Merge pull request #8935 from KonduitAI/master

Pre-release updates [WIP]
master
Alex Black 2020-05-12 14:56:08 +10:00 committed by GitHub
commit bfaa20e46c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
62 changed files with 2191 additions and 2443 deletions

View File

@ -21,7 +21,7 @@ package org.deeplearning4j.nn.modelimport.keras.exceptions;
* Indicates that user is attempting to import a Keras model configuration that * Indicates that user is attempting to import a Keras model configuration that
* is malformed or invalid in some other way. * is malformed or invalid in some other way.
* *
* See <a href="https://deeplearning4j.org/docs/latest/keras-import-overview">https://deeplearning4j.org/docs/latest/keras-import-overview</a> for more information. * See <a href="https://deeplearning4j.konduit.ai/keras-import/overview">https://deeplearning4j.konduit.ai/keras-import/overview</a> for more information.
* *
* @author dave@skymind.io * @author dave@skymind.io
*/ */
@ -40,6 +40,6 @@ public class InvalidKerasConfigurationException extends Exception {
} }
private static String appendDocumentationURL(String message) { private static String appendDocumentationURL(String message) {
return message + ". For more information, see http://deeplearning4j.org/docs/latest/keras-import-overview"; return message + ". For more information, see https://deeplearning4j.konduit.ai/keras-import/overview";
} }
} }

View File

@ -21,7 +21,7 @@ package org.deeplearning4j.nn.modelimport.keras.exceptions;
* Indicates that user is attempting to import a Keras model configuration that * Indicates that user is attempting to import a Keras model configuration that
* is not currently supported. * is not currently supported.
* *
* See <a href="https://deeplearning4j.org/docs/latest/keras-import-overview">https://deeplearning4j.org/docs/latest/keras-import-overview</a> * See <a href="https://deeplearning4j.konduit.ai/keras-import/overview">https://deeplearning4j.konduit.ai/keras-import/overview</a>
* for more information and file an issue at <a href="https://github.com/eclipse/deeplearning4j/issues">https://github.com/eclipse/deeplearning4j/issues</a>. * for more information and file an issue at <a href="https://github.com/eclipse/deeplearning4j/issues">https://github.com/eclipse/deeplearning4j/issues</a>.
* *
* @author dave@skymind.io * @author dave@skymind.io

View File

@ -103,7 +103,7 @@ public class KerasEmbedding extends KerasLayer {
"on Embedding layers. Zero Masking for the Embedding layer only works with unidirectional LSTM for now." "on Embedding layers. Zero Masking for the Embedding layer only works with unidirectional LSTM for now."
+ " If you want to have this behaviour for your imported model " + + " If you want to have this behaviour for your imported model " +
"in DL4J, apply masking as a pre-processing step to your input." + "in DL4J, apply masking as a pre-processing step to your input." +
"See http://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent#masking for more on this."); "See https://deeplearning4j.konduit.ai/models/recurrent#masking-one-to-many-many-to-one-and-sequence-classification for more on this.");
IWeightInit init = getWeightInitFromConfig(layerConfig, conf.getLAYER_FIELD_EMBEDDING_INIT(), IWeightInit init = getWeightInitFromConfig(layerConfig, conf.getLAYER_FIELD_EMBEDDING_INIT(),
enforceTrainingConfig, conf, kerasMajorVersion); enforceTrainingConfig, conf, kerasMajorVersion);

View File

@ -17,10 +17,10 @@
package org.deeplearning4j.nn.conf; package org.deeplearning4j.nn.conf;
/** /**
* Workspace mode to use. See <a href="https://deeplearning4j.org/docs/latest/deeplearning4j-config-workspaces">https://deeplearning4j.org/docs/latest/deeplearning4j-config-workspaces</a><br> * Workspace mode to use. See <a href="https://deeplearning4j.konduit.ai/config/config-memory/config-workspaces">https://deeplearning4j.konduit.ai/config/config-memory/config-workspaces</a><br>
* <br> * <br>
* NONE: No workspaces will be used for the network. Highest memory use, least performance.<br> * NONE: No workspaces will be used for the network. Highest memory use, least performance.<br>
* ENABLED: Use workspaces.<br> * ENABLED: Use workspaces. This is the default and should almost always be used<br>
* SINGLE: Deprecated. Now equivalent to ENABLED, which should be used instead.<br> * SINGLE: Deprecated. Now equivalent to ENABLED, which should be used instead.<br>
* SEPARATE: Deprecated. Now equivalent to ENABLED, which sohuld be used instead.<br> * SEPARATE: Deprecated. Now equivalent to ENABLED, which sohuld be used instead.<br>
* *

