads)));
|
int numPrefixBlocks = sd::math::nd4j_max<int>(1, sd::math::nd4j_ceil<float, int>((float) numElts / (2.0f * prefixThreads)));
|
||||||
if (numPrefixBlocks > 1) {
|
if (numPrefixBlocks > 1) {
|
||||||
tempArrays[level] = std::move(NDArrayFactory::create<int>('c', {numPrefixBlocks}));
|
tempArrays[level] = std::move(NDArrayFactory::create<int>('c', {numPrefixBlocks}));
|
||||||
pointers[level] = tempArrays[level++].specialBuffer();
|
pointers[level] = tempArrays[level].specialBuffer();;
|
||||||
|
level++;
|
||||||
}
|
}
|
||||||
numElts = numPrefixBlocks;
|
numElts = numPrefixBlocks;
|
||||||
} while (numElts > 1);
|
} while (numElts > 1);
|
||||||
|
|
||||||
PointersManager pm(LaunchContext::defaultContext(), "thresholdEncode");
|
PointersManager pm(LaunchContext::defaultContext(), "thresholdEncode");
|
||||||
auto dptr = pm.replicatePointer(pointers.data(), pointers.size() * 8);
|
|
||||||
auto offsets = NDArrayFactory::create<int>('c', {numBlocks});
|
auto offsets = NDArrayFactory::create<int>('c', {numBlocks});
|
||||||
|
|
||||||
// we want to check, if we're hiting external limit on number of encoded elements
|
// we want to check, if we're hiting external limit on number of encoded elements
|
||||||
|
@ -200,7 +199,7 @@ namespace sd {
|
||||||
NDArray::prepareSpecialUse({}, {&encoded, &updates});
|
NDArray::prepareSpecialUse({}, {&encoded, &updates});
|
||||||
|
|
||||||
// filling offsets
|
// filling offsets
|
||||||
encodeThresholdP2Int_(reinterpret_cast<void **>(dptr),
|
encodeThresholdP2Int_(reinterpret_cast<void **>(pointers.data()),
|
||||||
reinterpret_cast<int*>(blocks.specialBuffer()),
|
reinterpret_cast<int*>(blocks.specialBuffer()),
|
||||||
numBlocks,
|
numBlocks,
|
||||||
reinterpret_cast<int*>(offsets.specialBuffer()));
|
reinterpret_cast<int*>(offsets.specialBuffer()));
|
||||||
|
|
|
@ -228,6 +228,53 @@ TEST_F(DeclarableOpsTests19, test_threshold_encode_decode) {
|
||||||
ASSERT_EQ(exp, initial);
|
ASSERT_EQ(exp, initial);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_F(DeclarableOpsTests19, test_threshold_encode_decode_2) {
|
||||||
|
// [2,1,135079944,1,1,8192,1,99]
|
||||||
|
auto initial = NDArrayFactory::create<float>('c', {1, 135079944});
|
||||||
|
initial = 1.0f;
|
||||||
|
auto exp = initial.dup();
|
||||||
|
auto neg = initial.like();
|
||||||
|
neg = 0.5f;
|
||||||
|
|
||||||
|
sd::ops::encode_threshold enc;
|
||||||
|
auto enc_result = enc.evaluate({&initial}, {0.5f});
|
||||||
|
auto encoded = enc_result.at(1);
|
||||||
|
|
||||||
|
ASSERT_EQ(135079944 + 4, encoded->lengthOf());
|
||||||
|
ASSERT_NE(exp, initial);
|
||||||
|
/*
|
||||||
|
for (int e = 0; e < initial.lengthOf(); e++) {
|
||||||
|
auto f = initial.e<float>(e);
|
||||||
|
if (f != 0.5f) {
|
||||||
|
nd4j_printf("initial[%i] = %f\n", e, f);
|
||||||
|
throw std::runtime_error("");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
ASSERT_EQ(neg, initial);
|
||||||
|
|
||||||
|
// checking equality of all encoded bits
|
||||||
|
//for (int e = 5; e < encoded->lengthOf() - 1; e++) {
|
||||||
|
//if (encoded->e<int>(e) != encoded->e<int>(e - 1) + 1)
|
||||||
|
//nd4j_printf("Non equal encoded values at E[%i]: %i;\n", e, encoded->e<int>(e));
|
||||||
|
//}
|
||||||
|
|
||||||
|
