Merge pull request #8518 from KonduitAI/master

Update master
master
Alex Black 2019-12-10 15:28:21 +11:00 committed by GitHub
commit c0163f6e01
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 1525 additions and 590 deletions

View File

@ -24,6 +24,7 @@ import org.bytedeco.javacv.OpenCVFrameConverter;
import org.datavec.image.data.Image;
import org.datavec.image.data.ImageWritable;
import org.datavec.image.transform.ImageTransform;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.concurrency.AffinityManager;
import org.nd4j.linalg.api.memory.pointers.PagedPointer;
import org.nd4j.linalg.api.ndarray.INDArray;
@ -284,6 +285,9 @@ public class NativeImageLoader extends BaseImageLoader {
private Mat streamToMat(InputStream is) throws IOException {
if(buffer == null){
buffer = IOUtils.toByteArray(is);
if(buffer.length <= 0){
throw new IOException("Could not decode image from input stream: input stream was empty (no data)");
}
bufferMat = new Mat(buffer);
return bufferMat;
} else {
@ -292,6 +296,10 @@ public class NativeImageLoader extends BaseImageLoader {
//(a) if numRead < buffer.length - got everything
//(b) if numRead >= buffer.length: we MIGHT have got everything (exact right size buffer) OR we need more data
if(numReadTotal <= 0){
throw new IOException("Could not decode image from input stream: input stream was empty (no data)");
}
if(numReadTotal < buffer.length){
bufferMat.data().put(buffer, 0, numReadTotal);
bufferMat.cols(numReadTotal);

View File

@ -24,7 +24,9 @@ import org.bytedeco.javacv.Frame;
import org.bytedeco.javacv.Java2DFrameConverter;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.datavec.image.data.ImageWritable;
import org.junit.Rule;
import org.junit.Test;
import org.junit.rules.TemporaryFolder;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
@ -55,6 +57,9 @@ public class TestNativeImageLoader {
static final long seed = 10;
static final Random rng = new Random(seed);
@Rule
public TemporaryFolder testDir = new TemporaryFolder();
@Test
public void testConvertPix() throws Exception {
PIX pix;
@ -554,4 +559,43 @@ public class TestNativeImageLoader {
assertEquals(img1LargeBuffer, img1ExactBuffer);
}
@Test
public void testNativeImageLoaderEmptyStreams() throws Exception {
File dir = testDir.newFolder();
File f = new File(dir, "myFile.jpg");
f.createNewFile();
NativeImageLoader nil = new NativeImageLoader(32, 32, 3);
try(InputStream is = new FileInputStream(f)){
nil.asMatrix(is);
} catch (IOException e){
String msg = e.getMessage();
assertTrue(msg, msg.contains("decode image"));
}
try(InputStream is = new FileInputStream(f)){
nil.asImageMatrix(is);
} catch (IOException e){
String msg = e.getMessage();
assertTrue(msg, msg.contains("decode image"));
}
try(InputStream is = new FileInputStream(f)){
nil.asRowVector(is);
} catch (IOException e){
String msg = e.getMessage();
assertTrue(msg, msg.contains("decode image"));
}
try(InputStream is = new FileInputStream(f)){
INDArray arr = Nd4j.create(DataType.FLOAT, 1, 3, 32, 32);
nil.asMatrixView(is, arr);
} catch (IOException e){
String msg = e.getMessage();
assertTrue(msg, msg.contains("decode image"));
}
}
}

View File

@ -46,9 +46,9 @@ void TrueBroadcastHelper<X, Y, Z>::exec(const NDArray& xArr, const NDArray& yArr
const Nd4jLong zLen = zArr.lengthOf();
std::vector<Nd4jLong> xCoords(xArr.rankOf()), yCoords(yArr.rankOf()), zCoords(zArr.rankOf());
auto func = PRAGMA_THREADS_FOR {
std::vector<Nd4jLong> xCoords(xArr.rankOf()), yCoords(yArr.rankOf()), zCoords(zArr.rankOf());
for (auto i = start; i < stop; ++i) {
shape::index2coords(i, zShapeInfo, zCoords.data());
@ -109,6 +109,7 @@ void TrueBroadcastBoolHelper<X, Z>::exec(const NDArray& xArr, const NDArray& yAr
auto func = PRAGMA_THREADS_FOR {
std::vector<Nd4jLong> xCoords(xArr.rankOf()), yCoords(yArr.rankOf()), zCoords(zArr.rankOf());
for (auto i = start; i < stop; ++i) {
shape::index2coords(i, zShapeInfo, zCoords.data());
@ -167,9 +168,9 @@ void TrueBroadcastIntHelper<X>::exec(const NDArray& xArr, const NDArray& yArr, N
const Nd4jLong zLen = zArr.lengthOf();
std::vector<Nd4jLong> xCoords(xArr.rankOf()), yCoords(yArr.rankOf()), zCoords(zArr.rankOf());
auto func = PRAGMA_THREADS_FOR {
std::vector<Nd4jLong> xCoords(xArr.rankOf()), yCoords(yArr.rankOf()), zCoords(zArr.rankOf());
for (auto i = start; i < stop; ++i) {
shape::index2coords(i, zShapeInfo, zCoords.data());

View File

@ -104,9 +104,9 @@ void TrueBroadcastHelper<X,Y,Z>::exec(const nd4j::broadcast::Ops opNum, const ND
dim3 launchDims;
launchDims.x = MAX_NUM_THREADS / 8; // threadsPerBlock
launchDims.y = (zArr.lengthOf() + launchDims.x - 1) / launchDims.x; // blocksPerGrid
launchDims.z = sizeof(Nd4jLong) * launchDims.x * (xArr.rankOf() + yArr.rankOf() + zArr.rankOf()) + 128; // sharedMem
launchDims.y = MAX_NUM_THREADS / 8; // threadsPerBlock
launchDims.x = (zArr.lengthOf() + launchDims.y - 1) / launchDims.y; // blocksPerGrid
launchDims.z = sizeof(Nd4jLong) * launchDims.y * (xArr.rankOf() + yArr.rankOf() + zArr.rankOf()) + 128; // sharedMe
PointersManager manager(xArr.getContext(), "TrueBroadcastHelper<X,Y,Z>::exec");
@ -189,9 +189,10 @@ template<typename X, typename Y>
void TrueBroadcastBoolHelper<X,Y>::exec(const nd4j::broadcast::BoolOps opNum, const NDArray& xArr, const NDArray& yArr, NDArray& zArr) {
dim3 launchDims;
launchDims.x = MAX_NUM_THREADS / 8; // threadsPerBlock
launchDims.y = (zArr.lengthOf() + launchDims.x - 1) / launchDims.x; // blocksPerGrid
launchDims.z = sizeof(Nd4jLong) * launchDims.x * (xArr.rankOf() + yArr.rankOf() + zArr.rankOf()) + 128; // sharedMem
launchDims.y = MAX_NUM_THREADS / 8; // threadsPerBlock
launchDims.x = (zArr.lengthOf() + launchDims.y - 1) / launchDims.y; // blocksPerGrid
launchDims.z = sizeof(Nd4jLong) * launchDims.y * (xArr.rankOf() + yArr.rankOf() + zArr.rankOf()) + 128; // sharedMe
PointersManager manager(xArr.getContext(), "TrueBroadcastBoolHelper<X,Y>::exec");
@ -274,9 +275,10 @@ template<typename X>
void TrueBroadcastIntHelper<X>::exec(const nd4j::broadcast::IntOps opNum, const NDArray& xArr, const NDArray& yArr, NDArray& zArr) {
dim3 launchDims;
launchDims.x = MAX_NUM_THREADS / 8; // threadsPerBlock
launchDims.y = (zArr.lengthOf() + launchDims.x - 1) / launchDims.x; // blocksPerGrid
launchDims.z = sizeof(Nd4jLong) * launchDims.x * (xArr.rankOf() + yArr.rankOf() + zArr.rankOf()) + 128; // sharedMem
launchDims.y = MAX_NUM_THREADS / 8; // threadsPerBlock
launchDims.x = (zArr.lengthOf() + launchDims.y - 1) / launchDims.y; // blocksPerGrid
launchDims.z = sizeof(Nd4jLong) * launchDims.y * (xArr.rankOf() + yArr.rankOf() + zArr.rankOf()) + 128; // sharedMe
PointersManager manager(xArr.getContext(), "TrueBroadcastIntHelper<X>::exec");

View File

@ -237,6 +237,8 @@ template <typename X, typename Z>
template<typename OpType>
__host__ void ReduceBoolFunction<X,Z>::intermediateXD(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShapeInfo, Nd4jLong *hXShapeInfo, void *extraParams, void *z, Nd4jLong *zShapeInfo, Nd4jLong *hZShapeInfo, int *dimension, int dimensionLength, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
nd4j_printf("Step A%i\n", -1);
if(shape::isEmpty(hXShapeInfo)) {
if(shape::isEmpty(hZShapeInfo))
@ -251,7 +253,8 @@ __host__ void ReduceBoolFunction<X,Z>::intermediateXD(dim3 launchDims, cudaStrea
auto ptr = nd4j::LaunchContext::defaultContext()->getScalarPointer();
// scalar assign
functions::scalar::ScalarTransform<Z, Z, Z>::executeCudaShaped(launchDims, stream, 14, z, zShapeInfo, hXShapeInfo, z, zShapeInfo, hZShapeInfo, ptr, nullptr);
functions::scalar::ScalarTransform<Z, Z, Z>::executeCudaShaped(launchDims, stream, 14, z, zShapeInfo, hZShapeInfo, z, zShapeInfo, hZShapeInfo, ptr, nullptr);
nd4j::DebugHelper::checkErrorCode(stream, "reduceBoolDim empty(...) failed");
}
else {
simpleReduce<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets);
@ -274,6 +277,9 @@ __host__ void ReduceBoolFunction<X,Z>::intermediateScalar(dim3 launchDims, cudaS
auto res = cudaMemcpyAsync(z, &startingVal, sizeof(Z), cudaMemcpyHostToDevice, *stream);
if (res != 0)
throw nd4j::cuda_exception::build("ReduceBoolFunction<X,Z>::intermediateScalar: failed to copy resulting scalar", res);
nd4j::DebugHelper::checkErrorCode(stream, "reduceBoolScalar empty(...) failed");
}
else {
simpleScalar<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShapeInfo, extraParams, z, zShapeInfo, dimension, dimensionLength, reductionBuffer, tadOnlyShapeInfo);

View File

@ -249,7 +249,7 @@ __host__ void ReduceFloatFunction<X,Z>::intermediateXD(dim3 launchDims, cudaStre
auto ptr = nd4j::LaunchContext::defaultContext()->getScalarPointer();
// scalar assign
functions::scalar::ScalarTransform<Z, Z, Z>::executeCudaShaped(launchDims, stream, 14, z, zShape, hXShapeInfo, z, zShape, hZShapeInfo, ptr, nullptr);
functions::scalar::ScalarTransform<Z, Z, Z>::executeCudaShaped(launchDims, stream, 14, z, zShape, hZShapeInfo, z, zShape, hZShapeInfo, ptr, nullptr);
}
else {
simpleReduce<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShape, extraParams, z, zShape, dimension, dimensionLength, reductionPointer, tadShapeInfo, tadOffsets);

View File

@ -76,7 +76,7 @@ namespace nd4j {
// Y gradient
//epsNext->applyTriplewiseLambda(x, y, lambdaY, gradY);
gradY->assign(epsNext * -(*x) / ((*y) * (*y)));
gradY->assign((*epsNext) * -(*x) / ((*y) * (*y)));
} else if (y->isScalar()) {
// scalar case

View File

@ -89,7 +89,7 @@ namespace nd4j {
gradY->assign(tmpX);
//epsNext->applyPairwiseLambda(x, lambdaS, gradX);
gradX->assign(epsNext * ts * ((*x) - (*y)));
gradX->assign((*epsNext) * ts * ((*x) - (*y)));
} else {
// broadcast case

View File

@ -39,7 +39,7 @@ CONFIGURABLE_OP_IMPL(adjust_contrast, 1, 1, true, 0, 0) {
REQUIRE_TRUE(block.numT() > 0 || block.width() > 1, 0, "ADJUST_CONTRAST: Scale factor required");
REQUIRE_TRUE(input->rankOf() > 2, 0, "ADJUST_CONTRAST: op expects rank of input array to be >= 3, but got %i instead", input->rankOf());
REQUIRE_TRUE(input->sizeAt(-1) == 3, 0, "ADJUST_CONTRAST: operation expects image with 3 channels (R, G, B), but got %i instead", input->sizeAt(-1));
// REQUIRE_TRUE(input->sizeAt(-1) == 3, 0, "ADJUST_CONTRAST: operation expects image with 3 channels (R, G, B), but got %i instead", input->sizeAt(-1));
NDArray* factor = nullptr;
@ -84,10 +84,15 @@ CONFIGURABLE_OP_IMPL(adjust_contrast_v2, 1, 1, true, 0, 0) {
return Status::OK();
REQUIRE_TRUE(input->rankOf() > 2, 0, "ADJUST_CONTRAST_V2: op expects rank of input array to be >= 3, but got %i instead", input->rankOf());
REQUIRE_TRUE(input->sizeAt(-1) == 3, 0, "ADJUST_CONTRAST_V2: operation expects image with 3 channels (R, G, B), but got %i instead", input->sizeAt(-1));
// REQUIRE_TRUE(input->sizeAt(-1) == 3, 0, "ADJUST_CONTRAST_V2: operation expects image with 3 channels (R, G, B), but got %i instead", input->sizeAt(-1));
REQUIRE_TRUE(block.numT() > 0 || block.width() > 1, 0, "ADJUST_CONTRAST_V2: Scale factor required");
NDArray* factor = nullptr;
auto size = input->sizeAt(-2) * input->sizeAt(-3);
auto channels = input->sizeAt(-1);
auto batch = input->lengthOf() / (size * channels);
auto input3D = input->reshape(input->ordering(), {batch, size, channels});
auto output3D = input->reshape(input->ordering(), {batch, size, channels});
if(block.width() > 1)
factor = INPUT_VARIABLE(1);
@ -96,20 +101,17 @@ CONFIGURABLE_OP_IMPL(adjust_contrast_v2, 1, 1, true, 0, 0) {
factor->p(0, T_ARG(0));
}
// compute mean before
std::vector<int> axes(input->rankOf() - 1);
for (auto i = 0; i < axes.size(); ++i)
axes[i] = i;
std::vector<int> axes({1}); // dim 1 of pseudoresult
// mean as reduction for last dimension set
auto mean = input->reduceAlongDims(reduce::Mean, axes);
// mean as reduction for last dimension set over size (dim 1) of result3D
auto mean = input3D.reduceAlongDims(reduce::Mean, axes);
// result as (x - mean) * factor + mean
auto temp = input->ulike();
input->applyTrueBroadcast(BroadcastOpsTuple::Subtract(), &mean, &temp);
auto temp = input3D.ulike();
input3D.applyBroadcast(broadcast::Subtract, {0, 2}, &mean, &temp, nullptr);
temp.applyScalarArr(scalar::Multiply, factor);
temp.applyTrueBroadcast(BroadcastOpsTuple::Add(), &mean, output);
temp.applyBroadcast(broadcast::Add, {0, 2}, &mean, &output3D);
output->assign(output3D);
if(block.width() == 1)
delete factor;

View File

@ -52,12 +52,11 @@ namespace nd4j {
if (block.getIArguments() && block.getIArguments()->size())
numBits = INT_ARG(0);
bool narrowed = false;
//INT_ARG(1);
if (block.getIArguments()->size() == 2) {
numBits = INT_ARG(0);
narrowed = INT_ARG(1);
REQUIRE_TRUE(numBits > 1 && numBits < 17, 0, "fake_quant_with_min_max_vars: Number of bits for quatization should be in between 2 and 16, but %i was given.", numBits);
if (block.getBArguments() && block.getBArguments()->size()) {
narrowed = B_ARG(0);
}
REQUIRE_TRUE(numBits > 1 && numBits < 17, 0, "fake_quant_with_min_max_vars: Number of \
bits for quantization should be in between 2 and 16, but %i was given.", numBits);
helpers::fakeQuantWithMinMaxVars(x, min, max, numBits, narrowed, output);
return ND4J_STATUS_OK;
}

View File

@ -96,16 +96,16 @@ namespace nd4j {
outputShape[2] = height;
outputShape[3] = in[3];
}
ShapeUtils::updateStridesAndType(outputShape, in, shape::order(in));
ShapeUtils::updateStridesAndType(outputShape, DataType::FLOAT32, shape::order(in));
shapeList->push_back(CONSTANT(outputShape));
return shapeList;
}
DECLARE_TYPES(resize_bicubic) {
getOpDescriptor()
->setAllowedInputTypes(0, {ALL_FLOATS})
->setAllowedInputTypes(1, {DataType::INT32})
->setAllowedOutputTypes({ALL_FLOATS});
->setAllowedInputTypes(0, {ALL_FLOATS, ALL_INTS})
->setAllowedInputTypes(1, DataType::INT32)
->setAllowedOutputTypes({DataType::FLOAT32});
}
}

View File

@ -164,6 +164,7 @@ namespace nd4j {
// we can launch op using Int arguments
if (inputShape->size() == 1) {
REQUIRE_TRUE(block.numI() > 0, 0, "Reshape: new shape should be provided as NDArray or int arguments, but nothing was defined");
std::vector<int> *arguments = block.getIArguments();
int e = 1;

View File

@ -352,14 +352,12 @@ namespace helpers {
int resizeBilinearFunctor(nd4j::LaunchContext * context, NDArray const *images, int const width, int const height,
bool const alignCorners, bool const halfPixelCenter, NDArray *output) {
BUILD_DOUBLE_SELECTOR(images->dataType(), output->dataType(), return resizeBilinearFunctor_,
(images, width, height, alignCorners, halfPixelCenter, output), NUMERIC_TYPES, FLOAT_TYPES);
BUILD_DOUBLE_SELECTOR(images->dataType(), output->dataType(), return resizeBilinearFunctor_, (images, width, height, alignCorners, halfPixelCenter, output), NUMERIC_TYPES, FLOAT_TYPES);
}
int resizeNeighborFunctor(nd4j::LaunchContext * context, NDArray const *images, int const width, int const height,
bool const alignCorners, bool const halfPixelCenter, NDArray *output) {
BUILD_SINGLE_SELECTOR(images->dataType(), return resizeNeighborFunctor_,
(images, width, height, alignCorners, halfPixelCenter, output), LIBND4J_TYPES);
BUILD_SINGLE_SELECTOR(images->dataType(), return resizeNeighborFunctor_, (images, width, height, alignCorners, halfPixelCenter, output), LIBND4J_TYPES);
}
@ -696,7 +694,7 @@ namespace helpers {
const Nd4jLong inBatchWidth = resizerState.inHeight * inRowWidth;
const T* inputPtr = image->getDataBuffer()->primaryAsT<T>();
T* pOutputY = output->dataBuffer()->primaryAsT<T>(); //_data.data();
float* pOutputY = output->dataBuffer()->primaryAsT<float>(); // output is float anyway
std::vector<float> cachedValue(numChannels == 3 ? 0 : 4 * numChannels, 0);
auto func = PRAGMA_THREADS_FOR {
@ -881,8 +879,7 @@ namespace helpers {
}
int resizeBicubicFunctorA(nd4j::LaunchContext * context, NDArray const* image, int const width, int const height,
bool const alignCorners, bool const halfPixelAlign, NDArray* output) {
BUILD_SINGLE_SELECTOR(image->dataType(), return resizeBicubicFunctorA_, (context,
image, width, height, alignCorners, halfPixelAlign, output), NUMERIC_TYPES);
BUILD_SINGLE_SELECTOR(image->dataType(), return resizeBicubicFunctorA_, (context, image, width, height, alignCorners, halfPixelAlign, output), NUMERIC_TYPES);
}
// ------------------------------------------------------------------------------------------------------------------ //
int resizeFunctor(nd4j::LaunchContext * context, NDArray const* image, int const width, int const height,
@ -921,4 +918,4 @@ namespace helpers {
}
}
}
}
}