View File

@ -38,7 +38,7 @@ import java.util.Map;
/** /**
* LSTM recurrent neural network layer without peephole connections. Supports CuDNN acceleration - see <a * LSTM recurrent neural network layer without peephole connections. Supports CuDNN acceleration - see <a
* href="https://deeplearning4j.org/docs/latest/deeplearning4j-config-cudnn">https://deeplearning4j.org/docs/latest/deeplearning4j-config-cudnn</a> for details * href="https://deeplearning4j.konduit.ai/config/backends/config-cudnn">https://deeplearning4j.konduit.ai/config/backends/config-cudnn</a> for details
* *
* @author Alex Black * @author Alex Black
* @see GravesLSTM GravesLSTM class for an alternative LSTM (with peephole connections) * @see GravesLSTM GravesLSTM class for an alternative LSTM (with peephole connections)

View File

@ -1540,8 +1540,8 @@ public class ComputationGraph implements Serializable, Model, NeuralNetwork {
* (not) clearing the layer input arrays.<br> * (not) clearing the layer input arrays.<br>
* Note: this method should NOT be used with clearInputs = true, unless you know what you are doing. Specifically: * Note: this method should NOT be used with clearInputs = true, unless you know what you are doing. Specifically:
* when using clearInputs=false, in combination with workspaces, the layer input fields may leak outside of the * when using clearInputs=false, in combination with workspaces, the layer input fields may leak outside of the
* workspaces in which they were defined - potentially causing a crash. See <a href="https://deeplearning4j.org/docs/latest/deeplearning4j-config-workspaces"> * workspaces in which they were defined - potentially causing a crash. See <a href="https://deeplearning4j.konduit.ai/config/config-memory/config-workspaces">
* https://deeplearning4j.org/docs/latest/deeplearning4j-config-workspaces</a> * https://deeplearning4j.konduit.ai/config/config-memory/config-workspaces</a>
* for more details * for more details
* *
* @param input An array of ComputationGraph inputs * @param input An array of ComputationGraph inputs

View File

@ -86,7 +86,7 @@ public class ConvolutionLayer extends BaseLayer<org.deeplearning4j.nn.conf.layer
} else { } else {
OneTimeLogger.info(log, "cuDNN not found: " OneTimeLogger.info(log, "cuDNN not found: "
+ "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. " + "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. "
+ "For more information, please refer to: https://deeplearning4j.org/docs/latest/deeplearning4j-config-cudnn", t); + "For more information, please refer to: https://deeplearning4j.konduit.ai/config/backends/config-cudnn", t);
} }
} }
} else if("CPU".equalsIgnoreCase(backend)){ } else if("CPU".equalsIgnoreCase(backend)){

View File

@ -78,7 +78,7 @@ public class SubsamplingLayer extends AbstractLayer<org.deeplearning4j.nn.conf.l
} else { } else {
OneTimeLogger.info(log, "cuDNN not found: " OneTimeLogger.info(log, "cuDNN not found: "
+ "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. " + "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. "
+ "For more information, please refer to: https://deeplearning4j.org/docs/latest/deeplearning4j-config-cudnn", t); + "For more information, please refer to: https://deeplearning4j.konduit.ai/config/backends/config-cudnn", t);
} }
} }
} else if("CPU".equalsIgnoreCase(backend) ){ } else if("CPU".equalsIgnoreCase(backend) ){

View File

@ -86,7 +86,7 @@ public class BatchNormalization extends BaseLayer<org.deeplearning4j.nn.conf.lay
} else { } else {
OneTimeLogger.info(log, "cuDNN not found: " OneTimeLogger.info(log, "cuDNN not found: "
+ "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. " + "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. "
+ "For more information, please refer to: https://deeplearning4j.org/docs/latest/deeplearning4j-config-cudnn", t); + "For more information, please refer to: https://deeplearning4j.konduit.ai/config/backends/config-cudnn", t);
} }
} }
} else if("CPU".equalsIgnoreCase(backend)){ } else if("CPU".equalsIgnoreCase(backend)){

View File

@ -96,7 +96,7 @@ public class LocalResponseNormalization
} else { } else {
OneTimeLogger.info(log, "cuDNN not found: " OneTimeLogger.info(log, "cuDNN not found: "
+ "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. " + "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. "
+ "For more information, please refer to: https://deeplearning4j.org/docs/latest/deeplearning4j-config-cudnn", t); + "For more information, please refer to: https://deeplearning4j.konduit.ai/config/backends/config-cudnn", t);
} }
} }
} }

View File

@ -32,7 +32,7 @@ import java.util.Map;
/** /**
* *
* RNN tutorial: https://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent * RNN tutorial: https://deeplearning4j.konduit.ai/models/recurrent
* READ THIS FIRST * READ THIS FIRST
* *
* Bdirectional LSTM layer implementation. * Bdirectional LSTM layer implementation.