sd::ops::decode_threshold dec;
|
||||||
|
auto status = dec.execute({&initial, encoded}, {&initial});
|
||||||
|
ASSERT_EQ(Status::OK(), status);
|
||||||
|
|
||||||
|
// checking equality of all dedoded bits
|
||||||
|
/*
|
||||||
|
for (int e = 0; e < initial.lengthOf(); e++) {
|
||||||
|
auto f = initial.e<float>(e);
|
||||||
|
if (f != 1.0f)
|
||||||
|
nd4j_printf("initial[%i] = %f\n", e, f);
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
ASSERT_EQ(exp, initial);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
TEST_F(DeclarableOpsTests19, test_matmul_ccc) {
|
TEST_F(DeclarableOpsTests19, test_matmul_ccc) {
|
||||||
auto x = NDArrayFactory::create<float>('c', {10, 10});
|
auto x = NDArrayFactory::create<float>('c', {10, 10});
|
||||||
|
|
|
@ -41,6 +41,12 @@ public class EncodeThreshold extends DynamicCustomOp {
|
||||||
this(updates, threshold, Integer.MAX_VALUE);
|
this(updates, threshold, Integer.MAX_VALUE);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
public EncodeThreshold(@NonNull INDArray updates, @NonNull INDArray encoded, float threshold, @NonNull Integer boundary) {
|
||||||
|
this(updates, threshold, boundary);
|
||||||
|
|
||||||
|
addOutputArgument(updates, encoded);
|
||||||
|
}
|
||||||
|
|
||||||
public EncodeThreshold(@NonNull INDArray updates, float threshold, @NonNull Integer boundary) {
|
public EncodeThreshold(@NonNull INDArray updates, float threshold, @NonNull Integer boundary) {
|
||||||
addInputArgument(updates);
|
addInputArgument(updates);
|
||||||
|
|
||||||
|
|
|
@ -692,9 +692,33 @@ public abstract class DefaultOpExecutioner implements OpExecutioner {
|
||||||
return thresholdEncode(input, threshold, Integer.MAX_VALUE);
|
return thresholdEncode(input, threshold, Integer.MAX_VALUE);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private long _length(long[] shape) {
|
||||||
|
// scalar case
|
||||||
|
if (shape.length == 0)
|
||||||
|
return 1;
|
||||||
|
else if (shape.length == 1)
|
||||||
|
return shape[0];
|
||||||
|
else {
|
||||||
|
long length = 1;
|
||||||
|
for (int e = 0; e < shape.length; e++)
|
||||||
|
length *= shape[e];
|
||||||
|
|
||||||
|
return length;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public INDArray thresholdEncode(INDArray input, double threshold, Integer boundary) {
|
public INDArray thresholdEncode(INDArray input, double threshold, Integer boundary) {
|
||||||
val result = Nd4j.exec(new EncodeThreshold(input, (float) threshold, boundary))[1];
|
val op_shape = new EncodeThreshold(input, (float) threshold, boundary);
|
||||||
|
val shapes = Nd4j.getExecutioner().calculateOutputShape(op_shape);
|
||||||
|
|
||||||
|
if (_length(shapes.get(1).getShape()) < 2)
|
||||||
|
return null;
|
||||||
|
|
||||||
|
val result = Nd4j.create(DataType.INT32, shapes.get(1).getShape());
|
||||||
|
|
||||||
|
op_shape.addOutputArgument(input, result);
|
||||||
|
Nd4j.exec(op_shape);
|
||||||
|
|
||||||
return result.getInt(0) > 0 ? result : null;
|
return result.getInt(0) > 0 ? result : null;
|
||||||
}
|
}
|
||||||
|
|
|
@ -191,7 +191,7 @@ public class CudaWorkspace extends Nd4jWorkspace {
|
||||||
// spill
|
// spill
|
||||||