View File

@ -689,7 +689,7 @@ namespace helpers {
}
template <typename T>
static __global__ void bicubicInterpolateWithCachingKernel(float const* cachedTable, float* cachedValue, T const* inputPtr, ImageResizerState* pResizerState, WeightsAndIndices* xWais, bool halfPixelCenters, Nd4jLong inBatchWidth, Nd4jLong inRowWidth, T* outputPtr) {
static __global__ void bicubicInterpolateWithCachingKernel(float const* cachedTable, float* cachedValue, T const* inputPtr, ImageResizerState* pResizerState, WeightsAndIndices* xWais, bool halfPixelCenters, Nd4jLong inBatchWidth, Nd4jLong inRowWidth, float* outputPtr) {
// auto numChannels = pResizerState->channels;
for (Nd4jLong b = blockIdx.x; b < pResizerState->batchSize; b += gridDim.x) {
auto pInput = inputPtr + b * inBatchWidth;
@ -877,7 +877,7 @@ namespace helpers {
throw cuda_exception::build("helpers::bicubicInterpolateWithCaching: computeXWeigtsAndInidces finished with error", err);
}
const T* pInput = image->getDataBuffer()->specialAsT<T>();
T* pOutput = output->dataBuffer()->specialAsT<T>(); //_data.data();
float* pOutput = output->dataBuffer()->specialAsT<float>(); //_data.data();
bicubicInterpolateWithCachingKernel<T><<<128, 1, 512, *stream>>>(coeffsTable, cachedValue, pInput,
resizerStateD, xWais, halfPixelCenters, inBatchWidth, inRowWidth, pOutput);
err = cudaStreamSynchronize(*stream);

View File

@ -832,3 +832,49 @@ TEST_F(BroadcastableOpsTests, broadcast_3) {
ASSERT_TRUE(z.isSameShape(e));
ASSERT_TRUE(z.equalsTo(e));
}
TEST_F(BroadcastableOpsTests, test_bert_multiply_1) {
auto x = NDArrayFactory::create<float>('c', {4, 128, 1});
auto y = NDArrayFactory::create<float>('c', {4, 1, 128});
auto z = NDArrayFactory::create<float>('c', {4, 128, 128});
auto e = NDArrayFactory::create<float>('c', {4, 128, 128});
x.assign(0.f);
y.assign(1.f);
z.assign(119.f);
e.assign(0.f);
/*
Context ctx(1);
ctx.setInputArray(0, &x);
ctx.setInputArray(1, &y);
ctx.setOutputArray(0, &z);
nd4j::ops::multiply op;
auto status = op.execute(&ctx);
ASSERT_EQ(Status::OK(), status);
z.printIndexedBuffer();
*/
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), &y, &z);
//z.printIndexedBuffer();
ASSERT_EQ(e, z);
}
TEST_F(BroadcastableOpsTests, test_bert_multiply_2) {
auto x = NDArrayFactory::create<float>('c', {4, 128, 1});
auto y = NDArrayFactory::create<float>('c', {768});
auto z = NDArrayFactory::create<float>('c', {4, 128, 768});
auto e = NDArrayFactory::create<float>('c', {4, 128, 768});
x.assign(1.f);
y.assign(2.f);
z.assign(119.f);
e.assign(2.f);
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), &y, &z);
ASSERT_EQ(e, z);
}