View File

@ -71,7 +71,7 @@ public class LSTM extends BaseRecurrentLayer<org.deeplearning4j.nn.conf.layers.L
} else { } else {
OneTimeLogger.info(log, "cuDNN not found: " OneTimeLogger.info(log, "cuDNN not found: "
+ "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. " + "use cuDNN for better GPU performance by including the deeplearning4j-cuda module. "
+ "For more information, please refer to: https://deeplearning4j.org/docs/latest/deeplearning4j-config-cudnn", t); + "For more information, please refer to: https://deeplearning4j.konduit.ai/config/backends/config-cudnn", t);
} }
} }
} }

View File

@ -52,8 +52,8 @@ import static org.nd4j.linalg.indexing.NDArrayIndex.*;
/** /**
* *
* RNN tutorial: <a href="https://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent">https://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent</a> * RNN tutorial: <a href="https://deeplearning4j.konduit.ai/models/recurrent">https://deeplearning4j.konduit.ai/models/recurrent</a>
* READ THIS FIRST if you want to understand what the heck is happening here. * READ THIS FIRST if you want to understand this code.
* *
* Shared code for the standard "forwards" LSTM RNN and the bidirectional LSTM RNN * Shared code for the standard "forwards" LSTM RNN and the bidirectional LSTM RNN
* This was extracted from GravesLSTM and refactored into static helper functions. The general reasoning for this was * This was extracted from GravesLSTM and refactored into static helper functions. The general reasoning for this was

View File

@ -826,7 +826,7 @@ public class ParallelWrapper implements AutoCloseable {
/** /**
* This method allows you to specify training mode for this instance of PW.<br> * This method allows you to specify training mode for this instance of PW.<br>
* 1) AVERAGING - stands for parameters averaging. Each X epochs weights and updaters state will be averaged across all models<br> * 1) AVERAGING - stands for parameters averaging. Each X epochs weights and updaters state will be averaged across all models<br>
* 2) SHARED_GRADIENTS - stands for gradients sharing - more details available here: <a href="https://deeplearning4j.org/docs/latest/deeplearning4j-scaleout-intro">https://deeplearning4j.org/docs/latest/deeplearning4j-scaleout-intro</a><br> * 2) SHARED_GRADIENTS - stands for gradients sharing - more details available here: <a href="https://deeplearning4j.konduit.ai/distributed-deep-learning/intro">https://deeplearning4j.konduit.ai/distributed-deep-learning/intro</a><br>
* 3) CUSTOM - this method allows you to specify custom gradients accumulator, this giving you better control of configuration params for training.<br> * 3) CUSTOM - this method allows you to specify custom gradients accumulator, this giving you better control of configuration params for training.<br>
* *
* @param mode * @param mode

View File

@ -71,7 +71,7 @@ public class SparkUtils {
+ "for ND4J INDArrays.\nWhen using Kryo, An appropriate Kryo registrator must be used to avoid" + "for ND4J INDArrays.\nWhen using Kryo, An appropriate Kryo registrator must be used to avoid"
+ " serialization issues (NullPointerException) with off-heap data in INDArrays.\n" + " serialization issues (NullPointerException) with off-heap data in INDArrays.\n"
+ "Use nd4j-kryo_2.10 or _2.11 artifact, with sparkConf.set(\"spark.kryo.registrator\", \"org.nd4j.kryo.Nd4jRegistrator\");\n" + "Use nd4j-kryo_2.10 or _2.11 artifact, with sparkConf.set(\"spark.kryo.registrator\", \"org.nd4j.kryo.Nd4jRegistrator\");\n"
+ "See https://deeplearning4j.org/docs/latest/deeplearning4j-scaleout-howto#kryo for more details"; + "See https://deeplearning4j.konduit.ai/distributed-deep-learning/howto#how-to-use-kryo-serialization-with-dl-4-j-and-nd-4-j for more details";
private static String sparkExecutorId; private static String sparkExecutorId;

View File

@ -108,7 +108,7 @@ public class TestSparkDl4jMultiLayer extends BaseSparkTest {
.activation(Activation.SOFTMAX).nIn(100).nOut(10).build()) .activation(Activation.SOFTMAX).nIn(100).nOut(10).build())
.build(); .build();
//Configuration for Spark training: see https://deeplearning4j.org/docs/latest/deeplearning4j-scaleout-howto for explanation of these configuration options //Configuration for Spark training: see https://deeplearning4j.konduit.ai/distributed-deep-learning/howto for explanation of these configuration options
TrainingMaster tm = new ParameterAveragingTrainingMaster.Builder(batchSizePerWorker) TrainingMaster tm = new ParameterAveragingTrainingMaster.Builder(batchSizePerWorker)
.averagingFrequency(2) .averagingFrequency(2)