if (workspaceConfiguration.getPolicyReset() == ResetPolicy.ENDOFBUFFER_REACHED && currentSize.get() > 0 && !trimmer && Nd4j.getWorkspaceManager().getDebugMode() != DebugMode.SPILL_EVERYTHING) {
|
if (workspaceConfiguration.getPolicyReset() == ResetPolicy.ENDOFBUFFER_REACHED && currentSize.get() > 0 && !trimmer && Nd4j.getWorkspaceManager().getDebugMode() != DebugMode.SPILL_EVERYTHING) {
|
||||||
//log.info("End of space reached. Current offset: {}; requiredMemory: {}", deviceOffset.get(), requiredMemory);
|
//log.info("End of space reached. Current offset: {}; requiredMemory: {}", deviceOffset.get(), requiredMemory);
|
||||||
reset();
|
deviceOffset.set(0);
|
||||||
resetPlanned.set(true);
|
resetPlanned.set(true);
|
||||||
return alloc(requiredMemory, kind, type, initialize);
|
return alloc(requiredMemory, kind, type, initialize);
|
||||||
}
|
}
|
||||||
|
@ -204,7 +204,6 @@ public class CudaWorkspace extends Nd4jWorkspace {
|
||||||
if (isDebug.get()) {
|
if (isDebug.get()) {
|
||||||
log.info("Workspace [{}] device_{}: spilled DEVICE array of {} bytes, capacity of {} elements", id, Nd4j.getAffinityManager().getDeviceForCurrentThread(), requiredMemory, numElements);
|
log.info("Workspace [{}] device_{}: spilled DEVICE array of {} bytes, capacity of {} elements", id, Nd4j.getAffinityManager().getDeviceForCurrentThread(), requiredMemory, numElements);
|
||||||
}
|
}
|
||||||
//Nd4j.getWorkspaceManager().printAllocationStatisticsForCurrentThread();
|
|
||||||
|
|
||||||
val shape = new AllocationShape(requiredMemory / Nd4j.sizeOfDataType(type), Nd4j.sizeOfDataType(type), type);
|
val shape = new AllocationShape(requiredMemory / Nd4j.sizeOfDataType(type), Nd4j.sizeOfDataType(type), type);
|
||||||
|
|
||||||
|
@ -258,6 +257,12 @@ public class CudaWorkspace extends Nd4jWorkspace {
|
||||||
return ptr;
|
return ptr;
|
||||||
} else {
|
} else {
|
||||||
// log.info("Spilled HOST array of {} bytes, capacity of {} elements", requiredMemory, numElements);
|
// log.info("Spilled HOST array of {} bytes, capacity of {} elements", requiredMemory, numElements);
|
||||||
|
if (workspaceConfiguration.getPolicyReset() == ResetPolicy.ENDOFBUFFER_REACHED && currentSize.get() > 0 && !trimmer && Nd4j.getWorkspaceManager().getDebugMode() != DebugMode.SPILL_EVERYTHING) {
|
||||||
|
//log.info("End of space reached. Current offset: {}; requiredMemory: {}", deviceOffset.get(), requiredMemory);
|
||||||
|
hostOffset.set(0);
|
||||||
|
//resetPlanned.set(true);
|
||||||
|
return alloc(requiredMemory, kind, type, initialize);
|
||||||
|
}
|
||||||
|
|
||||||
val shape = new AllocationShape(requiredMemory / Nd4j.sizeOfDataType(type), Nd4j.sizeOfDataType(type), type);
|
val shape = new AllocationShape(requiredMemory / Nd4j.sizeOfDataType(type), Nd4j.sizeOfDataType(type), type);
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,105 @@
|
||||||
|
/*******************************************************************************
|
||||||
|
* Copyright (c) 2020 Konduit K.k.
|
||||||
|
*
|
||||||
|
* This program and the accompanying materials are made available under the
|
||||||
|
* terms of the Apache License, Version 2.0 which is available at
|
||||||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||||||
|
* License for the specific language governing permissions and limitations
|
||||||
|
* under the License.