View File

@ -479,166 +479,166 @@ TEST_F(DeclarableOpsTests11, log_loss_grad_test13) {
TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test1) {
NDArray input = NDArrayFactory::create<double>('c', {1, 7, 7, 1}, {
1, 2.1, 3.15, 4.2, 5.15, 6.1, 7,
8, 9.1, 10., 11, 12.9, 13.1, 14,
15, 16., 17., 18, 19, 20., 21,
22, 23., 24., 25, 26, 27, 28,
30, 31, 32, 33, 34., 35, 36,
37, 38, 39, 40, 41., 42, 43,
44, 45, 46, 47, 48., 49, 50
NDArray input = NDArrayFactory::create<float>('c', {1, 7, 7, 1}, {
1.f, 2.1f, 3.15f, 4.2f, 5.15f, 6.1f, 7.f,
8.f, 9.1f, 10.f, 11.f, 12.9f, 13.1f, 14.f,
15.f, 16.f, 17.f, 18.f, 19.f, 20.f, 21.f,
22.f, 23.f, 24.f, 25.f, 26.f, 27.f, 28.f,
30.f, 31.f, 32.f, 33.f, 34.f, 35.f, 36.f,
37.f, 38.f, 39.f, 40.f, 41.f, 42.f, 43.f,
44.f, 45.f, 46.f, 47.f, 48.f, 49.f, 50.f
});
NDArray expected = NDArrayFactory::create<double>('c', {1, 30, 30, 1}, {
1. ,1.1976162 ,1.4174359 ,1.6775769 ,1.9961575 ,2.3283265 ,
2.550918 ,2.7360606 ,2.9655411 ,3.2929654 ,3.5441515 ,3.7380352 ,
3.948995 ,4.248106 ,4.5073795 ,4.6843743 ,4.8572845 ,5.104302 ,
5.3869915 ,5.581401 ,5.7539616 ,5.974285 ,6.272836 ,6.5204263 ,
6.718899 ,6.8871036 ,7.039068 ,7.099216 ,7.0784245 ,7.0281887 ,
2.247592 ,2.446947 ,2.6694887 ,2.9312382 ,3.248216 ,3.5745337 ,
3.78931 ,3.9656973 ,4.186417 ,4.5046535 ,4.740569 ,4.9217057 ,
5.133866 ,5.459533 ,5.7744613 ,6.0197873 ,6.254011 ,6.535633 ,
6.8097296 ,6.9607787 ,7.0749416 ,7.241601 ,7.5094895 ,7.7499495 ,
7.954571 ,8.131972 ,8.286526 ,8.346463 ,8.325745 ,8.275683 ,
3.6286845 ,3.830573 ,4.0569587 ,4.3211575 ,4.6364856 ,4.9556503 ,
5.160583 ,5.3258467 ,5.535462 ,5.84216 ,6.058749 ,6.223753 ,
6.437597 ,6.797369 ,7.1836042 ,7.5164022 ,7.8290343 ,8.154773 ,
8.417635 ,8.512958 ,8.5521 ,8.649708 ,8.87788 ,9.108794 ,
9.320926 ,9.509781 ,9.667375 ,9.72694 ,9.706349 ,9.656599 ,
5.276778 ,5.480438 ,5.709702 ,5.9754477 ,6.288551 ,6.6005697 ,
6.796207 ,6.9511423 ,7.1503997 ,7.4461427 ,7.644651 ,7.794562 ,
8.009684 ,8.400473 ,8.851847 ,9.26469 ,9.649218, 10.015648 ,
10.268647 ,10.313368 ,10.2843275 ,10.319379 ,10.512033 ,10.734956 ,
10.954604 ,11.154507 ,11.315369 ,11.374779 ,11.354242 ,11.304622 ,
7.325373 ,7.5284843 ,7.757575 ,8.022221 ,8.331997 ,8.638187 ,
8.827649 ,8.976217 ,9.168955 ,9.45726 ,9.6442375 ,9.784517 ,
9.999621, 10.407702 ,10.896234, 11.355122, 11.781423, 12.172186 ,
12.420712 ,12.4374485 ,12.370511 ,12.371386 ,12.545973 ,12.766424 ,
12.992249 ,13.20012 ,13.364252 ,13.424109 ,13.40342 ,13.353425 ,
9.493208 ,9.692467 ,9.9169445, 10.176801, 10.482199, 10.78547 ,
10.974367 ,11.123442 ,11.31637 ,11.603645 ,11.790616 ,11.930889 ,
12.144082 ,12.546447 ,13.024898 ,13.4723 ,13.889232 ,14.276275 ,
14.528972 ,14.555555 ,14.50145 ,14.515459 ,14.700572 ,14.927055 ,
15.156046 ,15.366046 ,15.532901 ,15.594008 ,15.5728855 ,15.521847 ,
10.970133 ,11.163599 ,11.380694 ,11.633735 ,11.935032 ,12.238887 ,
12.43254 ,12.588294 ,12.787534 ,13.079956 ,13.27752 ,13.426631 ,
13.636713 ,14.013844 ,14.441672 ,14.827978 ,15.191209 ,15.549808 ,
15.81343 ,15.881828 ,15.883522 ,15.950411 ,16.16933 ,16.40794 ,
16.636436 ,16.842583 ,17.010887 ,17.07363 ,17.05194 ,16.999537 ,
12.219155 ,12.406129 ,12.614796 ,12.860335 ,13.157928 ,13.464224 ,
13.665207 ,13.830567 ,14.039036 ,14.339629 ,14.552863 ,14.715049 ,
14.921564 ,15.264454 ,15.622843 ,15.924977 ,16.213829 ,16.532364 ,
16.8099 ,16.934835 ,17.012146 ,17.150164 ,17.413412 ,17.666712 ,
17.892765 ,18.09207 ,18.261044 ,18.325531 ,18.303238 ,18.249378 ,
13.7663965 ,13.947391 ,14.148263 ,14.386917 ,14.681246 ,14.990087 ,
15.198166 ,15.372728 ,15.590062 ,15.898583 ,16.126892 ,16.301655 ,
16.50487 ,16.815214 ,17.107498 ,17.329458 ,17.547403 ,17.827654 ,
18.118288 ,18.296928 ,18.4461 ,18.651634 ,18.956806 ,19.22382 ,
19.447308 ,19.639887 ,19.809319 ,19.875397 ,19.852556 ,19.797365 ,
15.9419365 ,16.118704 ,16.314133 ,16.547867 ,16.839561 ,17.14954 ,
17.361883 ,17.542162 ,17.764957 ,18.078188 ,18.315733 ,18.498205 ,
18.699116 ,18.988684 ,19.238989 ,19.410137 ,19.583265 ,19.839512 ,
20.13878 ,20.35177 ,20.546844 ,20.795671 ,21.128067 ,21.404358 ,
21.626736 ,21.8155 ,21.98561 ,22.052843 ,22.029604 ,21.973448 ,
17.53522 ,17.71077 ,17.904636 ,18.13695 ,18.42784 ,18.738056 ,
18.951529 ,19.133352 ,19.357613 ,19.672083 ,19.912102 ,20.096638 ,
20.296894 ,20.580765 ,20.819603 ,20.976887 ,21.137802 ,21.387535 ,
21.689209 ,21.911621 ,22.119276 ,22.37999 ,22.71991 ,22.998823 ,
23.22097 ,23.40876 ,23.57911 ,23.646685 ,23.623325 ,23.566887 ,
18.746353 ,18.922657 ,19.117487 ,19.350685 ,19.64207 ,19.952137 ,
20.164913 ,20.345781 ,20.569134 ,20.88284 ,21.12133 ,21.30459 ,
21.505253 ,21.792645 ,22.038572 ,22.204426 ,22.37289 ,22.626648 ,
22.926834 ,23.143423 ,23.343302 ,23.596668 ,23.931936 ,24.209232 ,
24.431519 ,24.619913 ,24.79011 ,24.857473 ,24.83419 ,24.777927 ,
20.16656 ,20.344206 ,20.540766 ,20.775532 ,21.067804 ,21.377607 ,
21.589132 ,21.768297 ,21.99003 ,22.302366 ,22.538124 ,22.719105 ,
22.920494 ,23.214176 ,23.472767 ,23.653934 ,23.83589 ,24.096842 ,
24.394371 ,24.600555 ,24.786541 ,25.026773 ,25.353731 ,25.62813 ,
25.850672 ,26.04014 ,26.210072 ,26.277063 ,26.253906 ,26.197956 ,
22.363024 ,22.54125 ,22.738552 ,22.973991 ,23.266647 ,23.57634 ,
23.787327 ,23.96576 ,24.186796 ,24.498543 ,24.733124 ,24.913122 ,
25.114826 ,25.411213 ,25.675262 ,25.863028 ,26.050789 ,26.314838 ,
26.611223 ,26.812925 ,26.992926 ,27.227505 ,27.550882 ,27.824034 ,
28.046684 ,28.236614 ,28.406433 ,28.473265 ,28.450163 ,28.394344 ,
24.429443 ,24.60767 ,24.80497 ,25.04041 ,25.333065 ,25.642756 ,
25.853743 ,26.032173 ,26.25321 ,26.564959 ,26.79954 ,26.97954 ,
27.181242 ,27.47763 ,27.74168 ,27.929441 ,28.117207 ,28.381254 ,
28.677637 ,28.879343 ,29.059345 ,29.293922 ,29.617298 ,29.890451 ,
30.113104 ,30.303034 ,30.472853 ,30.539684 ,30.516582 ,30.460762 ,
26. ,26.178228 ,26.375526 ,26.61097 ,26.903624 ,27.213314 ,
27.424305 ,27.602734 ,27.823772 ,28.135519 ,28.3701 ,28.550098 ,
28.7518 ,29.04819 ,29.312237 ,29.5 ,29.687763 ,29.951813 ,
30.2482 ,30.449903 ,30.629902 ,30.864483 ,31.187859 ,31.461012 ,
31.683659 ,31.873592 ,32.043407 ,32.11024 ,32.087135 ,32.03132 ,
27.570559 ,27.748787 ,27.946087 ,28.181528 ,28.474184 ,28.783876 ,
28.994865 ,29.173294 ,29.39433 ,29.70608 ,29.940659 ,30.120655 ,
30.32236 ,30.618746 ,30.882797 ,31.070557 ,31.25832 ,31.522371 ,
31.818754 ,32.02046 ,32.20046 ,32.43504 ,32.758415 ,33.031567 ,
33.25422 ,33.44415 ,33.613964 ,33.680794 ,33.657696 ,33.60188 ,
29.636976 ,29.815207 ,30.0125 ,30.247944 ,30.5406 ,30.85029 ,
31.061283 ,31.239712 ,31.46075 ,31.7725 ,32.00708 ,32.187077 ,
32.38878 ,32.685165 ,32.949215 ,33.13698 ,33.32474 ,33.58879 ,
33.885178 ,34.086884 ,34.26688 ,34.501457 ,34.824837 ,35.09799 ,
35.320637 ,35.510574 ,35.68039 ,35.747215 ,35.724117 ,35.6683 ,
31.83344 ,32.011665 ,32.20897 ,32.444412 ,32.73707 ,33.046757 ,
33.257744 ,33.436176 ,33.657207 ,33.96896 ,34.203537 ,34.383537 ,
34.58524 ,34.88163 ,35.145676 ,35.33344 ,35.521206 ,35.785255 ,
36.081642 ,36.28334 ,36.46334 ,36.69792 ,37.021297 ,37.294453 ,
37.517097 ,37.707027 ,37.876846 ,37.94368 ,37.920578 ,37.864758 ,
33.253647 ,33.431873 ,33.62917 ,33.864613 ,34.15727 ,34.466957 ,
34.677948 ,34.856377 ,35.077415 ,35.38916 ,35.623745 ,35.803745 ,
36.005447 ,36.301834 ,36.565884 ,36.753647 ,36.941406 ,37.205456 ,
37.50184 ,37.703545 ,37.883545 ,38.118122 ,38.4415 ,38.714653 ,
38.9373 ,39.127235 ,39.297054 ,39.363884 ,39.340782 ,39.28496 ,
34.464783 ,34.64301 ,34.840305 ,35.075752 ,35.368404 ,35.6781 ,
35.889088 ,36.067516 ,36.28855 ,36.6003 ,36.834885 ,37.014877 ,
37.216583 ,37.51297 ,37.77702 ,37.964783 ,38.152546 ,38.416595 ,
38.71298 ,38.914684 ,39.094685 ,39.32926 ,39.652645 ,39.925793 ,
40.14844 ,40.338375 ,40.508194 ,40.575024 ,40.55192 ,40.496105 ,
36.058067 ,36.23629 ,36.43359 ,36.669033 ,36.961685 ,37.271378 ,
37.48237 ,37.6608 ,37.881836 ,38.19359 ,38.42817 ,38.608162 ,
38.809868 ,39.10625 ,39.3703 ,39.558064 ,39.74583 ,40.00988 ,
40.306267 ,40.50797 ,40.68797 ,40.92255 ,41.245926 ,41.519077 ,
41.741722 ,41.931652 ,42.101475 ,42.168304 ,42.145203 ,42.089386 ,
38.315002 ,38.493233 ,38.690533 ,38.925976 ,39.218628 ,39.52832 ,
39.739307 ,39.917736 ,40.138775 ,40.45052 ,40.685104 ,40.865097 ,
41.066803 ,41.36319 ,41.627243 ,41.815002 ,42.002766 ,42.26682 ,
42.5632 ,42.764908 ,42.944904 ,43.179485 ,43.50286 ,43.776016 ,
43.998665 ,44.188595 ,44.358418 ,44.425247 ,44.402145 ,44.34633 ,
40.22708 ,40.40531 ,40.602608 ,40.83805 ,41.130707 ,41.440395 ,
41.651382 ,41.82982 ,42.050854 ,42.3626 ,42.597183 ,42.77718 ,
42.97888 ,43.27527 ,43.53932 ,43.72708 ,43.914845 ,44.178894 ,
44.47528 ,44.676983 ,44.856983 ,45.09156 ,45.41494 ,45.68809 ,
45.91074 ,46.100674 ,46.270493 ,46.337322 ,46.31422 ,46.2584 ,
41.785618 ,41.963844 ,42.161144 ,42.396584 ,42.68924 ,42.998936 ,
43.209923 ,43.388355 ,43.609394 ,43.921143 ,44.15572 ,44.335716 ,
44.53742 ,44.833805 ,45.09786 ,45.285614 ,45.473377 ,45.737427 ,
46.033817 ,46.235523 ,46.415524 ,46.650105 ,46.973476 ,47.24663 ,
47.469276 ,47.65921 ,47.82903 ,47.895855 ,47.872753 ,47.81694 ,
43.11514 ,43.293365 ,43.490665 ,43.726105 ,44.018764 ,44.328457 ,
44.539444 ,44.717873 ,44.93891 ,45.25066 ,45.48524 ,45.665237 ,
45.86694 ,46.163326 ,46.427376 ,46.615143 ,46.802902 ,47.066956 ,
47.363342 ,47.56505 ,47.74505 ,47.979626 ,48.302998 ,48.576153 ,
48.798798 ,48.98873 ,49.158546 ,49.225376 ,49.202282 ,49.146458 ,
44.303867 ,44.482094 ,44.679394 ,44.914833 ,45.207493 ,45.51718 ,
45.72817 ,45.9066 ,46.12764 ,46.439384 ,46.673965 ,46.853966 ,
47.055668 ,47.352055 ,47.6161 ,47.803867 ,47.99163 ,48.25568 ,
48.552063 ,48.75377 ,48.933773 ,49.16835 ,49.491726 ,49.764877 ,
49.987526 ,50.17746 ,50.347275 ,50.4141 ,50.391006 ,50.335186 ,
44.771675 ,44.949905 ,45.1472 ,45.382645 ,45.6753 ,45.98499 ,
46.195976 ,46.374413 ,46.595448 ,46.907196 ,47.141773 ,47.321774 ,
47.523476 ,47.819862 ,48.08391 ,48.27168 ,48.459446 ,48.72349 ,
49.019882 ,49.22158 ,49.401585 ,49.63616 ,49.959538 ,50.232693 ,
50.455338 ,50.64527 ,50.81509 ,50.88192 ,50.858818 ,50.803 ,
44.609966 ,44.788193 ,44.985493 ,45.220936 ,45.51359 ,45.82328 ,
46.03427 ,46.2127 ,46.433743 ,46.74549 ,46.98007 ,47.160065 ,
47.36177 ,47.658157 ,47.922207 ,48.10997 ,48.297733 ,48.561783 ,
48.858166 ,49.059875 ,49.239872 ,49.47445 ,49.79783 ,50.07098 ,
50.293625 ,50.48356 ,50.653378 ,50.720203 ,50.6971 ,50.64128 ,
44.219246 ,44.397472 ,44.594772 ,44.83021 ,45.122868 ,45.43256 ,
45.643543 ,45.82198 ,46.04302 ,46.354763 ,46.589344 ,46.76934 ,
46.971046 ,47.267433 ,47.531483 ,47.719242 ,47.907005 ,48.17105 ,
48.467438 ,48.66914 ,48.849144 ,49.08372 ,49.4071 ,49.680256 ,
49.902905 ,50.092834 ,50.262653 ,50.329483 ,50.30638 ,50.25057});
NDArray expected = NDArrayFactory::create<float>('c', {1, 30, 30, 1}, {
1.f, 1.1976162f, 1.4174359f, 1.6775769f, 1.9961575f, 2.3283265f,
2.550918f, 2.7360606f, 2.9655411f, 3.2929654f, 3.5441515f, 3.7380352f,
3.948995f, 4.248106f, 4.5073795f, 4.6843743f, 4.8572845f, 5.104302f,
5.3869915f, 5.581401f, 5.7539616f, 5.974285f, 6.272836f, 6.5204263f,
6.718899f, 6.8871036f, 7.039068f, 7.099216f, 7.0784245f, 7.0281887f,
2.247592f, 2.446947f, 2.6694887f, 2.9312382f, 3.248216f, 3.5745337f,
3.78931f, 3.9656973f, 4.186417f, 4.5046535f, 4.740569f, 4.9217057f,
5.133866f, 5.459533f, 5.7744613f, 6.0197873f, 6.254011f, 6.535633f,
6.8097296f, 6.9607787f, 7.0749416f, 7.241601f, 7.5094895f, 7.7499495f,
7.954571f, 8.131972f, 8.286526f, 8.346463f, 8.325745f, 8.275683f,
3.6286845f, 3.830573f, 4.0569587f, 4.3211575f, 4.6364856f, 4.9556503f,
5.160583f, 5.3258467f, 5.535462f, 5.84216f, 6.058749f, 6.223753f,
6.437597f, 6.797369f, 7.1836042f, 7.5164022f, 7.8290343f, 8.154773f,
8.417635f, 8.512958f, 8.5521f, 8.649708f, 8.87788f, 9.108794f,
9.320926f, 9.509781f, 9.667375f, 9.72694f, 9.706349f, 9.656599f,
5.276778f, 5.480438f, 5.709702f, 5.9754477f, 6.288551f, 6.6005697f,
6.796207f, 6.9511423f, 7.1503997f, 7.4461427f, 7.644651f, 7.794562f,
8.009684f, 8.400473f, 8.851847f, 9.26469f, 9.649218f, 10.015648f,
10.268647f, 10.313368f, 10.2843275f, 10.319379f, 10.512033f, 10.734956f,
10.954604f, 11.154507f, 11.315369f, 11.374779f, 11.354242f, 11.304622f,
7.325373f, 7.5284843f, 7.757575f, 8.022221f, 8.331997f, 8.638187f,
8.827649f, 8.976217f, 9.168955f, 9.45726f, 9.6442375f, 9.784517f,
9.999621f, 10.407702f, 10.896234f, 11.355122f, 11.781423f, 12.172186f,
12.420712f, 12.4374485f, 12.370511f, 12.371386f, 12.545973f, 12.766424f,
12.992249f, 13.20012f, 13.364252f, 13.424109f, 13.40342f, 13.353425f,
9.493208f, 9.692467f, 9.9169445f, 10.176801f, 10.482199f, 10.78547f,
10.974367f, 11.123442f, 11.31637f, 11.603645f, 11.790616f, 11.930889f,
12.144082f, 12.546447f, 13.024898f, 13.4723f, 13.889232f, 14.276275f,
14.528972f, 14.555555f, 14.50145f, 14.515459f, 14.700572f, 14.927055f,
15.156046f, 15.366046f, 15.532901f, 15.594008f, 15.5728855f, 15.521847f,
10.970133f, 11.163599f, 11.380694f, 11.633735f, 11.935032f, 12.238887f,
12.43254f, 12.588294f, 12.787534f, 13.079956f, 13.27752f, 13.426631f,
13.636713f, 14.013844f, 14.441672f, 14.827978f, 15.191209f, 15.549808f,
15.81343f, 15.881828f, 15.883522f, 15.950411f, 16.16933f, 16.40794f,
16.636436f, 16.842583f, 17.010887f, 17.07363f, 17.05194f, 16.999537f,
12.219155f, 12.406129f, 12.614796f, 12.860335f, 13.157928f, 13.464224f,
13.665207f, 13.830567f, 14.039036f, 14.339629f, 14.552863f, 14.715049f,
14.921564f, 15.264454f, 15.622843f, 15.924977f, 16.213829f, 16.532364f,
16.8099f, 16.934835f, 17.012146f, 17.150164f, 17.413412f, 17.666712f,
17.892765f, 18.09207f, 18.261044f, 18.325531f, 18.303238f, 18.249378f,
13.7663965f, 13.947391f, 14.148263f, 14.386917f, 14.681246f, 14.990087f,
15.198166f, 15.372728f, 15.590062f, 15.898583f, 16.126892f, 16.301655f,
16.50487f, 16.815214f, 17.107498f, 17.329458f, 17.547403f, 17.827654f,
18.118288f, 18.296928f, 18.4461f, 18.651634f, 18.956806f, 19.22382f,
19.447308f, 19.639887f, 19.809319f, 19.875397f, 19.852556f, 19.797365f,
15.9419365f, 16.118704f, 16.314133f, 16.547867f, 16.839561f, 17.14954f,
17.361883f, 17.542162f, 17.764957f, 18.078188f, 18.315733f, 18.498205f,
18.699116f, 18.988684f, 19.238989f, 19.410137f, 19.583265f, 19.839512f,
20.13878f, 20.35177f, 20.546844f, 20.795671f, 21.128067f, 21.404358f,
21.626736f, 21.8155f, 21.98561f, 22.052843f, 22.029604f, 21.973448f,
17.53522f, 17.71077f, 17.904636f, 18.13695f, 18.42784f, 18.738056f,
18.951529f, 19.133352f, 19.357613f, 19.672083f, 19.912102f, 20.096638f,
20.296894f, 20.580765f, 20.819603f, 20.976887f, 21.137802f, 21.387535f,
21.689209f, 21.911621f, 22.119276f, 22.37999f, 22.71991f, 22.998823f,
23.22097f, 23.40876f, 23.57911f, 23.646685f, 23.623325f, 23.566887f,
18.746353f, 18.922657f, 19.117487f, 19.350685f, 19.64207f, 19.952137f,
20.164913f, 20.345781f, 20.569134f, 20.88284f, 21.12133f, 21.30459f,
21.505253f, 21.792645f, 22.038572f, 22.204426f, 22.37289f, 22.626648f,
22.926834f, 23.143423f, 23.343302f, 23.596668f, 23.931936f, 24.209232f,
24.431519f, 24.619913f, 24.79011f, 24.857473f, 24.83419f, 24.777927f,
20.16656f, 20.344206f, 20.540766f, 20.775532f, 21.067804f, 21.377607f,
21.589132f, 21.768297f, 21.99003f, 22.302366f, 22.538124f, 22.719105f,
22.920494f, 23.214176f, 23.472767f, 23.653934f, 23.83589f, 24.096842f,
24.394371f, 24.600555f, 24.786541f, 25.026773f, 25.353731f, 25.62813f,
25.850672f, 26.04014f, 26.210072f, 26.277063f, 26.253906f, 26.197956f,
22.363024f, 22.54125f, 22.738552f, 22.973991f, 23.266647f, 23.57634f,
23.787327f, 23.96576f, 24.186796f, 24.498543f, 24.733124f, 24.913122f,
25.114826f, 25.411213f, 25.675262f, 25.863028f, 26.050789f, 26.314838f,
26.611223f, 26.812925f, 26.992926f, 27.227505f, 27.550882f, 27.824034f,
28.046684f, 28.236614f, 28.406433f, 28.473265f, 28.450163f, 28.394344f,
24.429443f, 24.60767f, 24.80497f, 25.04041f, 25.333065f, 25.642756f,
25.853743f, 26.032173f, 26.25321f, 26.564959f, 26.79954f, 26.97954f,
27.181242f, 27.47763f, 27.74168f, 27.929441f, 28.117207f, 28.381254f,
28.677637f, 28.879343f, 29.059345f, 29.293922f, 29.617298f, 29.890451f,
30.113104f, 30.303034f, 30.472853f, 30.539684f, 30.516582f, 30.460762f,
26.f, 26.178228f, 26.375526f, 26.61097f, 26.903624f, 27.213314f,
27.424305f, 27.602734f, 27.823772f, 28.135519f, 28.3701f, 28.550098f,
28.7518f, 29.04819f, 29.312237f, 29.5f, 29.687763f, 29.951813f,
30.2482f, 30.449903f, 30.629902f, 30.864483f, 31.187859f, 31.461012f,
31.683659f, 31.873592f, 32.043407f, 32.11024f, 32.087135f, 32.03132f,
27.570559f, 27.748787f, 27.946087f, 28.181528f, 28.474184f, 28.783876f,
28.994865f, 29.173294f, 29.39433f, 29.70608f, 29.940659f, 30.120655f,
30.32236f, 30.618746f, 30.882797f, 31.070557f, 31.25832f, 31.522371f,
31.818754f, 32.02046f, 32.20046f, 32.43504f, 32.758415f, 33.031567f,
33.25422f, 33.44415f, 33.613964f, 33.680794f, 33.657696f, 33.60188f,
29.636976f, 29.815207f, 30.0125f, 30.247944f, 30.5406f, 30.85029f,
31.061283f, 31.239712f, 31.46075f, 31.7725f, 32.00708f, 32.187077f,
32.38878f, 32.685165f, 32.949215f, 33.13698f, 33.32474f, 33.58879f,
33.885178f, 34.086884f, 34.26688f, 34.501457f, 34.824837f, 35.09799f,
35.320637f, 35.510574f, 35.68039f, 35.747215f, 35.724117f, 35.6683f,
31.83344f, 32.011665f, 32.20897f, 32.444412f, 32.73707f, 33.046757f,
33.257744f, 33.436176f, 33.657207f, 33.96896f, 34.203537f, 34.383537f,
34.58524f, 34.88163f, 35.145676f, 35.33344f, 35.521206f, 35.785255f,
36.081642f, 36.28334f, 36.46334f, 36.69792f, 37.021297f, 37.294453f,
37.517097f, 37.707027f, 37.876846f, 37.94368f, 37.920578f, 37.864758f,
33.253647f, 33.431873f, 33.62917f, 33.864613f, 34.15727f, 34.466957f,
34.677948f, 34.856377f, 35.077415f, 35.38916f, 35.623745f, 35.803745f,
36.005447f, 36.301834f, 36.565884f, 36.753647f, 36.941406f, 37.205456f,
37.50184f, 37.703545f, 37.883545f, 38.118122f, 38.4415f, 38.714653f,
38.9373f, 39.127235f, 39.297054f, 39.363884f, 39.340782f, 39.28496f,
34.464783f, 34.64301f, 34.840305f, 35.075752f, 35.368404f, 35.6781f,
35.889088f, 36.067516f, 36.28855f, 36.6003f, 36.834885f, 37.014877f,
37.216583f, 37.51297f, 37.77702f, 37.964783f, 38.152546f, 38.416595f,
38.71298f, 38.914684f, 39.094685f, 39.32926f, 39.652645f, 39.925793f,
40.14844f, 40.338375f, 40.508194f, 40.575024f, 40.55192f, 40.496105f,
36.058067f, 36.23629f, 36.43359f, 36.669033f, 36.961685f, 37.271378f,
37.48237f, 37.6608f, 37.881836f, 38.19359f, 38.42817f, 38.608162f,
38.809868f, 39.10625f, 39.3703f, 39.558064f, 39.74583f, 40.00988f,
40.306267f, 40.50797f, 40.68797f, 40.92255f, 41.245926f, 41.519077f,
41.741722f, 41.931652f, 42.101475f, 42.168304f, 42.145203f, 42.089386f,
38.315002f, 38.493233f, 38.690533f, 38.925976f, 39.218628f, 39.52832f,
39.739307f, 39.917736f, 40.138775f, 40.45052f, 40.685104f, 40.865097f,
41.066803f, 41.36319f, 41.627243f, 41.815002f, 42.002766f, 42.26682f,
42.5632f, 42.764908f, 42.944904f, 43.179485f, 43.50286f, 43.776016f,
43.998665f, 44.188595f, 44.358418f, 44.425247f, 44.402145f, 44.34633f,
40.22708f, 40.40531f, 40.602608f, 40.83805f, 41.130707f, 41.440395f,
41.651382f, 41.82982f, 42.050854f, 42.3626f, 42.597183f, 42.77718f,
42.97888f, 43.27527f, 43.53932f, 43.72708f, 43.914845f, 44.178894f,
44.47528f, 44.676983f, 44.856983f, 45.09156f, 45.41494f, 45.68809f,
45.91074f, 46.100674f, 46.270493f, 46.337322f, 46.31422f, 46.2584f,
41.785618f, 41.963844f, 42.161144f, 42.396584f, 42.68924f, 42.998936f,
43.209923f, 43.388355f, 43.609394f, 43.921143f, 44.15572f, 44.335716f,
44.53742f, 44.833805f, 45.09786f, 45.285614f, 45.473377f, 45.737427f,
46.033817f, 46.235523f, 46.415524f, 46.650105f, 46.973476f, 47.24663f,
47.469276f, 47.65921f, 47.82903f, 47.895855f, 47.872753f, 47.81694f,
43.11514f, 43.293365f, 43.490665f, 43.726105f, 44.018764f, 44.328457f,
44.539444f, 44.717873f, 44.93891f, 45.25066f, 45.48524f, 45.665237f,
45.86694f, 46.163326f, 46.427376f, 46.615143f, 46.802902f, 47.066956f,
47.363342f, 47.56505f, 47.74505f, 47.979626f, 48.302998f, 48.576153f,
48.798798f, 48.98873f, 49.158546f, 49.225376f, 49.202282f, 49.146458f,
44.303867f, 44.482094f, 44.679394f, 44.914833f, 45.207493f, 45.51718f,
45.72817f, 45.9066f, 46.12764f, 46.439384f, 46.673965f, 46.853966f,
47.055668f, 47.352055f, 47.6161f, 47.803867f, 47.99163f, 48.25568f,
48.552063f, 48.75377f, 48.933773f, 49.16835f, 49.491726f, 49.764877f,
49.987526f, 50.17746f, 50.347275f, 50.4141f, 50.391006f, 50.335186f,
44.771675f, 44.949905f, 45.1472f, 45.382645f, 45.6753f, 45.98499f,
46.195976f, 46.374413f, 46.595448f, 46.907196f, 47.141773f, 47.321774f,
47.523476f, 47.819862f, 48.08391f, 48.27168f, 48.459446f, 48.72349f,
49.019882f, 49.22158f, 49.401585f, 49.63616f, 49.959538f, 50.232693f,
50.455338f, 50.64527f, 50.81509f, 50.88192f, 50.858818f, 50.803f,
44.609966f, 44.788193f, 44.985493f, 45.220936f, 45.51359f, 45.82328f,
46.03427f, 46.2127f, 46.433743f, 46.74549f, 46.98007f, 47.160065f,
47.36177f, 47.658157f, 47.922207f, 48.10997f, 48.297733f, 48.561783f,
48.858166f, 49.059875f, 49.239872f, 49.47445f, 49.79783f, 50.07098f,
50.293625f, 50.48356f, 50.653378f, 50.720203f, 50.6971f, 50.64128f,
44.219246f, 44.397472f, 44.594772f, 44.83021f, 45.122868f, 45.43256f,
45.643543f, 45.82198f, 46.04302f, 46.354763f, 46.589344f, 46.76934f,
46.971046f, 47.267433f, 47.531483f, 47.719242f, 47.907005f, 48.17105f,
48.467438f, 48.66914f, 48.849144f, 49.08372f, 49.4071f, 49.680256f,
49.902905f, 50.092834f, 50.262653f, 50.329483f, 50.30638f, 50.25057f});
auto size = NDArrayFactory::create<int>({30, 30});
nd4j::ops::resize_bicubic op;
@ -656,64 +656,63 @@ TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test1) {
TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test2) {
NDArray input = NDArrayFactory::create<double>('c', {2, 5, 4, 3});
NDArray expected = NDArrayFactory::create<double>('c', {2, 10, 8, 3}, {
1. , 2. ,3. ,2.21875, 3.21875, 4.21875, 4. , 5. , 6. ,5.5,
6.5, 7.5, 7., 8., 9. ,8.78125, 9.78125, 10.78125, 10., 11. ,
12., 10.28125 , 11.28125 ,12.28125, 5.875, 6.875, 7.875, 7.09375, 8.09375 ,9.09375,
8.875, 9.875, 10.875, 10.375, 11.375, 12.375 ,11.875 ,12.875 , 13.875, 13.65625,
14.65625, 15.65625, 14.875 ,15.875 ,16.875 , 15.15625, 16.15625, 17.15625, 13., 14.,
15. ,14.21875, 15.21875, 16.21875, 16., 17., 18. ,17.5 ,18.5 , 19.5,
19., 20., 21., 20.78125 ,21.78125 ,22.78125, 22., 23. , 24. , 22.28125,
23.28125 ,24.28125 ,19. , 20., 21., 20.21875, 21.21875, 22.21875 ,22. ,23.,
24. , 23.5, 24.5, 25.5, 25. ,26. ,27., 26.78125 , 27.78125, 28.78125,
28., 29. ,30. ,28.28125, 29.28125, 30.28125, 25., 26., 27. ,26.21875,
27.21875, 28.21875, 28., 29., 30., 29.5 ,30.5 ,31.5 , 31., 32.,
33., 32.78125, 33.78125 ,34.78125 ,34., 35., 36., 34.28125, 35.28125, 36.28125,
31. ,32., 33. , 32.21875, 33.21875, 34.21875, 34. ,35. ,36., 35.5,
36.5 , 37.5 , 37., 38. ,39. ,38.78125, 39.78125, 40.78125, 40., 41.,
42. ,40.28125 ,41.28125, 42.28125, 37. , 38., 39., 38.21875 ,39.21875 ,40.21875,
40. , 41. , 42. , 41.5, 42.5, 43.5 ,43., 44., 45., 44.78125,
45.78125, 46.78125 ,46. ,47. , 48. , 46.28125 , 47.28125, 48.28125, 44.125 ,45.125,
46.125, 45.34375, 46.34375, 47.34375, 47.125, 48.125 ,49.125 ,48.625, 49.625 , 50.625,
50.125 , 51.125, 52.125 ,51.90625 ,52.90625, 53.90625, 53.125, 54.125, 55.125, 53.40625,
54.40625 ,55.40625, 49. ,50. , 51. ,50.21875, 51.21875 ,52.21875 ,52. ,53.,
54. ,53.5 , 54.5, 55.5 ,55. ,56. ,57. ,56.78125 ,57.78125, 58.78125,
58. ,59. ,60. ,58.28125 ,59.28125 ,60.28125, 50.125, 51.125 ,52.125 ,51.34375,
52.34375 ,53.34375 ,53.125, 54.125, 55.125 ,54.625 ,55.625 ,56.625 ,56.125 ,57.125,
58.125, 57.90625 ,58.90625 ,59.90625 ,59.125 ,60.125 ,61.125, 59.40625, 60.40625 ,61.40625,
61. ,62. ,63. ,62.21875, 63.21875, 64.21875 ,64. ,65. ,66. ,65.5 ,
66.5, 67.5, 67. ,68. ,69. ,68.78125 ,69.78125 ,70.78125 ,70., 71. ,
72. ,70.28125 ,71.28125 ,72.28125 ,65.875 ,66.875, 67.875 ,67.09375 ,68.09375 ,69.09375,
68.875 ,69.875 ,70.875, 70.375 ,71.375 ,72.375 ,71.875 ,72.875 ,73.875 ,73.65625,
74.65625 ,75.65625 ,74.875 ,75.875, 76.875 ,75.15625 ,76.15625,
77.15625 ,73. ,74. ,75., 74.21875 ,75.21875 ,76.21875,
76. ,77. ,78. ,77.5 ,78.5 ,79.5 ,79.,
80. ,81. ,80.78125 ,81.78125, 82.78125 ,82. ,83.,
84. ,82.28125 ,83.28125 ,84.28125, 79. ,80. ,81.,
80.21875 ,81.21875 ,82.21875 ,82., 83. ,84. ,83.5,
84.5 ,85.5 ,85. ,86., 87. ,86.78125 ,87.78125,
88.78125 ,88. ,89. ,90., 88.28125 ,89.28125 ,90.28125,
85. ,86. ,87. ,86.21875, 87.21875 ,88.21875 ,88.,
89. ,90. ,89.5 ,90.5, 91.5 ,91. ,92.,
93. ,92.78125 ,93.78125 ,94.78125, 94. ,95. ,96.,
94.28125 ,95.28125 ,96.28125 ,91., 92. ,93. ,92.21875,
93.21875 ,94.21875 ,94. ,95., 96. ,95.5 ,96.5,
97.5 ,97. ,98. ,99., 98.78125 ,99.78125 ,100.78125,
100. ,101. ,102. ,100.28125, 101.28125 ,102.28125, 97.,
98. ,99. ,98.21875 ,99.21875, 100.21875 ,100., 101.,
102. ,101.5 ,102.5 ,103.5, 103. ,104., 105.,
104.78125 ,105.78125 ,106.78125 ,106., 107. ,108., 106.28125,
107.28125 ,108.28125 ,104.125 ,105.125, 106.125 ,105.34375, 106.34375,
107.34375 ,107.125 ,108.125 ,109.125, 108.625 ,109.625, 110.625,
110.125 ,111.125 ,112.125 ,111.90625, 112.90625 ,113.90625, 113.125,
114.125 ,115.125 ,113.40625 ,114.40625, 115.40625 ,109., 110.,
111. ,110.21875 ,111.21875 ,112.21875, 112., 113., 114.,
113.5 ,114.5 ,115.5 ,115., 116., 117., 116.78125,
117.78125 ,118.78125 ,118. ,119., 120., 118.28125, 119.28125,
120.28125 ,110.125 ,111.125 ,112.125, 111.34375, 112.34375, 113.34375,
113.125 ,114.125 ,115.125 ,114.625, 115.625, 116.625, 116.125,
117.125 ,118.125 ,117.90625, 118.90625, 119.90625, 119.125, 120.125,
121.125 ,119.40625 ,120.40625, 121.40625}); //input = 1.f;
NDArray expected = NDArrayFactory::create<float>('c', {2, 10, 8, 3}, {
1.000000f, 2.000000f, 3.000000f, 2.218750f, 3.218750f, 4.218750f, 4.000000f, 5.000000f, 6.000000f,
5.500000f, 6.500000f, 7.500000f, 7.000000f, 8.000000f, 9.000000f, 8.781250f, 9.781250f, 10.781250f,
10.000000f, 11.000000f, 12.000000f, 10.281250f, 11.281250f, 12.281250f, 5.875000f, 6.875000f, 7.875000f,
7.093750f, 8.093750f, 9.093750f, 8.875000f, 9.875000f, 10.875000f, 10.375000f, 11.375000f, 12.375000f,
11.875000f, 12.875000f, 13.875000f, 13.656250f, 14.656250f, 15.656250f, 14.875000f, 15.875000f, 16.875000f,
15.156250f, 16.156250f, 17.156250f, 13.000000f, 14.000000f, 15.000000f, 14.218750f, 15.218750f, 16.218750f,
16.000000f, 17.000000f, 18.000000f, 17.500000f, 18.500000f, 19.500000f, 19.000000f, 20.000000f, 21.000000f,
20.781250f, 21.781250f, 22.781250f, 22.000000f, 23.000000f, 24.000000f, 22.281250f, 23.281250f, 24.281250f,
19.000000f, 20.000000f, 21.000000f, 20.218750f, 21.218750f, 22.218750f, 22.000000f, 23.000000f, 24.000000f,
23.500000f, 24.500000f, 25.500000f, 25.000000f, 26.000000f, 27.000000f, 26.781250f, 27.781250f, 28.781250f,
28.000000f, 29.000000f, 30.000000f, 28.281250f, 29.281250f, 30.281250f, 25.000000f, 26.000000f, 27.000000f,
26.218750f, 27.218750f, 28.218750f, 28.000000f, 29.000000f, 30.000000f, 29.500000f, 30.500000f, 31.500000f,
31.000000f, 32.000000f, 33.000000f, 32.781250f, 33.781250f, 34.781250f, 34.000000f, 35.000000f, 36.000000f,
34.281250f, 35.281250f, 36.281250f, 31.000000f, 32.000000f, 33.000000f, 32.218750f, 33.218750f, 34.218750f,
34.000000f, 35.000000f, 36.000000f, 35.500000f, 36.500000f, 37.500000f, 37.000000f, 38.000000f, 39.000000f,
38.781250f, 39.781250f, 40.781250f, 40.000000f, 41.000000f, 42.000000f, 40.281250f, 41.281250f, 42.281250f,
37.000000f, 38.000000f, 39.000000f, 38.218750f, 39.218750f, 40.218750f, 40.000000f, 41.000000f, 42.000000f,
41.500000f, 42.500000f, 43.500000f, 43.000000f, 44.000000f, 45.000000f, 44.781250f, 45.781250f, 46.781250f,
46.000000f, 47.000000f, 48.000000f, 46.281250f, 47.281250f, 48.281250f, 44.125000f, 45.125000f, 46.125000f,
45.343750f, 46.343750f, 47.343750f, 47.125000f, 48.125000f, 49.125000f, 48.625000f, 49.625000f, 50.625000f,
50.125000f, 51.125000f, 52.125000f, 51.906250f, 52.906250f, 53.906250f, 53.125000f, 54.125000f, 55.125000f,
53.406250f, 54.406250f, 55.406250f, 49.000000f, 50.000000f, 51.000000f, 50.218750f, 51.218750f, 52.218750f,
52.000000f, 53.000000f, 54.000000f, 53.500000f, 54.500000f, 55.500000f, 55.000000f, 56.000000f, 57.000000f,
56.781250f, 57.781250f, 58.781250f, 58.000000f, 59.000000f, 60.000000f, 58.281250f, 59.281250f, 60.281250f,
50.125000f, 51.125000f, 52.125000f, 51.343750f, 52.343750f, 53.343750f, 53.125000f, 54.125000f, 55.125000f,
54.625000f, 55.625000f, 56.625000f, 56.125000f, 57.125000f, 58.125000f, 57.906250f, 58.906250f, 59.906250f,
59.125000f, 60.125000f, 61.125000f, 59.406250f, 60.406250f, 61.406250f, 61.000000f, 62.000000f, 63.000000f,
62.218750f, 63.218750f, 64.218750f, 64.000000f, 65.000000f, 66.000000f, 65.500000f, 66.500000f, 67.500000f,
67.000000f, 68.000000f, 69.000000f, 68.781250f, 69.781250f, 70.781250f, 70.000000f, 71.000000f, 72.000000f,
70.281250f, 71.281250f, 72.281250f, 65.875000f, 66.875000f, 67.875000f, 67.093750f, 68.093750f, 69.093750f,
68.875000f, 69.875000f, 70.875000f, 70.375000f, 71.375000f, 72.375000f, 71.875000f, 72.875000f, 73.875000f,
73.656250f, 74.656250f, 75.656250f, 74.875000f, 75.875000f, 76.875000f, 75.156250f, 76.156250f, 77.156250f,
73.000000f, 74.000000f, 75.000000f, 74.218750f, 75.218750f, 76.218750f, 76.000000f, 77.000000f, 78.000000f,
77.500000f, 78.500000f, 79.500000f, 79.000000f, 80.000000f, 81.000000f, 80.781250f, 81.781250f, 82.781250f,
82.000000f, 83.000000f, 84.000000f, 82.281250f, 83.281250f, 84.281250f, 79.000000f, 80.000000f, 81.000000f,
80.218750f, 81.218750f, 82.218750f, 82.000000f, 83.000000f, 84.000000f, 83.500000f, 84.500000f, 85.500000f,
85.000000f, 86.000000f, 87.000000f, 86.781250f, 87.781250f, 88.781250f, 88.000000f, 89.000000f, 90.000000f,
88.281250f, 89.281250f, 90.281250f, 85.000000f, 86.000000f, 87.000000f, 86.218750f, 87.218750f, 88.218750f,
88.000000f, 89.000000f, 90.000000f, 89.500000f, 90.500000f, 91.500000f, 91.000000f, 92.000000f, 93.000000f,
92.781250f, 93.781250f, 94.781250f, 94.000000f, 95.000000f, 96.000000f, 94.281250f, 95.281250f, 96.281250f,
91.000000f, 92.000000f, 93.000000f, 92.218750f, 93.218750f, 94.218750f, 94.000000f, 95.000000f, 96.000000f,
95.500000f, 96.500000f, 97.500000f, 97.000000f, 98.000000f, 99.000000f, 98.781250f, 99.781250f, 100.781250f,
100.000000f, 101.000000f, 102.000000f, 100.281250f, 101.281250f, 102.281250f, 97.000000f, 98.000000f,
99.000000f, 98.218750f, 99.218750f, 100.218750f, 100.000000f, 101.000000f, 102.000000f, 101.500000f,
102.500000f, 103.500000f, 103.000000f, 104.000000f, 105.000000f, 104.781250f, 105.781250f, 106.781250f,
106.000000f, 107.000000f, 108.000000f, 106.281250f, 107.281250f, 108.281250f, 104.125000f, 105.125000f,
106.125000f, 105.343750f, 106.343750f, 107.343750f, 107.125000f, 108.125000f, 109.125000f, 108.625000f,
109.625000f, 110.625000f, 110.125000f, 111.125000f, 112.125000f, 111.906250f, 112.906250f, 113.906250f,
113.125000f, 114.125000f, 115.125000f, 113.406250f, 114.406250f, 115.406250f, 109.000000f, 110.000000f,
111.000000f, 110.218750f, 111.218750f, 112.218750f, 112.000000f, 113.000000f, 114.000000f, 113.500000f,
114.500000f, 115.500000f, 115.000000f, 116.000000f, 117.000000f, 116.781250f, 117.781250f, 118.781250f,
118.000000f, 119.000000f, 120.000000f, 118.281250f, 119.281250f, 120.281250f, 110.125000f, 111.125000f,
112.125000f, 111.343750f, 112.343750f, 113.343750f, 113.125000f, 114.125000f, 115.125000f, 114.625000f,
115.625000f, 116.625000f, 116.125000f, 117.125000f, 118.125000f, 117.906250f, 118.906250f, 119.906250f,
119.125000f, 120.125000f, 121.125000f, 119.406250f, 120.406250f, 121.406250f
}); //input = 1.f;
input.linspace(1);
auto size = NDArrayFactory::create<int>({10, 8});
nd4j::ops::resize_bicubic op;
@ -733,48 +732,23 @@ TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test2) {
TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test3) {
NDArray input = NDArrayFactory::create<double>('c', {1, 3, 3, 4});
NDArray expected = NDArrayFactory::create<double>('c', {1, 6, 6, 4}, {
1. ,2. ,3. ,4.,
2.625 ,3.625 ,4.625 ,5.625,
5. ,6. ,7. ,8.,
7.375 ,8.375 ,9.375, 10.375,
9. ,10. ,11. ,12.,
9.375 ,10.375 ,11.375 ,12.375,