|
||||||
|
*
|
||||||
|
* SPDX-License-Identifier: Apache-2.0
|
||||||
|
******************************************************************************/
|
||||||
|
|
||||||
|
package org.nd4j.jita.workspace;
|
||||||
|
|
||||||
|
import lombok.val;
|
||||||
|
import org.junit.Test;
|
||||||
|
import org.nd4j.linalg.api.buffer.DataType;
|
||||||
|
import org.nd4j.linalg.api.concurrency.AffinityManager;
|
||||||
|
import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration;
|
||||||
|
import org.nd4j.linalg.api.memory.enums.AllocationPolicy;
|
||||||
|
import org.nd4j.linalg.api.memory.enums.LearningPolicy;
|
||||||
|
import org.nd4j.linalg.api.memory.enums.ResetPolicy;
|
||||||
|
import org.nd4j.linalg.api.memory.enums.SpillPolicy;
|
||||||
|
import org.nd4j.linalg.factory.Nd4j;
|
||||||
|
|
||||||
|
import static org.junit.Assert.*;
|
||||||
|
|
||||||
|
public class CudaWorkspaceTest {
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testCircularWorkspaceAsymmetry_1() {
|
||||||
|
// circular workspace mode
|
||||||
|
val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024)
|
||||||
|
.policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT)
|
||||||
|
.policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build();
|
||||||
|
|
||||||
|
|
||||||
|
try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
|
||||||
|
val array = Nd4j.create(DataType.FLOAT, 10, 10);
|
||||||
|
|
||||||
|
assertEquals(0, ws.getHostOffset());
|
||||||
|
assertNotEquals(0, ws.getDeviceOffset());
|
||||||
|
|
||||||
|
// we expect that this array has no data/buffer on HOST side
|
||||||
|
assertEquals(AffinityManager.Location.DEVICE, Nd4j.getAffinityManager().getActiveLocation(array));
|
||||||
|
|
||||||
|
// since this array doesn't have HOST buffer - it will allocate one now
|
||||||
|
array.getDouble(3L);
|
||||||
|
|
||||||
|
assertEquals(ws.getHostOffset(), ws.getDeviceOffset());
|
||||||
|
}
|
||||||
|
|
||||||
|
try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
|
||||||
|
assertEquals(ws.getHostOffset(), ws.getDeviceOffset());
|
||||||
|
}
|
||||||
|
|
||||||
|
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testCircularWorkspaceAsymmetry_2() {
|
||||||
|
// circular workspace mode
|
||||||
|
val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024)
|
||||||
|
.policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT)
|
||||||
|
.policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build();
|
||||||
|
|
||||||
|
val root = Nd4j.create(DataType.FLOAT, 1000000).assign(119);
|
||||||
|
|
||||||
|
for (int e = 0; e < 100; e++) {
|
||||||
|
try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
|
||||||
|
val array = Nd4j.create(DataType.FLOAT, root.shape());
|
||||||
|
array.assign(root);
|
||||||
|
|
||||||
|
array.data().getInt(3);
|
||||||
|
|
||||||
|
assertEquals(ws.getHostOffset(), ws.getDeviceOffset());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testCircularWorkspaceAsymmetry_3() {
|
||||||
|
// circular workspace mode
|
||||||
|
val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024)
|
||||||
|
.policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT)
|
||||||
|
.policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build();
|
||||||
|
|
||||||
|
val root = Nd4j.create(DataType.FLOAT, 1000000).assign(119);
|
||||||
|
|
||||||
|
for (int e = 0; e < 100; e++) {
|
||||||
|
try (val ws = (CudaWorkspace) Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
|
||||||
|
val array = Nd4j.create(DataType.FLOAT, root.shape());
|
||||||
|
array.assign(root);
|
||||||
|
|
||||||
|