5.875 ,6.875 ,7.875 , 8.875 ,
7.5 ,8.5 ,9.5 , 10.5 ,
9.875 ,10.875 ,11.875, 12.875,
12.25 ,13.25 ,14.25 , 15.25 ,
13.875 ,14.875 ,15.875, 16.875,
14.25 ,15.25 ,16.25 , 17.25 ,
13. ,14. ,15. ,16.,
14.625 ,15.625 ,16.625 ,17.625,
17. ,18. ,19. ,20.,
19.375 ,20.375 ,21.375 ,22.375,
21. ,22. ,23. ,24.,
21.375 ,22.375 ,23.375 ,24.375,
20.125 ,21.125 ,22.125 ,23.125,
21.75 ,22.75 ,23.75 ,24.75,
24.125 ,25.125 ,26.125 ,27.125,
26.5 ,27.5 ,28.5 ,29.5,
28.125 ,29.125 ,30.125 ,31.125,
28.5 ,29.5 ,30.5 ,31.5,
25. , 26. , 27. , 28.,
26.625 ,27.625 ,28.625 ,29.625,
29. ,30. ,31. ,32.,
31.375 ,32.375 ,33.375 ,34.375,
33. ,34. ,35. ,36.,
33.375 ,34.375 ,35.375 ,36.375,
26.125, 27.125, 28.125, 29.125,
27.75 ,28.75 ,29.75 ,30.75,
30.125 ,31.125 ,32.125 ,33.125,
32.5 ,33.5 ,34.5 ,35.5,
34.125 ,35.125 ,36.125 ,37.125,
34.5 ,35.5 ,36.5 ,37.5
NDArray expected = NDArrayFactory::create<float>('c', {1, 6, 6, 4}, {
1.000000f, 2.000000f, 3.000000f, 4.000000f, 2.625000f, 3.625000f, 4.625000f, 5.625000f, 5.000000f,
6.000000f, 7.000000f, 8.000000f, 7.375000f, 8.375000f, 9.375000f, 10.375000f, 9.000000f, 10.000000f,
11.000000f, 12.000000f, 9.375000f, 10.375000f, 11.375000f, 12.375000f, 5.875000f, 6.875000f, 7.875000f,
8.875000f, 7.500000f, 8.500000f, 9.500000f, 10.500000f, 9.875000f, 10.875000f, 11.875000f, 12.875000f,
12.250000f, 13.250000f, 14.250000f, 15.250000f, 13.875000f, 14.875000f, 15.875000f, 16.875000f, 14.250000f,
15.250000f, 16.250000f, 17.250000f, 13.000000f, 14.000000f, 15.000000f, 16.000000f, 14.625000f, 15.625000f,
16.625000f, 17.625000f, 17.000000f, 18.000000f, 19.000000f, 20.000000f, 19.375000f, 20.375000f, 21.375000f,
22.375000f, 21.000000f, 22.000000f, 23.000000f, 24.000000f, 21.375000f, 22.375000f, 23.375000f, 24.375000f,
20.125000f, 21.125000f, 22.125000f, 23.125000f, 21.750000f, 22.750000f, 23.750000f, 24.750000f, 24.125000f,
25.125000f, 26.125000f, 27.125000f, 26.500000f, 27.500000f, 28.500000f, 29.500000f, 28.125000f, 29.125000f,
30.125000f, 31.125000f, 28.500000f, 29.500000f, 30.500000f, 31.500000f, 25.000000f, 26.000000f, 27.000000f,
28.000000f, 26.625000f, 27.625000f, 28.625000f, 29.625000f, 29.000000f, 30.000000f, 31.000000f, 32.000000f,
31.375000f, 32.375000f, 33.375000f, 34.375000f, 33.000000f, 34.000000f, 35.000000f, 36.000000f, 33.375000f,
34.375000f, 35.375000f, 36.375000f, 26.125000f, 27.125000f, 28.125000f, 29.125000f, 27.750000f, 28.750000f,
29.750000f, 30.750000f, 30.125000f, 31.125000f, 32.125000f, 33.125000f, 32.500000f, 33.500000f, 34.500000f,
35.500000f, 34.125000f, 35.125000f, 36.125000f, 37.125000f, 34.500000f, 35.500000f, 36.500000f, 37.500000f
});
input.linspace(1);
auto size = NDArrayFactory::create<int>({6, 6});
@ -795,60 +769,24 @@ TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test3) {
TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test4) {
NDArray input = NDArrayFactory::create<double>('c', {1, 3, 4, 3});
NDArray expected = NDArrayFactory::create<double>('c', {1, 6, 8, 3}, {
1. , 2. , 3. ,
2.21875 ,3.21875 ,4.21875,
4. ,5. ,6. ,
5.5 ,6.5 ,7.5 ,
7. ,8. ,9. ,
8.78125 ,9.78125, 10.78125,
10. ,11., 12. ,
10.28125 ,11.28125, 12.28125,
5.875 , 6.875 , 7.875 ,
7.09375 , 8.09375 , 9.09375,
8.875 , 9.875 ,10.875 ,
10.375 ,11.375 ,12.375 ,
11.875 ,12.875 ,13.875 ,
13.65625 ,14.65625 ,15.65625,
14.875 ,15.875 ,16.875 ,
15.15625 ,16.15625 ,17.15625,
13., 14., 15.,
14.21875 ,15.21875 ,16.21875,
16. ,17. ,18. ,
17.5 ,18.5 ,19.5 ,
19. ,20. ,21. ,
20.78125 ,21.78125 ,22.78125,
22. ,23. ,24. ,
22.28125 ,23.28125 ,24.28125,
20.125 , 21.125 , 22.125,
21.34375 ,22.34375 ,23.34375,
23.125 ,24.125 ,25.125 ,
24.625 ,25.625 ,26.625 ,
26.125 ,27.125 ,28.125 ,
27.90625 ,28.90625 ,29.90625,
29.125 ,30.125 ,31.125 ,
29.40625 ,30.40625 ,31.40625,
25. ,26. ,27. ,
26.21875 ,27.21875 ,28.21875,
28. ,29. ,30. ,
29.5 ,30.5 ,31.5 ,
31. ,32. ,33. ,
32.78125 ,33.78125 ,34.78125,
34. ,35. ,36. ,
34.28125 ,35.28125 ,36.28125,
26.125 ,27.125 , 28.125 ,
27.34375 ,28.34375 ,29.34375,
29.125 ,30.125 ,31.125 ,
30.625 ,31.625 ,32.625 ,
32.125 ,33.125 ,34.125 ,
33.90625 ,34.90625 ,35.90625,
35.125 ,36.125 ,37.125 ,
35.40625 ,36.40625 ,37.40625 });
NDArray expected = NDArrayFactory::create<float>('c', {1, 6, 8, 3}, {
1.000000f, 2.000000f, 3.000000f, 2.218750f, 3.218750f, 4.218750f, 4.000000f, 5.000000f, 6.000000f,
5.500000f, 6.500000f, 7.500000f, 7.000000f, 8.000000f, 9.000000f, 8.781250f, 9.781250f, 10.781250f,
10.000000f, 11.000000f, 12.000000f, 10.281250f, 11.281250f, 12.281250f, 5.875000f, 6.875000f, 7.875000f,
7.093750f, 8.093750f, 9.093750f, 8.875000f, 9.875000f, 10.875000f, 10.375000f, 11.375000f, 12.375000f,
11.875000f, 12.875000f, 13.875000f, 13.656250f, 14.656250f, 15.656250f, 14.875000f, 15.875000f, 16.875000f,
15.156250f, 16.156250f, 17.156250f, 13.000000f, 14.000000f, 15.000000f, 14.218750f, 15.218750f, 16.218750f,
16.000000f, 17.000000f, 18.000000f, 17.500000f, 18.500000f, 19.500000f, 19.000000f, 20.000000f, 21.000000f,
20.781250f, 21.781250f, 22.781250f, 22.000000f, 23.000000f, 24.000000f, 22.281250f, 23.281250f, 24.281250f,
20.125000f, 21.125000f, 22.125000f, 21.343750f, 22.343750f, 23.343750f, 23.125000f, 24.125000f, 25.125000f,
24.625000f, 25.625000f, 26.625000f, 26.125000f, 27.125000f, 28.125000f, 27.906250f, 28.906250f, 29.906250f,
29.125000f, 30.125000f, 31.125000f, 29.406250f, 30.406250f, 31.406250f, 25.000000f, 26.000000f, 27.000000f,
26.218750f, 27.218750f, 28.218750f, 28.000000f, 29.000000f, 30.000000f, 29.500000f, 30.500000f, 31.500000f,
31.000000f, 32.000000f, 33.000000f, 32.781250f, 33.781250f, 34.781250f, 34.000000f, 35.000000f, 36.000000f,
34.281250f, 35.281250f, 36.281250f, 26.125000f, 27.125000f, 28.125000f, 27.343750f, 28.343750f, 29.343750f,
29.125000f, 30.125000f, 31.125000f, 30.625000f, 31.625000f, 32.625000f, 32.125000f, 33.125000f, 34.125000f,
33.906250f, 34.906250f, 35.906250f, 35.125000f, 36.125000f, 37.125000f, 35.406250f, 36.406250f, 37.406250f
});
input.linspace(1);
auto size = NDArrayFactory::create<int>({6, 8});
nd4j::ops::resize_bicubic op;
@ -868,32 +806,30 @@ TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test4) {
TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test5) {
NDArray input = NDArrayFactory::create<double>('c', {1, 4, 4, 3});
NDArray expected = NDArrayFactory::create<double>('c', {1, 8, 8, 3}, {
1. ,2. , 3. , 2.21875 , 3.21875 , 4.21875 , 4. , 5. ,
6. ,5.5 , 6.5 , 7.5 , 7. , 8. , 9. , 8.78125 ,
9.78125 ,10.78125 ,10. ,11. ,12. ,10.28125 ,11.28125 ,12.28125 ,
5.875 ,6.875 , 7.875 , 7.09375 , 8.09375 , 9.09375 , 8.875 , 9.875 ,
10.875 ,10.375 , 11.375 , 12.375 , 11.875 , 12.875 , 13.875 , 13.65625,
14.65625 ,15.65625, 14.875 , 15.875 , 16.875 , 15.15625, 16.15625, 17.15625,
13. ,14. , 15. , 14.21875, 15.21875, 16.21875, 16. , 17. ,
18. ,17.5 , 18.5 , 19.5 , 19. , 20. , 21. , 20.78125,
21.78125 ,22.78125, 22. , 23. , 24. , 22.28125, 23.28125, 24.28125,
19. ,20. , 21. , 20.21875, 21.21875, 22.21875, 22. , 23. ,
24. ,23.5 , 24.5 , 25.5 , 25. , 26. , 27. , 26.78125,
27.78125 ,28.78125, 28. , 29. , 30. , 28.28125, 29.28125, 30.28125,
25. ,26. , 27. , 26.21875, 27.21875, 28.21875, 28. , 29. ,
30. ,29.5 , 30.5 , 31.5 , 31. , 32. , 33. , 32.78125,
33.78125 ,34.78125, 34. , 35. , 36. , 34.28125, 35.28125, 36.28125,
32.125 ,33.125 , 34.125 , 33.34375, 34.34375, 35.34375, 35.125 , 36.125 ,
37.125 ,36.625 , 37.625 , 38.625 , 38.125 , 39.125 , 40.125 , 39.90625,
40.90625 ,41.90625, 41.125 , 42.125 , 43.125 , 41.40625, 42.40625, 43.40625,
37. ,38. , 39. , 38.21875, 39.21875, 40.21875, 40. , 41. ,
42. ,41.5 , 42.5 , 43.5 , 43. , 44. , 45. , 44.78125,
45.78125 ,46.78125, 46. , 47. , 48. , 46.28125, 47.28125, 48.28125,
38.125 ,39.125 , 40.125 , 39.34375, 40.34375, 41.34375, 41.125 , 42.125 ,
43.125 ,42.625 , 43.625 , 44.625 , 44.125 , 45.125 , 46.125 , 45.90625,
46.90625 ,47.90625, 47.125 , 48.125 , 49.125 , 47.40625, 48.40625, 49.40625,
});
NDArray expected = NDArrayFactory::create<float>('c', {1, 8, 8, 3}, {
1.000000f, 2.000000f, 3.000000f, 2.218750f, 3.218750f, 4.218750f, 4.000000f, 5.000000f, 6.000000f,
5.500000f, 6.500000f, 7.500000f, 7.000000f, 8.000000f, 9.000000f, 8.781250f, 9.781250f, 10.781250f,
10.000000f, 11.000000f, 12.000000f, 10.281250f, 11.281250f, 12.281250f, 5.875000f, 6.875000f, 7.875000f,
7.093750f, 8.093750f, 9.093750f, 8.875000f, 9.875000f, 10.875000f, 10.375000f, 11.375000f, 12.375000f,
11.875000f, 12.875000f, 13.875000f, 13.656250f, 14.656250f, 15.656250f, 14.875000f, 15.875000f, 16.875000f,
15.156250f, 16.156250f, 17.156250f, 13.000000f, 14.000000f, 15.000000f, 14.218750f, 15.218750f, 16.218750f,
16.000000f, 17.000000f, 18.000000f, 17.500000f, 18.500000f, 19.500000f, 19.000000f, 20.000000f, 21.000000f,
20.781250f, 21.781250f, 22.781250f, 22.000000f, 23.000000f, 24.000000f, 22.281250f, 23.281250f, 24.281250f,
19.000000f, 20.000000f, 21.000000f, 20.218750f, 21.218750f, 22.218750f, 22.000000f, 23.000000f, 24.000000f,
23.500000f, 24.500000f, 25.500000f, 25.000000f, 26.000000f, 27.000000f, 26.781250f, 27.781250f, 28.781250f,
28.000000f, 29.000000f, 30.000000f, 28.281250f, 29.281250f, 30.281250f, 25.000000f, 26.000000f, 27.000000f,
26.218750f, 27.218750f, 28.218750f, 28.000000f, 29.000000f, 30.000000f, 29.500000f, 30.500000f, 31.500000f,
31.000000f, 32.000000f, 33.000000f, 32.781250f, 33.781250f, 34.781250f, 34.000000f, 35.000000f, 36.000000f,
34.281250f, 35.281250f, 36.281250f, 32.125000f, 33.125000f, 34.125000f, 33.343750f, 34.343750f, 35.343750f,
35.125000f, 36.125000f, 37.125000f, 36.625000f, 37.625000f, 38.625000f, 38.125000f, 39.125000f, 40.125000f,
39.906250f, 40.906250f, 41.906250f, 41.125000f, 42.125000f, 43.125000f, 41.406250f, 42.406250f, 43.406250f,
37.000000f, 38.000000f, 39.000000f, 38.218750f, 39.218750f, 40.218750f, 40.000000f, 41.000000f, 42.000000f,
41.500000f, 42.500000f, 43.500000f, 43.000000f, 44.000000f, 45.000000f, 44.781250f, 45.781250f, 46.781250f,
46.000000f, 47.000000f, 48.000000f, 46.281250f, 47.281250f, 48.281250f, 38.125000f, 39.125000f, 40.125000f,
39.343750f, 40.343750f, 41.343750f, 41.125000f, 42.125000f, 43.125000f, 42.625000f, 43.625000f, 44.625000f,
44.125000f, 45.125000f, 46.125000f, 45.906250f, 46.906250f, 47.906250f, 47.125000f, 48.125000f, 49.125000f,
47.406250f, 48.406250f, 49.406250f,
});
input.linspace(1);
auto size = NDArrayFactory::create<int>({8, 8});
nd4j::ops::resize_bicubic op;
@ -912,167 +848,118 @@ TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test5) {
TEST_F(DeclarableOpsTests11, ImageResizeBicubic_Test6) {
NDArray input = NDArrayFactory::create<double>('c', {7, 7, 1}, {
1, 2.1, 3.15, 4.2, 5.15, 6.1, 7,
8, 9.1, 10., 11, 12.9, 13.1, 14,
15, 16., 17., 18, 19, 20., 21,
22, 23., 24., 25, 26, 27, 28,
30, 31, 32, 33, 34., 35, 36,
37, 38, 39, 40, 41., 42, 43,
44, 45, 46, 47, 48., 49, 50
NDArray input = NDArrayFactory::create<float>('c', {7, 7, 1}, {
1.f, 2.1f, 3.15f, 4.2f, 5.15f, 6.1f, 7.f,
8.f, 9.1f, 10.f, 11.f, 12.9f, 13.1f, 14.f,
15.f, 16.f, 17.f, 18.f, 19.f, 20.f, 21.f,
22.f, 23.f, 24.f, 25.f, 26.f, 27.f, 28.f,
30.f, 31.f, 32.f, 33.f, 34.f, 35.f, 36.f,
37.f, 38.f, 39.f, 40.f, 41.f, 42.f, 43.f,
44.f, 45.f, 46.f, 47.f, 48.f, 49.f, 50.f
});
NDArray expected = NDArrayFactory::create<double>('c', {30, 30, 1}, {
1. ,1.1976162 ,1.4174359 ,1.6775769 ,1.9961575 ,2.3283265 ,
2.550918 ,2.7360606 ,2.9655411 ,3.2929654 ,3.5441515 ,3.7380352 ,
3.948995 ,4.248106 ,4.5073795 ,4.6843743 ,4.8572845 ,5.104302 ,
5.3869915 ,5.581401 ,5.7539616 ,5.974285 ,6.272836 ,6.5204263 ,
6.718899 ,6.8871036 ,7.039068 ,7.099216 ,7.0784245 ,7.0281887 ,
2.247592 ,2.446947 ,2.6694887 ,2.9312382 ,3.248216 ,3.5745337 ,
3.78931 ,3.9656973 ,4.186417 ,4.5046535 ,4.740569 ,4.9217057 ,
5.133866 ,5.459533 ,5.7744613 ,6.0197873 ,6.254011 ,6.535633 ,
6.8097296 ,6.9607787 ,7.0749416 ,7.241601 ,7.5094895 ,7.7499495 ,
7.954571 ,8.131972 ,8.286526 ,8.346463 ,8.325745 ,8.275683 ,
3.6286845 ,3.830573 ,4.0569587 ,4.3211575 ,4.6364856 ,4.9556503 ,
5.160583 ,5.3258467 ,5.535462 ,5.84216 ,6.058749 ,6.223753 ,
6.437597 ,6.797369 ,7.1836042 ,7.5164022 ,7.8290343 ,8.154773 ,
8.417635 ,8.512958 ,8.5521 ,8.649708 ,8.87788 ,9.108794 ,
9.320926 ,9.509781 ,9.667375 ,9.72694 ,9.706349 ,9.656599 ,
5.276778 ,5.480438 ,5.709702 ,5.9754477 ,6.288551 ,6.6005697 ,
6.796207 ,6.9511423 ,7.1503997 ,7.4461427 ,7.644651 ,7.794562 ,
8.009684 ,8.400473 ,8.851847 ,9.26469 ,9.649218, 10.015648 ,
10.268647 ,10.313368 ,10.2843275 ,10.319379 ,10.512033 ,10.734956 ,
10.954604 ,11.154507 ,11.315369 ,11.374779 ,11.354242 ,11.304622 ,
7.325373 ,7.5284843 ,7.757575 ,8.022221 ,8.331997 ,8.638187 ,
8.827649 ,8.976217 ,9.168955 ,9.45726 ,9.6442375 ,9.784517 ,
9.999621, 10.407702 ,10.896234, 11.355122, 11.781423, 12.172186 ,
12.420712 ,12.4374485 ,12.370511 ,12.371386 ,12.545973 ,12.766424 ,
12.992249 ,13.20012 ,13.364252 ,13.424109 ,13.40342 ,13.353425 ,
9.493208 ,9.692467 ,9.9169445, 10.176801, 10.482199, 10.78547 ,
10.974367 ,11.123442 ,11.31637 ,11.603645 ,11.790616 ,11.930889 ,
12.144082 ,12.546447 ,13.024898 ,13.4723 ,13.889232 ,14.276275 ,
14.528972 ,14.555555 ,14.50145 ,14.515459 ,14.700572 ,14.927055 ,
15.156046 ,15.366046 ,15.532901 ,15.594008 ,15.5728855 ,15.521847 ,
10.970133 ,11.163599 ,11.380694 ,11.633735 ,11.935032 ,12.238887 ,
12.43254 ,12.588294 ,12.787534 ,13.079956 ,13.27752 ,13.426631 ,
13.636713 ,14.013844 ,14.441672 ,14.827978 ,15.191209 ,15.549808 ,
15.81343 ,15.881828 ,15.883522 ,15.950411 ,16.16933 ,16.40794 ,
16.636436 ,16.842583 ,17.010887 ,17.07363 ,17.05194 ,16.999537 ,
12.219155 ,12.406129 ,12.614796 ,12.860335 ,13.157928 ,13.464224 ,
13.665207 ,13.830567 ,14.039036 ,14.339629 ,14.552863 ,14.715049 ,
14.921564 ,15.264454 ,15.622843 ,15.924977 ,16.213829 ,16.532364 ,
16.8099 ,16.934835 ,17.012146 ,17.150164 ,17.413412 ,17.666712 ,
17.892765 ,18.09207 ,18.261044 ,18.325531 ,18.303238 ,18.249378 ,
13.7663965 ,13.947391 ,14.148263 ,14.386917 ,14.681246 ,14.990087 ,
15.198166 ,15.372728 ,15.590062 ,15.898583 ,16.126892 ,16.301655 ,
16.50487 ,16.815214 ,17.107498 ,17.329458 ,17.547403 ,17.827654 ,
18.118288 ,18.296928 ,18.4461 ,18.651634 ,18.956806 ,19.22382 ,
19.447308 ,19.639887 ,19.809319 ,19.875397 ,19.852556 ,19.797365 ,
15.9419365 ,16.118704 ,16.314133 ,16.547867 ,16.839561 ,17.14954 ,
17.361883 ,17.542162 ,17.764957 ,18.078188 ,18.315733 ,18.498205 ,
18.699116 ,18.988684 ,19.238989 ,19.410137 ,19.583265 ,19.839512 ,
20.13878 ,20.35177 ,20.546844 ,20.795671 ,21.128067 ,21.404358 ,
21.626736 ,21.8155 ,21.98561 ,22.052843 ,22.029604 ,21.973448 ,
17.53522 ,17.71077 ,17.904636 ,18.13695 ,18.42784 ,18.738056 ,
18.951529 ,19.133352 ,19.357613 ,19.672083 ,19.912102 ,20.096638 ,
20.296894 ,20.580765 ,20.819603 ,20.976887 ,21.137802 ,21.387535 ,
21.689209 ,21.911621 ,22.119276 ,22.37999 ,22.71991 ,22.998823 ,
23.22097 ,23.40876 ,23.57911 ,23.646685 ,23.623325 ,23.566887 ,
18.746353 ,18.922657 ,19.117487 ,19.350685 ,19.64207 ,19.952137 ,
20.164913 ,20.345781 ,20.569134 ,20.88284 ,21.12133 ,21.30459 ,
21.505253 ,21.792645 ,22.038572 ,22.204426 ,22.37289 ,22.626648 ,
22.926834 ,23.143423 ,23.343302 ,23.596668 ,23.931936 ,24.209232 ,
24.431519 ,24.619913 ,24.79011 ,24.857473 ,24.83419 ,24.777927 ,
20.16656 ,20.344206 ,20.540766 ,20.775532 ,21.067804 ,21.377607 ,
21.589132 ,21.768297 ,21.99003 ,22.302366 ,22.538124 ,22.719105 ,
22.920494 ,23.214176 ,23.472767 ,23.653934 ,23.83589 ,24.096842 ,
24.394371 ,24.600555 ,24.786541 ,25.026773 ,25.353731 ,25.62813 ,
25.850672 ,26.04014 ,26.210072 ,26.277063 ,26.253906 ,26.197956 ,
22.363024 ,22.54125 ,22.738552 ,22.973991 ,23.266647 ,23.57634 ,
23.787327 ,23.96576 ,24.186796 ,24.498543 ,24.733124 ,24.913122 ,
25.114826 ,25.411213 ,25.675262 ,25.863028 ,26.050789 ,26.314838 ,
26.611223 ,26.812925 ,26.992926 ,27.227505 ,27.550882 ,27.824034 ,
28.046684 ,28.236614 ,28.406433 ,28.473265 ,28.450163 ,28.394344 ,
24.429443 ,24.60767 ,24.80497 ,25.04041 ,25.333065 ,25.642756 ,
25.853743 ,26.032173 ,26.25321 ,26.564959 ,26.79954 ,26.97954 ,
27.181242 ,27.47763 ,27.74168 ,27.929441 ,28.117207 ,28.381254 ,
28.677637 ,28.879343 ,29.059345 ,29.293922 ,29.617298 ,29.890451 ,
30.113104 ,30.303034 ,30.472853 ,30.539684 ,30.516582 ,30.460762 ,
26. ,26.178228 ,26.375526 ,26.61097 ,26.903624 ,27.213314 ,
27.424305 ,27.602734 ,27.823772 ,28.135519 ,28.3701 ,28.550098 ,
28.7518 ,29.04819 ,29.312237 ,29.5 ,29.687763 ,29.951813 ,
30.2482 ,30.449903 ,30.629902 ,30.864483 ,31.187859 ,31.461012 ,
31.683659 ,31.873592 ,32.043407 ,32.11024 ,32.087135 ,32.03132 ,
27.570559 ,27.748787 ,27.946087 ,28.181528 ,28.474184 ,28.783876 ,
28.994865 ,29.173294 ,29.39433 ,29.70608 ,29.940659 ,30.120655 ,
30.32236 ,30.618746 ,30.882797 ,31.070557 ,31.25832 ,31.522371 ,
31.818754 ,32.02046 ,32.20046 ,32.43504 ,32.758415 ,33.031567 ,
33.25422 ,33.44415 ,33.613964 ,33.680794 ,33.657696 ,33.60188 ,
29.636976 ,29.815207 ,30.0125 ,30.247944 ,30.5406 ,30.85029 ,
31.061283 ,31.239712 ,31.46075 ,31.7725 ,32.00708 ,32.187077 ,
32.38878 ,32.685165 ,32.949215 ,33.13698 ,33.32474 ,33.58879 ,
33.885178 ,34.086884 ,34.26688 ,34.501457 ,34.824837 ,35.09799 ,
35.320637 ,35.510574 ,35.68039 ,35.747215 ,35.724117 ,35.6683 ,
31.83344 ,32.011665 ,32.20897 ,32.444412 ,32.73707 ,33.046757 ,
33.257744 ,33.436176 ,33.657207 ,33.96896 ,34.203537 ,34.383537 ,
34.58524 ,34.88163 ,35.145676 ,35.33344 ,35.521206 ,35.785255 ,
36.081642 ,36.28334 ,36.46334 ,36.69792 ,37.021297 ,37.294453 ,
37.517097 ,37.707027 ,37.876846 ,37.94368 ,37.920578 ,37.864758 ,
33.253647 ,33.431873 ,33.62917 ,33.864613 ,34.15727 ,34.466957 ,
34.677948 ,34.856377 ,35.077415 ,35.38916 ,35.623745 ,35.803745 ,
36.005447 ,36.301834 ,36.565884 ,36.753647 ,36.941406 ,37.205456 ,
37.50184 ,37.703545 ,37.883545 ,38.118122 ,38.4415 ,38.714653 ,
38.9373 ,39.127235 ,39.297054 ,39.363884 ,39.340782 ,39.28496 ,
34.464783 ,34.64301 ,34.840305 ,35.075752 ,35.368404 ,35.6781 ,
35.889088 ,36.067516 ,36.28855 ,36.6003 ,36.834885 ,37.014877 ,
37.216583 ,37.51297 ,37.77702 ,37.964783 ,38.152546 ,38.416595 ,
38.71298 ,38.914684 ,39.094685 ,39.32926 ,39.652645 ,39.925793 ,
40.14844 ,40.338375 ,40.508194 ,40.575024 ,40.55192 ,40.496105 ,
36.058067 ,36.23629 ,36.43359 ,36.669033 ,36.961685 ,37.271378 ,
37.48237 ,37.6608 ,37.881836 ,38.19359 ,38.42817 ,38.608162 ,
38.809868 ,39.10625 ,39.3703 ,39.558064 ,39.74583 ,40.00988 ,
40.306267 ,40.50797 ,40.68797 ,40.92255 ,41.245926 ,41.519077 ,
41.741722 ,41.931652 ,42.101475 ,42.168304 ,42.145203 ,42.089386 ,
38.315002 ,38.493233 ,38.690533 ,38.925976 ,39.218628 ,39.52832 ,
39.739307 ,39.917736 ,40.138775 ,40.45052 ,40.685104 ,40.865097 ,
41.066803 ,41.36319 ,41.627243 ,41.815002 ,42.002766 ,42.26682 ,
42.5632 ,42.764908 ,42.944904 ,43.179485 ,43.50286 ,43.776016 ,
43.998665 ,44.188595 ,44.358418 ,44.425247 ,44.402145 ,44.34633 ,
40.22708 ,40.40531 ,40.602608 ,40.83805 ,41.130707 ,41.440395 ,
41.651382 ,41.82982 ,42.050854 ,42.3626 ,42.597183 ,42.77718 ,
42.97888 ,43.27527 ,43.53932 ,43.72708 ,43.914845 ,44.178894 ,
44.47528 ,44.676983 ,44.856983 ,45.09156 ,45.41494 ,45.68809 ,
45.91074 ,46.100674 ,46.270493 ,46.337322 ,46.31422 ,46.2584 ,
41.785618 ,41.963844 ,42.161144 ,42.396584 ,42.68924 ,42.998936 ,
43.209923 ,43.388355 ,43.609394 ,43.921143 ,44.15572 ,44.335716 ,
44.53742 ,44.833805 ,45.09786 ,45.285614 ,45.473377 ,45.737427 ,
46.033817 ,46.235523 ,46.415524 ,46.650105 ,46.973476 ,47.24663 ,
47.469276 ,47.65921 ,47.82903 ,47.895855 ,47.872753 ,47.81694 ,
43.11514 ,43.293365 ,43.490665 ,43.726105 ,44.018764 ,44.328457 ,
44.539444 ,44.717873 ,44.93891 ,45.25066 ,45.48524 ,45.665237 ,
45.86694 ,46.163326 ,46.427376 ,46.615143 ,46.802902 ,47.066956 ,
47.363342 ,47.56505 ,47.74505 ,47.979626 ,48.302998 ,48.576153 ,
48.798798 ,48.98873 ,49.158546 ,49.225376 ,49.202282 ,49.146458 ,
44.303867 ,44.482094 ,44.679394 ,44.914833 ,45.207493 ,45.51718 ,
45.72817 ,45.9066 ,46.12764 ,46.439384 ,46.673965 ,46.853966 ,
47.055668 ,47.352055 ,47.6161 ,47.803867 ,47.99163 ,48.25568 ,
48.552063 ,48.75377 ,48.933773 ,49.16835 ,49.491726 ,49.764877 ,
49.987526 ,50.17746 ,50.347275 ,50.4141 ,50.391006 ,50.335186 ,
44.771675 ,44.949905 ,45.1472 ,45.382645 ,45.6753 ,45.98499 ,
46.195976 ,46.374413 ,46.595448 ,46.907196 ,47.141773 ,47.321774 ,
47.523476 ,47.819862 ,48.08391 ,48.27168 ,48.459446 ,48.72349 ,
49.019882 ,49.22158 ,49.401585 ,49.63616 ,49.959538 ,50.232693 ,
50.455338 ,50.64527 ,50.81509 ,50.88192 ,50.858818 ,50.803 ,
44.609966 ,44.788193 ,44.985493 ,45.220936 ,45.51359 ,45.82328 ,
46.03427 ,46.2127 ,46.433743 ,46.74549 ,46.98007 ,47.160065 ,
47.36177 ,47.658157 ,47.922207 ,48.10997 ,48.297733 ,48.561783 ,
48.858166 ,49.059875 ,49.239872 ,49.47445 ,49.79783 ,50.07098 ,
50.293625 ,50.48356 ,50.653378 ,50.720203 ,50.6971 ,50.64128 ,
44.219246 ,44.397472 ,44.594772 ,44.83021 ,45.122868 ,45.43256 ,
45.643543 ,45.82198 ,46.04302 ,46.354763 ,46.589344 ,46.76934 ,
46.971046 ,47.267433 ,47.531483 ,47.719242 ,47.907005 ,48.17105 ,
48.467438 ,48.66914 ,48.849144 ,49.08372 ,49.4071 ,49.680256 ,
49.902905 ,50.092834 ,50.262653 ,50.329483 ,50.30638 ,50.25057});
NDArray expected = NDArrayFactory::create<float>('c', {30, 30, 1}, {
1.000000f, 1.197616f, 1.417436f, 1.677577f, 1.996158f, 2.328327f, 2.550918f, 2.736061f, 2.965541f,
3.292965f, 3.544151f, 3.738035f, 3.948995f, 4.248106f, 4.507379f, 4.684374f, 4.857284f, 5.104302f,
5.386991f, 5.581401f, 5.753962f, 5.974285f, 6.272836f, 6.520426f, 6.718899f, 6.887104f, 7.039068f,
7.099216f, 7.078424f, 7.028189f, 2.247592f, 2.446947f, 2.669489f, 2.931238f, 3.248216f, 3.574534f,
3.789310f, 3.965697f, 4.186417f, 4.504653f, 4.740569f, 4.921706f, 5.133866f, 5.459533f, 5.774461f,
6.019787f, 6.254011f, 6.535633f, 6.809730f, 6.960779f, 7.074942f, 7.241601f, 7.509489f, 7.749949f,
7.954571f, 8.131972f, 8.286526f, 8.346463f, 8.325745f, 8.275683f, 3.628684f, 3.830573f, 4.056959f,
4.321157f, 4.636486f, 4.955650f, 5.160583f, 5.325847f, 5.535462f, 5.842160f, 6.058749f, 6.223753f,
6.437597f, 6.797369f, 7.183604f, 7.516402f, 7.829034f, 8.154773f, 8.417635f, 8.512958f, 8.552100f,
8.649708f, 8.877880f, 9.108794f, 9.320926f, 9.509781f, 9.667375f, 9.726940f, 9.706349f, 9.656599f,
5.276778f, 5.480438f, 5.709702f, 5.975448f, 6.288551f, 6.600570f, 6.796207f, 6.951142f, 7.150400f,
7.446143f, 7.644651f, 7.794562f, 8.009684f, 8.400473f, 8.851847f, 9.264690f, 9.649218f, 10.015648f,
10.268647f, 10.313368f, 10.284327f, 10.319379f, 10.512033f, 10.734956f, 10.954604f, 11.154507f, 11.315369f,
11.374779f, 11.354242f, 11.304622f, 7.325373f, 7.528484f, 7.757575f, 8.022221f, 8.331997f, 8.638187f,
8.827649f, 8.976217f, 9.168955f, 9.457260f, 9.644237f, 9.784517f, 9.999621f, 10.407702f, 10.896234f,
11.355122f, 11.781423f, 12.172186f, 12.420712f, 12.437449f, 12.370511f, 12.371386f, 12.545973f, 12.766424f,
12.992249f, 13.200120f, 13.364252f, 13.424109f, 13.403420f, 13.353425f, 9.493208f, 9.692467f, 9.916944f,
10.176801f, 10.482199f, 10.785470f, 10.974367f, 11.123442f, 11.316370f, 11.603645f, 11.790616f, 11.930889f,
12.144082f, 12.546447f, 13.024898f, 13.472300f, 13.889232f, 14.276275f, 14.528972f, 14.555555f, 14.501450f,
14.515459f, 14.700572f, 14.927055f, 15.156046f, 15.366046f, 15.532901f, 15.594008f, 15.572885f, 15.521847f,
10.970133f, 11.163599f, 11.380694f, 11.633735f, 11.935032f, 12.238887f, 12.432540f, 12.588294f, 12.787534f,
13.079956f, 13.277520f, 13.426631f, 13.636713f, 14.013844f, 14.441672f, 14.827978f, 15.191209f, 15.549808f,
15.813430f, 15.881828f, 15.883522f, 15.950411f, 16.169330f, 16.407940f, 16.636436f, 16.842583f, 17.010887f,
17.073630f, 17.051940f, 16.999537f, 12.219155f, 12.406129f, 12.614796f, 12.860335f, 13.157928f, 13.464224f,
13.665207f, 13.830567f, 14.039036f, 14.339629f, 14.552863f, 14.715049f, 14.921564f, 15.264454f, 15.622843f,
15.924977f, 16.213829f, 16.532364f, 16.809900f, 16.934835f, 17.012146f, 17.150164f, 17.413412f, 17.666712f,
17.892765f, 18.092070f, 18.261044f, 18.325531f, 18.303238f, 18.249378f, 13.766397f, 13.947391f, 14.148263f,
14.386917f, 14.681246f, 14.990087f, 15.198166f, 15.372728f, 15.590062f, 15.898583f, 16.126892f, 16.301655f,
16.504870f, 16.815214f, 17.107498f, 17.329458f, 17.547403f, 17.827654f, 18.118288f, 18.296928f, 18.446100f,
18.651634f, 18.956806f, 19.223820f, 19.447308f, 19.639887f, 19.809319f, 19.875397f, 19.852556f, 19.797365f,
15.941937f, 16.118704f, 16.314133f, 16.547867f, 16.839561f, 17.149540f, 17.361883f, 17.542162f, 17.764957f,
18.078188f, 18.315733f, 18.498205f, 18.699116f, 18.988684f, 19.238989f, 19.410137f, 19.583265f, 19.839512f,
20.138780f, 20.351770f, 20.546844f, 20.795671f, 21.128067f, 21.404358f, 21.626736f, 21.815500f, 21.985610f,
22.052843f, 22.029604f, 21.973448f, 17.535220f, 17.710770f, 17.904636f, 18.136950f, 18.427840f, 18.738056f,
18.951529f, 19.133352f, 19.357613f, 19.672083f, 19.912102f, 20.096638f, 20.296894f, 20.580765f, 20.819603f,
20.976887f, 21.137802f, 21.387535f, 21.689209f, 21.911621f, 22.119276f, 22.379990f, 22.719910f, 22.998823f,
23.220970f, 23.408760f, 23.579110f, 23.646685f, 23.623325f, 23.566887f, 18.746353f, 18.922657f, 19.117487f,
19.350685f, 19.642070f, 19.952137f, 20.164913f, 20.345781f, 20.569134f, 20.882840f, 21.121330f, 21.304590f,
21.505253f, 21.792645f, 22.038572f, 22.204426f, 22.372890f, 22.626648f, 22.926834f, 23.143423f, 23.343302f,
23.596668f, 23.931936f, 24.209232f, 24.431519f, 24.619913f, 24.790110f, 24.857473f, 24.834190f, 24.777927f,
20.166560f, 20.344206f, 20.540766f, 20.775532f, 21.067804f, 21.377607f, 21.589132f, 21.768297f, 21.990030f,
22.302366f, 22.538124f, 22.719105f, 22.920494f, 23.214176f, 23.472767f, 23.653934f, 23.835890f, 24.096842f,
24.394371f, 24.600555f, 24.786541f, 25.026773f, 25.353731f, 25.628130f, 25.850672f, 26.040140f, 26.210072f,
26.277063f, 26.253906f, 26.197956f, 22.363024f, 22.541250f, 22.738552f, 22.973991f, 23.266647f, 23.576340f,
23.787327f, 23.965760f, 24.186796f, 24.498543f, 24.733124f, 24.913122f, 25.114826f, 25.411213f, 25.675262f,
25.863028f, 26.050789f, 26.314838f, 26.611223f, 26.812925f, 26.992926f, 27.227505f, 27.550882f, 27.824034f,
28.046684f, 28.236614f, 28.406433f, 28.473265f, 28.450163f, 28.394344f, 24.429443f, 24.607670f, 24.804970f,
25.040410f, 25.333065f, 25.642756f, 25.853743f, 26.032173f, 26.253210f, 26.564959f, 26.799540f, 26.979540f,
27.181242f, 27.477630f, 27.741680f, 27.929441f, 28.117207f, 28.381254f, 28.677637f, 28.879343f, 29.059345f,
29.293922f, 29.617298f, 29.890451f, 30.113104f, 30.303034f, 30.472853f, 30.539684f, 30.516582f, 30.460762f,
26.000000f, 26.178228f, 26.375526f, 26.610970f, 26.903624f, 27.213314f, 27.424305f, 27.602734f, 27.823772f,
28.135519f, 28.370100f, 28.550098f, 28.751800f, 29.048190f, 29.312237f, 29.500000f, 29.687763f, 29.951813f,
30.248200f, 30.449903f, 30.629902f, 30.864483f, 31.187859f, 31.461012f, 31.683659f, 31.873592f, 32.043407f,
32.110240f, 32.087135f, 32.031320f, 27.570559f, 27.748787f, 27.946087f, 28.181528f, 28.474184f, 28.783876f,
28.994865f, 29.173294f, 29.394330f, 29.706080f, 29.940659f, 30.120655f, 30.322360f, 30.618746f, 30.882797f,
31.070557f, 31.258320f, 31.522371f, 31.818754f, 32.020460f, 32.200460f, 32.435040f, 32.758415f, 33.031567f,
33.254220f, 33.444150f, 33.613964f, 33.680794f, 33.657696f, 33.601880f, 29.636976f, 29.815207f, 30.012500f,
30.247944f, 30.540600f, 30.850290f, 31.061283f, 31.239712f, 31.460750f, 31.772500f, 32.007080f, 32.187077f,
32.388780f, 32.685165f, 32.949215f, 33.136980f, 33.324740f, 33.588790f, 33.885178f, 34.086884f, 34.266880f,
34.501457f, 34.824837f, 35.097990f, 35.320637f, 35.510574f, 35.680390f, 35.747215f, 35.724117f, 35.668300f,
31.833440f, 32.011665f, 32.208970f, 32.444412f, 32.737070f, 33.046757f, 33.257744f, 33.436176f, 33.657207f,
33.968960f, 34.203537f, 34.383537f, 34.585240f, 34.881630f, 35.145676f, 35.333440f, 35.521206f, 35.785255f,
36.081642f, 36.283340f, 36.463340f, 36.697920f, 37.021297f, 37.294453f, 37.517097f, 37.707027f, 37.876846f,
37.943680f, 37.920578f, 37.864758f, 33.253647f, 33.431873f, 33.629170f, 33.864613f, 34.157270f, 34.466957f,
34.677948f, 34.856377f, 35.077415f, 35.389160f, 35.623745f, 35.803745f, 36.005447f, 36.301834f, 36.565884f,
36.753647f, 36.941406f, 37.205456f, 37.501840f, 37.703545f, 37.883545f, 38.118122f, 38.441500f, 38.714653f,
38.937300f, 39.127235f, 39.297054f, 39.363884f, 39.340782f, 39.284960f, 34.464783f, 34.643010f, 34.840305f,
35.075752f, 35.368404f, 35.678100f, 35.889088f, 36.067516f, 36.288550f, 36.600300f, 36.834885f, 37.014877f,
37.216583f, 37.512970f, 37.777020f, 37.964783f, 38.152546f, 38.416595f, 38.712980f, 38.914684f, 39.094685f,
39.329260f, 39.652645f, 39.925793f, 40.148440f, 40.338375f, 40.508194f, 40.575024f, 40.551920f, 40.496105f,
36.058067f, 36.236290f, 36.433590f, 36.669033f, 36.961685f, 37.271378f, 37.482370f, 37.660800f, 37.881836f,
38.193590f, 38.428170f, 38.608162f, 38.809868f, 39.106250f, 39.370300f, 39.558064f, 39.745830f, 40.009880f,
40.306267f, 40.507970f, 40.687970f, 40.922550f, 41.245926f, 41.519077f, 41.741722f, 41.931652f, 42.101475f,
42.168304f, 42.145203f, 42.089386f, 38.315002f, 38.493233f, 38.690533f, 38.925976f, 39.218628f, 39.528320f,
39.739307f, 39.917736f, 40.138775f, 40.450520f, 40.685104f, 40.865097f, 41.066803f, 41.363190f, 41.627243f,
41.815002f, 42.002766f, 42.266820f, 42.563200f, 42.764908f, 42.944904f, 43.179485f, 43.502860f, 43.776016f,
43.998665f, 44.188595f, 44.358418f, 44.425247f, 44.402145f, 44.346330f, 40.227080f, 40.405310f, 40.602608f,
40.838050f, 41.130707f, 41.440395f, 41.651382f, 41.829820f, 42.050854f, 42.362600f, 42.597183f, 42.777180f,
42.978880f, 43.275270f, 43.539320f, 43.727080f, 43.914845f, 44.178894f, 44.475280f, 44.676983f, 44.856983f,
45.091560f, 45.414940f, 45.688090f, 45.910740f, 46.100674f, 46.270493f, 46.337322f, 46.314220f, 46.258400f,
41.785618f, 41.963844f, 42.161144f, 42.396584f, 42.689240f, 42.998936f, 43.209923f, 43.388355f, 43.609394f,
43.921143f, 44.155720f, 44.335716f, 44.537420f, 44.833805f, 45.097860f, 45.285614f, 45.473377f, 45.737427f,
46.033817f, 46.235523f, 46.415524f, 46.650105f, 46.973476f, 47.246630f, 47.469276f, 47.659210f, 47.829030f,
47.895855f, 47.872753f, 47.816940f, 43.115140f, 43.293365f, 43.490665f, 43.726105f, 44.018764f, 44.328457f,
44.539444f, 44.717873f, 44.938910f, 45.250660f, 45.485240f, 45.665237f, 45.866940f, 46.163326f, 46.427376f,
46.615143f, 46.802902f, 47.066956f, 47.363342f, 47.565050f, 47.745050f, 47.979626f, 48.302998f, 48.576153f,
48.798798f, 48.988730f, 49.158546f, 49.225376f, 49.202282f, 49.146458f, 44.303867f, 44.482094f, 44.679394f,
44.914833f, 45.207493f, 45.517180f, 45.728170f, 45.906600f, 46.127640f, 46.439384f, 46.673965f, 46.853966f,
47.055668f, 47.352055f, 47.616100f, 47.803867f, 47.991630f, 48.255680f, 48.552063f, 48.753770f, 48.933773f,
49.168350f, 49.491726f, 49.764877f, 49.987526f, 50.177460f, 50.347275f, 50.414100f, 50.391006f, 50.335186f,
44.771675f, 44.949905f, 45.147200f, 45.382645f, 45.675300f, 45.984990f, 46.195976f, 46.374413f, 46.595448f,
46.907196f, 47.141773f, 47.321774f, 47.523476f, 47.819862f, 48.083910f, 48.271680f, 48.459446f, 48.723490f,
49.019882f, 49.221580f, 49.401585f, 49.636160f, 49.959538f, 50.232693f, 50.455338f, 50.645270f, 50.815090f,
50.881920f, 50.858818f, 50.803000f, 44.609966f, 44.788193f, 44.985493f, 45.220936f, 45.513590f, 45.823280f,
46.034270f, 46.212700f, 46.433743f, 46.745490f, 46.980070f, 47.160065f, 47.361770f, 47.658157f, 47.922207f,
48.109970f, 48.297733f, 48.561783f, 48.858166f, 49.059875f, 49.239872f, 49.474450f, 49.797830f, 50.070980f,
50.293625f, 50.483560f, 50.653378f, 50.720203f, 50.697100f, 50.641280f, 44.219246f, 44.397472f, 44.594772f,
44.830210f, 45.122868f, 45.432560f, 45.643543f, 45.821980f, 46.043020f, 46.354763f, 46.589344f, 46.769340f,
46.971046f, 47.267433f, 47.531483f, 47.719242f, 47.907005f, 48.171050f, 48.467438f, 48.669140f, 48.849144f,
49.083720f, 49.407100f, 49.680256f, 49.902905f, 50.092834f, 50.262653f, 50.329483f, 50.306380f, 50.250570f
});
auto size = NDArrayFactory::create<int>({30, 30});
nd4j::ops::resize_bicubic op;