val second = Nd4j.create(DataType.FLOAT, root.shape());
|
||||||
|
|
||||||
|
array.data().getInt(3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -16619,6 +16619,21 @@ public static final int TAD_THRESHOLD = TAD_THRESHOLD();
|
||||||
private native void allocate();
|
private native void allocate();
|
||||||
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
||||||
}
|
}
|
||||||
|
@Namespace("sd::ops") public static class clipbyavgnorm_bp extends DeclarableCustomOp {
|
||||||
|
static { Loader.load(); }
|
||||||
|
/** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */
|
||||||
|
public clipbyavgnorm_bp(Pointer p) { super(p); }
|
||||||
|
/** Native array allocator. Access with {@link Pointer#position(long)}. */
|
||||||
|
public clipbyavgnorm_bp(long size) { super((Pointer)null); allocateArray(size); }
|
||||||
|
private native void allocateArray(long size);
|
||||||
|
@Override public clipbyavgnorm_bp position(long position) {
|
||||||
|
return (clipbyavgnorm_bp)super.position(position);
|
||||||
|
}
|
||||||
|
|
||||||
|
public clipbyavgnorm_bp() { super((Pointer)null); allocate(); }
|
||||||
|
private native void allocate();
|
||||||
|
public native ShapeList calculateOutputShape(ShapeList inputShape, @ByRef Context block);
|
||||||
|
}
|
||||||
// #endif
|
// #endif
|
||||||
|
|
||||||
// #if NOT_EXCLUDED(OP_cumsum)
|
// #if NOT_EXCLUDED(OP_cumsum)
|
||||||
|
|
|
@ -26,6 +26,7 @@ import org.junit.runner.RunWith;
|
||||||
import org.junit.runners.Parameterized;
|
import org.junit.runners.Parameterized;
|
||||||
import org.nd4j.linalg.BaseNd4jTest;
|
import org.nd4j.linalg.BaseNd4jTest;
|
||||||
import org.nd4j.linalg.api.buffer.DataType;
|
import org.nd4j.linalg.api.buffer.DataType;
|
||||||
|
import org.nd4j.linalg.api.concurrency.AffinityManager;
|
||||||
import org.nd4j.linalg.api.memory.MemoryWorkspace;
|
import org.nd4j.linalg.api.memory.MemoryWorkspace;
|
||||||
import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration;
|
import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration;
|
||||||
import org.nd4j.linalg.api.memory.enums.*;
|
import org.nd4j.linalg.api.memory.enums.*;
|
||||||
|
@ -1219,6 +1220,30 @@ public class BasicWorkspaceTests extends BaseNd4jTest {
|
||||||
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
|
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testCircularWorkspaceAsymmetry_1() {
|
||||||
|
// nothing to test on CPU here
|
||||||
|
if (Nd4j.getEnvironment().isCPU())
|
||||||
|
return;
|
||||||
|
|
||||||
|
// circular workspace mode
|
||||||
|
val configuration = WorkspaceConfiguration.builder().initialSize(10 * 1024 * 1024)
|
||||||
|
.policyReset(ResetPolicy.ENDOFBUFFER_REACHED).policyAllocation(AllocationPolicy.STRICT)
|
||||||
|
.policySpill(SpillPolicy.FAIL).policyLearning(LearningPolicy.NONE).build();
|
||||||
|
|
||||||
|
|
||||||
|
try (val ws = Nd4j.getWorkspaceManager().getAndActivateWorkspace(configuration, "circular_ws")) {
|
||||||
|
val array = Nd4j.create(DataType.FLOAT, 10, 10);
|
||||||
|
|
||||||
|
// we expect that this array has no data/buffer on HOST side
|
||||||
|
assertEquals(AffinityManager.Location.DEVICE, Nd4j.getAffinityManager().getActiveLocation(array));
|
||||||
|
|
||||||
|
// since this array doesn't have HOST buffer - it will allocate one now
|
||||||
|
array.getDouble(3L);
|
||||||
|
}
|
||||||
|
|
||||||
|
Nd4j.getWorkspaceManager().destroyAllWorkspacesForCurrentThread();
|
||||||
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
public char ordering() {
|
public char ordering() {
|
||||||
|
|
Loading…
Reference in New Issue