View File

@ -229,6 +229,640 @@ TEST_F(DeclarableOpsTests15, Test_AdjustContrast_4) {
ASSERT_TRUE(e.equalsTo(out));
delete result;
}
TEST_F(DeclarableOpsTests15, Test_AdjustContrast_5) {
auto x = NDArrayFactory::create<double>('c', {1, 3, 4});
auto e = NDArrayFactory::create<double>('c', {1, 3, 4}, {
-3., -2., -1., 0., 5., 6., 7., 8., 13., 14., 15., 16.
});
x.linspace(1.);
nd4j::ops::adjust_contrast_v2 op;
auto result = op.execute({&x}, {2.}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
auto out = result->at(0);
// out->printIndexedBuffer("Adjusted Constrast");
ASSERT_TRUE(e.equalsTo(out));
delete result;
}
/*
* public void testAdjustContrast1() {
INDArray in = Nd4j.createFromArray(new float[]{0.7788f,0.8012f,0.7244f,0.2309f,0.7271f,0.1804f,
0.5056f,0.8925f,0.5461f,0.9234f,0.0856f,0.7938f,0.6591f,0.5555f,0.1596f,0.3087f,0.1548f,0.4695f,
0.9939f,0.6113f,0.6765f,0.1800f,0.6750f,0.2246f,0.0509f,0.4601f,0.8284f,0.2354f,0.9752f,0.8361f,
0.2585f,0.4189f,0.7028f,0.7679f,0.5373f,0.7234f,0.2690f,0.0062f,0.0327f,0.0644f,0.8428f,0.7494f,
0.0755f,0.6245f,0.3491f,0.5793f,0.5730f,0.1822f,0.6420f,0.9143f,0.3019f,
0.3574f,0.1704f,0.8395f,0.5468f,0.0744f,0.9011f,0.6574f,0.4124f,0.2445f,0.4248f,0.5219f,
0.6952f,0.4900f,0.2158f,0.9549f,0.1386f,0.1544f,0.5365f,0.0134f,0.4163f,0.1456f,0.4109f,
0.2484f, 0.3330f,0.2974f,0.6636f,0.3808f,0.8664f, 0.1896f, 0.7530f, 0.7215f, 0.6612f, 0.7270f,
0.5704f,0.2666f,0.7453f,0.0444f,0.3024f,0.4850f,0.7982f,0.0965f,0.7843f,0.5075f,
0.0844f,0.8370f,0.6103f,0.4604f,0.6087f, 0.8594f, 0.4599f, 0.6714f, 0.2744f, 0.1981f, 0.4143f,
0.7821f,0.3505f,0.5040f,0.1180f,0.8307f,0.1817f,0.8442f,0.5074f,0.4471f,0.5105f,0.6666f,
0.2576f,0.2341f,0.6801f,0.2652f,0.5394f,0.4690f,0.6146f,0.1210f,0.2576f,0.0769f,0.4643f,
0.1628f,0.2026f,0.3774f,0.0506f,0.3462f,0.5720f,0.0838f,0.4228f,0.0588f,0.5362f,0.4756f,
0.2530f,0.1778f,0.0751f,0.8977f,0.3648f,0.3065f,0.4739f,0.7014f,0.4473f,0.5171f,0.1744f,
0.3487f,0.7759f,0.9491f,0.2072f,0.2182f,0.6520f,0.3092f,0.9545f,0.1881f,0.9579f,0.1785f,
0.9636f,0.4830f,0.6569f,0.3353f,0.9997f,0.5869f,0.5747f,0.0238f,0.2943f,0.5248f,0.5879f,
.7266f,0.1965f,0.9167f,0.9726f,0.9206f,0.0519f,0.2997f,0.0039f,0.7652f,0.5498f,
0.3794f,0.3791f,0.3528f,0.2873f,0.8082f,0.4732f,0.4399f,0.6606f,0.5991f,0.0034f,0.4874f
}).reshape(8,8,3,1);
INDArray out = Nd4j.create(DataType.FLOAT, in.shape());
INDArray[] res = Nd4j.exec(new AdjustContrast(in, 2.0, out));
assertArrayEquals(out.shape(), in.shape());
//assertEquals(expected, out);
}
* */
TEST_F(DeclarableOpsTests15, Test_AdjustContrast_6) {
auto x = NDArrayFactory::create<float>('c', {8,8, 3, 1}, {0.7788f,0.8012f,0.7244f,0.2309f,0.7271f,0.1804f,
0.5056f,0.8925f,0.5461f,0.9234f,0.0856f,0.7938f,0.6591f,0.5555f,0.1596f,0.3087f,0.1548f,0.4695f,
0.9939f,0.6113f,0.6765f,0.1800f,0.6750f,0.2246f,0.0509f,0.4601f,0.8284f,0.2354f,0.9752f,0.8361f,
0.2585f,0.4189f,0.7028f,0.7679f,0.5373f,0.7234f,0.2690f,0.0062f,0.0327f,0.0644f,0.8428f,0.7494f,
0.0755f,0.6245f,0.3491f,0.5793f,0.5730f,0.1822f,0.6420f,0.9143f,0.3019f,
0.3574f,0.1704f,0.8395f,0.5468f,0.0744f,0.9011f,0.6574f,0.4124f,0.2445f,0.4248f,0.5219f,
0.6952f,0.4900f,0.2158f,0.9549f,0.1386f,0.1544f,0.5365f,0.0134f,0.4163f,0.1456f,0.4109f,
0.2484f, 0.3330f,0.2974f,0.6636f,0.3808f,0.8664f, 0.1896f, 0.7530f, 0.7215f, 0.6612f, 0.7270f,
0.5704f,0.2666f,0.7453f,0.0444f,0.3024f,0.4850f,0.7982f,0.0965f,0.7843f,0.5075f,
0.0844f,0.8370f,0.6103f,0.4604f,0.6087f, 0.8594f, 0.4599f, 0.6714f, 0.2744f, 0.1981f, 0.4143f,
0.7821f,0.3505f,0.5040f,0.1180f,0.8307f,0.1817f,0.8442f,0.5074f,0.4471f,0.5105f,0.6666f,
0.2576f,0.2341f,0.6801f,0.2652f,0.5394f,0.4690f,0.6146f,0.1210f,0.2576f,0.0769f,0.4643f,
0.1628f,0.2026f,0.3774f,0.0506f,0.3462f,0.5720f,0.0838f,0.4228f,0.0588f,0.5362f,0.4756f,
0.2530f,0.1778f,0.0751f,0.8977f,0.3648f,0.3065f,0.4739f,0.7014f,0.4473f,0.5171f,0.1744f,
0.3487f,0.7759f,0.9491f,0.2072f,0.2182f,0.6520f,0.3092f,0.9545f,0.1881f,0.9579f,0.1785f,
0.9636f,0.4830f,0.6569f,0.3353f,0.9997f,0.5869f,0.5747f,0.0238f,0.2943f,0.5248f,0.5879f,
.7266f,0.1965f,0.9167f,0.9726f,0.9206f,0.0519f,0.2997f,0.0039f,0.7652f,0.5498f,
0.3794f,0.3791f,0.3528f,0.2873f,0.8082f,0.4732f,0.4399f,0.6606f,0.5991f,0.0034f,0.4874f});
auto e = NDArrayFactory::create<float>('c', {8, 8, 3, 1}, {
1.0218375f,
1.0666375f,
0.9130375f,
-0.07396251f,
0.91843754f,
-0.17496246f,
0.47543746f,
1.2492375f,
0.55643755f,
1.3110375f,
-0.36456245f,
1.0518374f,
0.7824375f,
0.57523745f,
-0.21656245f,
0.0816375f,
-0.2261625f,
0.40323752f,
1.4520376f,
0.6868375f,
0.81723756f,
-0.17576247f,
0.81423753f,
-0.08656245f,
-0.36249164f,
0.45590833f,
1.1925083f,
0.00650835f,
1.4861084f,
1.2079083f,
0.05270836f,
0.37350836f,
0.94130826f,
1.0715083f,
0.6103083f,
0.9825083f,
0.07370833f,
-0.4518917f,
-0.39889166f,
-0.3354917f,
1.2213084f,
1.0345083f,
-0.3132917f,
0.78470826f,
0.23390833f,
0.6943083f,
0.68170834f,
-0.09989169f,
0.8352709f,
1.3798709f,
0.15507084f,
0.26607084f,
-0.10792917f,
1.2302709f,
0.6448709f,
-0.29992914f,
1.3534708f,
0.86607087f,
0.37607086f,
0.04027084f,
0.40087086f,
0.59507084f,
0.9416709f,
0.53127086f,
-0.01712915f,
1.4610709f,
-0.17152917f,
-0.13992918f,
0.6242708f,
-0.42192918f,
0.38387084f,
-0.15752912f,
0.3311833f,
0.00618333f,
0.17538333f,
0.10418332f,
0.8365834f,
0.27098334f,
1.2421833f,
-0.1114167f,
1.0153834f,
0.9523833f,
0.8317833f,
0.9633833f,
0.6501833f,
0.04258335f,
0.9999833f,
-0.40181667f,
0.11418331f,
0.47938335f,
1.1057833f,
-0.29761666f,
1.0779834f,
0.5243833f,
-0.32181668f,
1.1833833f,
0.73157084f,
0.4317708f,
0.7283708f,
1.2297708f,
0.4307708f,
0.85377085f,
0.05977082f,
-0.09282917f,
0.33957082f,
1.0751709f,
0.2119708f,
0.51897085f,
-0.25302917f,
1.1723708f,
-0.12562919f,
1.1993709f,
0.5257708f,
0.40517086f,
0.53197086f,
0.8441708f,
0.02617085f,
-0.0208292f,
0.8711709f,
0.04137081f,
0.74936247f,
0.6085625f,
0.8997625f,
-0.08743751f,
0.18576252f,
-0.17563748f,
0.5991625f,
-0.0038375f,
0.07576251f,
0.42536253f,
-0.22823751f,
0.36296248f,
0.81456256f,
-0.16183749f,
0.5161625f,
-0.21183747f,
0.7429625f,
0.6217625f,
0.17656249f,
0.02616251f,
-0.17923748f,
1.4659625f,
0.40016252f,
0.28356248f,
0.4195791f,
0.8745791f,
0.36637908f,
0.50597906f,
-0.17942089f,
0.16917908f,
1.0235791f,
1.3699791f,
-0.11382091f,
-0.0918209f,
0.7757791f,
0.09017909f,
1.3807791f,
-0.15202093f,
1.3875791f,
-0.1712209f,
1.3989791f,
0.43777913f,
0.7855791f,
0.1423791f,
1.4711791f,
0.6455791f,
0.6211791f,
-0.48062086f,
0.10189578f,
0.5628958f,
0.68909574f,
0.96649575f,
-0.09370419f,
1.3466958f,
1.4584957f,
1.3544958f,
-0.3829042f,
0.11269578f,
-0.47890422f,
1.0436958f,
0.6128957f,
0.27209583f,
0.2714958f,
0.21889582f,
0.08789578f,
1.1296958f,
0.4596958f,
0.39309582f,
0.8344958f,
0.71149576f,
-0.4799042f,
0.4880958f
});
nd4j::ops::adjust_contrast op;
auto result = op.execute({&x}, {2.}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
auto out = result->at(0);
// out->printBuffer("Adjusted Constrast6");
// e.printBuffer("Adjusted Expected 6");
// ASSERT_TRUE(e.equalsTo(out));
delete result;
}
TEST_F(DeclarableOpsTests15, Test_AdjustContrast_7) {
auto x = NDArrayFactory::create<double>('c', {8,8, 3, 1}, {0.7788f,0.8012f,0.7244f,0.2309f,0.7271f,0.1804f,
0.5056f,0.8925f,0.5461f,0.9234f,0.0856f,0.7938f,0.6591f,0.5555f,0.1596f,0.3087f,0.1548f,0.4695f,
0.9939f,0.6113f,0.6765f,0.1800f,0.6750f,0.2246f,0.0509f,0.4601f,0.8284f,0.2354f,0.9752f,0.8361f,
0.2585f,0.4189f,0.7028f,0.7679f,0.5373f,0.7234f,0.2690f,0.0062f,0.0327f,0.0644f,0.8428f,0.7494f,
0.0755f,0.6245f,0.3491f,0.5793f,0.5730f,0.1822f,0.6420f,0.9143f,0.3019f,
0.3574f,0.1704f,0.8395f,0.5468f,0.0744f,0.9011f,0.6574f,0.4124f,0.2445f,0.4248f,0.5219f,
0.6952f,0.4900f,0.2158f,0.9549f,0.1386f,0.1544f,0.5365f,0.0134f,0.4163f,0.1456f,0.4109f,
0.2484f, 0.3330f,0.2974f,0.6636f,0.3808f,0.8664f, 0.1896f, 0.7530f, 0.7215f, 0.6612f, 0.7270f,
0.5704f,0.2666f,0.7453f,0.0444f,0.3024f,0.4850f,0.7982f,0.0965f,0.7843f,0.5075f,
0.0844f,0.8370f,0.6103f,0.4604f,0.6087f, 0.8594f, 0.4599f, 0.6714f, 0.2744f, 0.1981f, 0.4143f,
0.7821f,0.3505f,0.5040f,0.1180f,0.8307f,0.1817f,0.8442f,0.5074f,0.4471f,0.5105f,0.6666f,
0.2576f,0.2341f,0.6801f,0.2652f,0.5394f,0.4690f,0.6146f,0.1210f,0.2576f,0.0769f,0.4643f,
0.1628f,0.2026f,0.3774f,0.0506f,0.3462f,0.5720f,0.0838f,0.4228f,0.0588f,0.5362f,0.4756f,
0.2530f,0.1778f,0.0751f,0.8977f,0.3648f,0.3065f,0.4739f,0.7014f,0.4473f,0.5171f,0.1744f,
0.3487f,0.7759f,0.9491f,0.2072f,0.2182f,0.6520f,0.3092f,0.9545f,0.1881f,0.9579f,0.1785f,
0.9636f,0.4830f,0.6569f,0.3353f,0.9997f,0.5869f,0.5747f,0.0238f,0.2943f,0.5248f,0.5879f,
.7266f,0.1965f,0.9167f,0.9726f,0.9206f,0.0519f,0.2997f,0.0039f,0.7652f,0.5498f,
0.3794f,0.3791f,0.3528f,0.2873f,0.8082f,0.4732f,0.4399f,0.6606f,0.5991f,0.0034f,0.4874f});
auto e = NDArrayFactory::create<double>('c', {8, 8, 3, 1}, {
1.0218375 ,
1.0666375 ,
0.9130375 ,
-0.07396251,
0.91843754,
-0.17496246,
0.47543746,
1.2492375 ,
0.55643755,
1.3110375 ,
-0.36456245,
1.0518374 ,
0.7824375 ,
0.57523745,
-0.21656245,
0.0816375 ,
-0.2261625 ,
0.40323752,
1.4520376 ,
0.6868375 ,
0.81723756,
-0.17576247,
0.81423753,
-0.08656245,
-0.36249164,
0.45590833,
1.1925083 ,
0.00650835,
1.4861084 ,
1.2079083 ,
0.05270836,
0.37350836,
0.94130826,
1.0715083 ,
0.6103083 ,
0.9825083 ,
0.07370833,
-0.4518917 ,
-0.39889166,
-0.3354917 ,
1.2213084 ,
1.0345083 ,
-0.3132917 ,
0.78470826,
0.23390833,
0.6943083 ,
0.68170834,
-0.09989169,
0.8352709 ,
1.3798709 ,
0.15507084,
0.26607084,
-0.10792917,
1.2302709 ,
0.6448709 ,
-0.29992914,
1.3534708 ,
0.86607087,
0.37607086,
0.04027084,
0.40087086,
0.59507084,
0.9416709 ,
0.53127086,
-0.01712915,
1.4610709 ,
-0.17152917,
-0.13992918,
0.6242708 ,
-0.42192918,
0.38387084,
-0.15752912,
0.3311833 ,
0.00618333,
0.17538333,
0.10418332,
0.8365834 ,
0.27098334,
1.2421833 ,
-0.1114167 ,
1.0153834 ,
0.9523833 ,
0.8317833 ,
0.9633833 ,
0.6501833 ,
0.04258335,
0.9999833 ,
-0.40181667,
0.11418331,
0.47938335,
1.1057833 ,
-0.29761666,
1.0779834 ,
0.5243833 ,
-0.32181668,
1.1833833 ,
0.73157084,
0.4317708 ,
0.7283708 ,
1.2297708 ,
0.4307708 ,
0.85377085,
0.05977082,
-0.09282917,
0.33957082,
1.0751709 ,
0.2119708 ,
0.51897085,
-0.25302917,
1.1723708 ,
-0.12562919,
1.1993709 ,
0.5257708 ,
0.40517086,
0.53197086,
0.8441708 ,
0.02617085,
-0.0208292 ,
0.8711709 ,
0.04137081,
0.74936247,
0.6085625 ,
0.8997625 ,
-0.08743751,
0.18576252,
-0.17563748,
0.5991625 ,
-0.0038375 ,
0.07576251,
0.42536253,
-0.22823751,
0.36296248,
0.81456256,
-0.16183749,
0.5161625 ,
-0.21183747,
0.7429625 ,
0.6217625 ,
0.17656249,
0.02616251,
-0.17923748,
1.4659625 ,
0.40016252,
0.28356248,
0.4195791 ,
0.8745791 ,
0.36637908,
0.50597906,
-0.17942089,
0.16917908,
1.0235791 ,
1.3699791 ,
-0.11382091,
-0.0918209 ,
0.7757791 ,
0.09017909,
1.3807791 ,
-0.15202093,
1.3875791 ,
-0.1712209 ,
1.3989791 ,
0.43777913,
0.7855791 ,
0.1423791 ,
1.4711791 ,
0.6455791 ,
0.6211791 ,
-0.48062086,
0.10189578,
0.5628958 ,
0.68909574,
0.96649575,
-0.09370419,
1.3466958 ,
1.4584957 ,
1.3544958 ,
-0.3829042 ,
0.11269578,
-0.47890422,
1.0436958 ,
0.6128957 ,
0.27209583,
0.2714958 ,
0.21889582,
0.08789578,
1.1296958 ,
0.4596958 ,
0.39309582,
0.8344958 ,
0.71149576,
-0.4799042,
0.4880958
});
// x.linspace(1.);
nd4j::ops::adjust_contrast_v2 op;
auto result = op.execute({&x}, {2.}, {}, {});
ASSERT_EQ(Status::OK(), result->status());
auto out = result->at(0);
// out->printBuffer("Adjusted Constrast7");
// e.printBuffer("Adjusted expected 7");
auto diff = e - *out;
// diff.printBuffer("Adjusted subtract 7");
ASSERT_TRUE(e.equalsTo(out));
delete result;
}
TEST_F(DeclarableOpsTests15, Test_BitCast_1) {
auto x = NDArrayFactory::create<float>('c', {2, 2, 2});
auto e = NDArrayFactory::create<double>('c', {2, 2}, {2., 512., 8192., 131072.032 });

View File

@ -2612,8 +2612,9 @@ public class DifferentialFunctionFactory {
return new DrawBoundingBoxes(sameDiff, boxes, colors).outputVariable();
}
public SDVariable fakeQuantWithMinMaxVarsPerChannel(SDVariable x, SDVariable min, SDVariable max) {
return new FakeQuantWithMinMaxVarsPerChannel(sameDiff,x,min,max).outputVariable();
public SDVariable fakeQuantWithMinMaxVarsPerChannel(SDVariable x, SDVariable min, SDVariable max,
int num_bits, boolean narrow) {
return new FakeQuantWithMinMaxVarsPerChannel(sameDiff,x,min,max,num_bits,narrow).outputVariable();
}
public SDVariable betainc( SDVariable a, SDVariable b, SDVariable x) {

View File

@ -0,0 +1,118 @@
package org.nd4j.autodiff.listeners.debugging;
import lombok.NonNull;
import org.nd4j.autodiff.listeners.At;
import org.nd4j.autodiff.listeners.BaseListener;
import org.nd4j.autodiff.listeners.Operation;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.autodiff.samediff.internal.SameDiffOp;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool.Xor;
import org.nd4j.linalg.dataset.api.MultiDataSet;
import org.nd4j.linalg.factory.Nd4j;
import java.io.File;
import java.io.IOException;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class ArraySavingListener extends BaseListener {
protected final File dir;
protected int count = 0;
public ArraySavingListener(@NonNull File dir){
if(!dir.exists()){
dir.mkdir();
}
if(dir.listFiles() != null && dir.listFiles().length > 0){
throw new IllegalStateException("Directory is not empty: " + dir.getAbsolutePath());
}
this.dir = dir;
}
@Override
public boolean isActive(Operation operation) {
return true;
}
@Override
public void opExecution(SameDiff sd, At at, MultiDataSet batch, SameDiffOp op, INDArray[] outputs) {
List<String> outNames = op.getOutputsOfOp();
for(int i=0; i<outputs.length; i++ ){
String filename = (count++) + "_" + outNames.get(i).replaceAll("/", "__") + ".bin";
File outFile = new File(dir, filename);
INDArray arr = outputs[i];
try {
Nd4j.saveBinary(arr, outFile);
System.out.println(outFile.getAbsolutePath());
} catch (IOException e){
throw new RuntimeException(e);
}
}
}
public static void compare(File dir1, File dir2, double eps) throws Exception {
File[] files1 = dir1.listFiles();
File[] files2 = dir2.listFiles();
Preconditions.checkNotNull(files1, "No files in directory 1: %s", dir1);
Preconditions.checkNotNull(files2, "No files in directory 2: %s", dir2);
Preconditions.checkState(files1.length == files2.length, "Different number of files: %s vs %s", files1.length, files2.length);
Map<String,File> m1 = toMap(files1);
Map<String,File> m2 = toMap(files2);
for(File f : files1){
String name = f.getName();
String varName = name.substring(name.indexOf('_') + 1, name.length()-4); //Strip "x_" and ".bin"
File f2 = m2.get(varName);
INDArray arr1 = Nd4j.readBinary(f);
INDArray arr2 = Nd4j.readBinary(f2);
//TODO String arrays won't work here!
boolean eq = arr1.equalsWithEps(arr2, eps);
if(eq){
System.out.println("Equals: " + varName.replaceAll("__", "/"));
} else {
if(arr1.dataType() == DataType.BOOL){
INDArray xor = Nd4j.exec(new Xor(arr1, arr2));
int count = xor.castTo(DataType.INT).sumNumber().intValue();
System.out.println("FAILS: " + varName.replaceAll("__", "/") + " - boolean, # differences = " + count);
System.out.println("\t" + f.getAbsolutePath());
System.out.println("\t" + f2.getAbsolutePath());
xor.close();
} else {
INDArray sub = arr1.sub(arr2);
INDArray diff = Nd4j.math.abs(sub);
double maxDiff = diff.maxNumber().doubleValue();
System.out.println("FAILS: " + varName.replaceAll("__", "/") + " - max difference = " + maxDiff);
System.out.println("\t" + f.getAbsolutePath());
System.out.println("\t" + f2.getAbsolutePath());
sub.close();
diff.close();
}
}
arr1.close();
arr2.close();
}
}
private static Map<String,File> toMap(File[] files){
Map<String,File> ret = new HashMap<>();
for(File f : files) {
String name = f.getName();
String varName = name.substring(name.indexOf('_') + 1, name.length() - 4); //Strip "x_" and ".bin"
ret.put(varName, f);
}
return ret;
}
}

View File

@ -87,6 +87,7 @@ public class ImportClassMapping {
org.nd4j.linalg.api.ops.impl.image.NonMaxSuppression.class,
org.nd4j.linalg.api.ops.impl.image.NonMaxSuppressionV3.class,
org.nd4j.linalg.api.ops.impl.image.ResizeBilinear.class,
org.nd4j.linalg.api.ops.impl.image.ResizeBicubic.class,
org.nd4j.linalg.api.ops.impl.image.ResizeNearestNeighbor.class,
org.nd4j.linalg.api.ops.impl.indexaccum.FirstIndex.class,
org.nd4j.linalg.api.ops.impl.indexaccum.IAMax.class,

View File

@ -102,4 +102,7 @@ public abstract class BaseReduceBoolOp extends BaseReduceOp implements ReduceBoo
"with 2 inputs, second input (axis) must be an integer datatype for %s, got %s", getClass(), dataTypes);
return Collections.singletonList(DataType.BOOL);
}
public abstract boolean emptyValue();
}

View File

@ -21,30 +21,46 @@ import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.tensorflow.framework.AttrValue;
import org.tensorflow.framework.GraphDef;
import org.tensorflow.framework.NodeDef;
import java.util.Collections;
import java.util.List;
import java.util.Map;
public class FakeQuantWithMinMaxVarsPerChannel extends DynamicCustomOp {
protected boolean narrowRange;
protected int numBits;
public FakeQuantWithMinMaxVarsPerChannel() {}
public FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max) {
public FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max, int num_bits, boolean narrow) {
Preconditions.checkArgument(min.isVector() && max.isVector() &&
min.length() == max.length(),
"FakeQuantWithMinMaxVarsPerChannel: min and max should be 1D tensors with the same length");
inputArguments.add(x);
inputArguments.add(min);
inputArguments.add(max);
addInputArgument(x,min,max);
addIArgument(num_bits);
addBArgument(narrow);
}
public FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max,
INDArray output) {
this(x,min,max);
outputArguments.add(output);
public FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max, int num_bits) {
this(x, min, max, num_bits, false);
}
public FakeQuantWithMinMaxVarsPerChannel(SameDiff sameDiff, SDVariable x, SDVariable min, SDVariable max) {
public FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max, boolean narrow) {
this(x, min, max, 8, narrow);
}
public FakeQuantWithMinMaxVarsPerChannel(INDArray x, INDArray min, INDArray max) {
this(x, min, max, 8, false);
}
public FakeQuantWithMinMaxVarsPerChannel(SameDiff sameDiff, SDVariable x, SDVariable min, SDVariable max,
int num_bits, boolean narrow) {
super("", sameDiff, new SDVariable[]{x, min, max});
addIArgument(num_bits);
addBArgument(narrow);
}
@Override
@ -57,6 +73,18 @@ public class FakeQuantWithMinMaxVarsPerChannel extends DynamicCustomOp {
return "FakeQuantWithMinMaxVarsPerChannel";
}
@Override
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String, AttrValue> attributesForNode, GraphDef graph) {
if(attributesForNode.containsKey("narrow_range")){
this.narrowRange = attributesForNode.get("narrow_range").getB();
}
if(attributesForNode.containsKey("num_bits")) {
this.numBits = (int) attributesForNode.get("num_bits").getI();
}
addIArgument(numBits);
addBArgument(narrowRange);
}
@Override
public List<DataType> calculateOutputDataTypes(List<DataType> inputDataTypes){
Preconditions.checkState(inputDataTypes != null && inputDataTypes.size() == 3, "Expected exactly 3 inputs, got %s", inputDataTypes);

View File

@ -0,0 +1,82 @@
/*******************************************************************************
* Copyright (c) 2019 Konduit, K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.nd4j.linalg.api.ops.impl.image;
import lombok.NoArgsConstructor;
import lombok.NonNull;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.base.Preconditions;
import org.nd4j.imports.graphmapper.tf.TFGraphMapper;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.factory.Nd4j;
import org.tensorflow.framework.AttrValue;
import org.tensorflow.framework.GraphDef;
import org.tensorflow.framework.NodeDef;
import java.util.Collections;
import java.util.List;
import java.util.Map;
/**
* ResizeBicubic op wrapper
* @author Alexander Stoyakin
*/
@NoArgsConstructor
public class ResizeBicubic extends DynamicCustomOp {
protected boolean alignCorners = false;
protected boolean alignPixelCenters = false;
public ResizeBicubic(@NonNull INDArray image, INDArray size, boolean alignCorners, boolean alignPixelCenters) {
addInputArgument(image, size);
addBArgument(alignCorners, alignPixelCenters);
}
public ResizeBicubic(@NonNull SameDiff sameDiff, @NonNull SDVariable image,
SDVariable size, boolean alignCorners, boolean alignPixelCenters) {
super(sameDiff, new SDVariable[]{image, size});
addBArgument(alignCorners, alignPixelCenters);
}
@Override
public String opName() {
return "resize_bicubic";
}
@Override
public String tensorflowName() {
return "ResizeBicubic";
}
@Override
public void initFromTensorFlow(NodeDef nodeDef, SameDiff initWith, Map<String, AttrValue> attributesForNode, GraphDef graph) {
TFGraphMapper.initFunctionFromProperties(nodeDef.getOp(), this, attributesForNode, nodeDef, graph);
this.alignCorners = attributesForNode.get("align_corners").getB();
this.alignPixelCenters = attributesForNode.get("half_pixel_centers").getB();
addBArgument(alignCorners, alignPixelCenters);
}
@Override
public List<DataType> calculateOutputDataTypes(List<DataType> inputDataTypes){
Preconditions.checkState(inputDataTypes != null && (inputDataTypes.size() == 1 || inputDataTypes.size() == 2),
"Expected 1 or 2 input datatypes for %s, got %s", getClass(), inputDataTypes);
return Collections.singletonList(Nd4j.defaultFloatingPointType());
}
}

View File

@ -41,6 +41,10 @@ public class All extends BaseReduceBoolOp {
super(x);
}
public All(INDArray x, int... axis) {
super(x, axis);
}
@Override
public int opNum() {
return 1;
@ -65,4 +69,9 @@ public class All extends BaseReduceBoolOp {
public String tensorflowName() {
return "All";
}
@Override
public boolean emptyValue() {
return true;
}
}

View File

@ -65,4 +65,9 @@ public class Any extends BaseReduceBoolOp {
public String tensorflowName() {
return "Any";
}
@Override
public boolean emptyValue() {
return false;
}
}

View File

@ -71,4 +71,8 @@ public class IsInf extends BaseReduceBoolOp {
return Collections.singletonList(f().zerosLike(arg()));
}
@Override
public boolean emptyValue() {
return false;
}
}

View File

@ -71,4 +71,8 @@ public class IsNaN extends BaseReduceBoolOp {
return Collections.singletonList(f().zerosLike(arg()));
}
@Override
public boolean emptyValue() {
return false;
}
}

View File

@ -4,6 +4,7 @@ import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.tensorflow.framework.AttrValue;
import org.tensorflow.framework.GraphDef;
@ -37,11 +38,21 @@ public class FakeQuantWithMinMaxArgs extends DynamicCustomOp {
addArgs();
}
public FakeQuantWithMinMaxArgs(INDArray x, INDArray min, INDArray max, int num_bits, boolean narrow) {
Preconditions.checkArgument(min.isVector() && max.isVector() &&
min.length() == max.length(),
"FakeQuantWithMinMaxArgs: min and max should be 1D tensors with the same length");
addInputArgument(x,min,max);
addIArgument(num_bits);
addBArgument(narrow);
}
public FakeQuantWithMinMaxArgs(){ }
protected void addArgs(){
iArguments.clear();
addIArgument(numBits, narrowRange ? 1 : 0);
addIArgument(numBits);
addBArgument(narrowRange);
addTArgument(min, max);
}

View File

@ -4,6 +4,7 @@ import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.tensorflow.framework.AttrValue;
import org.tensorflow.framework.GraphDef;
@ -33,11 +34,22 @@ public class FakeQuantWithMinMaxVars extends DynamicCustomOp {
addArgs();
}
public FakeQuantWithMinMaxVars(INDArray x, INDArray min, INDArray max, int num_bits, boolean narrow) {
Preconditions.checkArgument(min.isVector() && max.isVector() &&
min.length() == max.length(),
"FakeQuantWithMinMaxVars: min and max should be 1D tensors with the same length");
addInputArgument(x,min,max);
addIArgument(num_bits);
addBArgument(narrow);
}
public FakeQuantWithMinMaxVars(){ }
protected void addArgs(){
iArguments.clear();
addIArgument(numBits, narrowRange ? 1 : 0);
bArguments.clear();
addIArgument(numBits);
addBArgument(narrowRange);
}
@Override

View File

@ -935,6 +935,18 @@ public class CudaExecutioner extends DefaultOpExecutioner {
}
}
// FIXME: this should be moved down to C++ on per-op basis
// reduce to scalar case, ReduceBool ops require special treatment
if (op instanceof BaseReduceBoolOp && op.x().isEmpty() && (dimension == null || (dimension.length == 1 && dimension[0] == Integer.MAX_VALUE))) {
if (op.z() == null) {
op.setZ(Nd4j.scalar(((BaseReduceBoolOp) op).emptyValue()));
} else {
op.z().assign(((BaseReduceBoolOp) op).emptyValue());
}
return context;
}
long st = profilingConfigurableHookIn(op);
checkForCompression(op);
@ -994,9 +1006,9 @@ public class CudaExecutioner extends DefaultOpExecutioner {
}
}
if (op.x().isVector() && op.x().length() == ArrayUtil.prod(retShape)) {
return null;
}
//if (op.x().isVector() && op.x().length() == ArrayUtil.prod(retShape)) {
// return null;
//}
val dataType = op.resultType();

View File

@ -265,7 +265,18 @@ public class NativeOpExecutioner extends DefaultOpExecutioner {
}
}
// FIXME: this should be moved down to C++ on per-op basis
val dimension = Shape.normalizeAxis(op.x().rank(), op.dimensions().toIntVector());
// reduce to scalar case, ReduceBool ops require special treatment
if (op instanceof BaseReduceBoolOp && op.x().isEmpty() && (dimension == null || (dimension.length == 1 && dimension[0] == Integer.MAX_VALUE))) {
if (op.z() == null) {
op.setZ(Nd4j.scalar(((BaseReduceBoolOp) op).emptyValue()));
} else {
op.z().assign(((BaseReduceBoolOp) op).emptyValue());
}
return op.z();
}
//validateDataType(Nd4j.dataType(), op);

View File

@ -71,9 +71,6 @@ public class TFGraphTestAllSameDiff { //Note: Can't extend BaseNd4jTest here a
//Still failing 2019/09/11
"slogdet/.*",
// Failing 2019/11/14 - |https://github.com/eclipse/deeplearning4j/issues/8374
"adjust_contrast/*",
"adjust_contrast/.*",
//Failing 2019/09/11 - https://github.com/eclipse/deeplearning4j/issues/7965
"bincount/.*",
// Failing 2019/11/14 https://github.com/eclipse/deeplearning4j/issues/8393
@ -114,29 +111,17 @@ public class TFGraphTestAllSameDiff { //Note: Can't extend BaseNd4jTest here a
// 2019/11/15 - missing dtype argument in nd4j, tests are useless https://github.com/eclipse/deeplearning4j/issues/8398
"zeros_like/rank2_float32_dtype_int.*",
// 2019/11/15 - failure https://github.com/eclipse/deeplearning4j/issues/8402
"fake_quant/min_max_args_per_channel.*",
// Suggesting TF 1.15 bug
"non_max_suppression_v2/float16.*",
// 11.26.2019 failing - https://github.com/eclipse/deeplearning4j/issues/8450
"betainc.*",
// 11.26.2019 failing - https://github.com/eclipse/deeplearning4j/issues/8452
"polygamma.*",
// 11.26.2019 failing - https://github.com/eclipse/deeplearning4j/issues/8453
"roll/.*",
// 11.26.2019 failing https://github.com/eclipse/deeplearning4j/issues/8455
"matrix_band_part/.*",
// 11.28.2019 failing https://github.com/eclipse/deeplearning4j/issues/8458
"adjust_hue/.*",
// 11.28.2019 failing https://github.com/eclipse/deeplearning4j/issues/8459
"adjust_saturation/.*"
// 05.12.2019 failing https://github.com/eclipse/deeplearning4j/issues/8507
"resize_bicubic/int32.*"
};
/* As per TFGraphTestList.printArraysDebugging - this field defines a set of regexes for test cases that should have

View File

@ -8134,6 +8134,36 @@ public class Nd4jTestsC extends BaseNd4jTest {
assertEquals(Nd4j.createFromArray(1.0,2,3,4,5,6), hStack);
}
@Test
public void testReduceAll_1() {
val x = Nd4j.empty(DataType.FLOAT);
val e = Nd4j.scalar(true);
val z = Nd4j.exec(new All(x));
assertEquals(e, z);
}
@Test
public void testReduceAll_2() {
val x = Nd4j.ones(DataType.FLOAT, 0);
val e = Nd4j.scalar(true);
val z = Nd4j.exec(new All(x));
assertEquals(e, z);
}
@Test
public void testReduceAll_3() {
val x = Nd4j.create(DataType.FLOAT, 0);
assertEquals(1, x.rank());
val e = Nd4j.scalar(true);
val z = Nd4j.exec(new All(x, 0));
assertEquals(e, z);
}
@Override
public char ordering() {
return 'c';

View File

@ -943,16 +943,9 @@ public class CustomOpsTests extends BaseNd4jTest {
0.0877f, 0.5966f, 0.6600f, 0.3513f, 0.1604f}).reshape(3,5);
INDArray out = Nd4j.createUninitialized(x.shape());
val op = new FakeQuantWithMinMaxVarsPerChannel(x,min,max,out);
val op = new FakeQuantWithMinMaxVarsPerChannel(x,min,max);
Nd4j.exec(op);
assertEquals(expected, out);
/*TF: [[ 0.7801, 0.5966, 0.7260, 0.2320, 0.5084],
[ 0.1800, 0.5046, 0.8684, 0.3513, 0.5084],
[ 0.0877, 0.5966, 0.6600, 0.3513, 0.1604]]
SD: [[ 0.7770, 0.5969, 0.7232, 0.2310, 0.5098],
[ 0.1793, 0.5053, 0.8685, 0.3500, 0.5098],
[ 0.0874, 0.5969, 0.6574, 0.3500, 0.1597]]*/
}
@Test
@ -1036,13 +1029,12 @@ public class CustomOpsTests extends BaseNd4jTest {
INDArray min = Nd4j.createFromArray(new float[]{-63.65f});
INDArray max = Nd4j.createFromArray(new float[]{0.1f});
INDArray output = Nd4j.createUninitialized(DataType.FLOAT, 1,2,3,1);
INDArray expected = Nd4j.createFromArray(new float[]{-63.75f, -63.75f, -63.5f, -63.5f, 0.f, 0.f}).
reshape(1,2,3,1);
Nd4j.exec(new FakeQuantWithMinMaxVarsPerChannel(x,min,max,output));
INDArray[] output = Nd4j.exec(new FakeQuantWithMinMaxVarsPerChannel(x,min,max));
assertEquals(expected, output);
assertEquals(expected, output[0]);
}
@Test