View File

@ -195,7 +195,7 @@ public class CharacterIterator implements DataSetIterator {
// dimension 0 = number of examples in minibatch // dimension 0 = number of examples in minibatch
// dimension 1 = size of each vector (i.e., number of characters) // dimension 1 = size of each vector (i.e., number of characters)
// dimension 2 = length of each time series/example // dimension 2 = length of each time series/example
//Why 'f' order here? See https://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent data section "Alternative: Implementing a custom DataSetIterator" //Why 'f' order here? See https://deeplearning4j.konduit.ai/models/recurrent data section "Alternative: Implementing a custom DataSetIterator"
INDArray input = Nd4j.create(new int[]{currMinibatchSize, validCharacters.length, exampleLength}, 'f'); INDArray input = Nd4j.create(new int[]{currMinibatchSize, validCharacters.length, exampleLength}, 'f');
INDArray labels = Nd4j.create(new int[]{currMinibatchSize, validCharacters.length, exampleLength}, 'f'); INDArray labels = Nd4j.create(new int[]{currMinibatchSize, validCharacters.length, exampleLength}, 'f');

View File

@ -231,30 +231,34 @@ if(SD_CUDA)
file(GLOB_RECURSE CUSTOMOPS_CUDNN_SOURCES false ../include/ops/declarable/platform/cudnn/*.cu) file(GLOB_RECURSE CUSTOMOPS_CUDNN_SOURCES false ../include/ops/declarable/platform/cudnn/*.cu)
endif() endif()
add_library(nd4jobj OBJECT ${LOOPS_SOURCES_CUDA} ${LEGACY_SOURCES} add_library(samediff_obj OBJECT ${LOOPS_SOURCES_CUDA} ${LEGACY_SOURCES}
${CUSTOMOPS_HELPERS_SOURCES} ${HELPERS_SOURCES} ${EXEC_SOURCES} ${CUSTOMOPS_HELPERS_SOURCES} ${HELPERS_SOURCES} ${EXEC_SOURCES}
${LOOPS_SOURCES} ${ARRAY_SOURCES} ${TYPES_SOURCES} ${LOOPS_SOURCES} ${ARRAY_SOURCES} ${TYPES_SOURCES}
${MEMORY_SOURCES} ${GRAPH_SOURCES} ${CUSTOMOPS_SOURCES} ${INDEXING_SOURCES} ${EXCEPTIONS_SOURCES} ${OPS_SOURCES} ${PERF_SOURCES} ${CUSTOMOPS_CUDNN_SOURCES} ${CUSTOMOPS_MKLDNN_SOURCES}) ${MEMORY_SOURCES} ${GRAPH_SOURCES} ${CUSTOMOPS_SOURCES} ${INDEXING_SOURCES} ${EXCEPTIONS_SOURCES} ${OPS_SOURCES} ${PERF_SOURCES} ${CUSTOMOPS_CUDNN_SOURCES} ${CUSTOMOPS_MKLDNN_SOURCES})
# Don't output dynamic linked lib when a static lib build is specified unless the tests are built
if(NOT SD_STATIC_LIB OR SD_BUILD_TESTS)
add_library(${SD_LIBRARY_NAME} SHARED $<TARGET_OBJECTS:nd4jobj>)
endif()
if (WIN32) if (WIN32)
message("MSVC runtime for library: ${MSVC_RT_LIB}") message("MSVC runtime for library: ${MSVC_RT_LIB}")
endif() endif()
# static library is built only if we're going to build tests, skip otherwise # build shared library by default or when it's explicitly requested
if (SD_BUILD_TESTS OR SD_STATIC_LIB) if(NOT SD_STATIC_LIB OR SD_SHARED_LIB)
add_library(${SD_LIBRARY_NAME}static STATIC $<TARGET_OBJECTS:nd4jobj>) add_library(${SD_LIBRARY_NAME} SHARED $<TARGET_OBJECTS:samediff_obj>)
endif()
if (SD_STATIC_LIB AND SD_SHARED_LIB)
# if both static and shared library are going to be built - static library will have special suffix
add_library(${SD_LIBRARY_NAME}static STATIC $<TARGET_OBJECTS:samediff_obj>)
set_property(TARGET ${SD_LIBRARY_NAME}static PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>") set_property(TARGET ${SD_LIBRARY_NAME}static PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>")
install(TARGETS ${SD_LIBRARY_NAME}static DESTINATION .) install(TARGETS ${SD_LIBRARY_NAME}static DESTINATION .)
elseif(SD_STATIC_LIB)
# if we only build static library - use this name
add_library(${SD_LIBRARY_NAME} STATIC $<TARGET_OBJECTS:samediff_obj>)
set_property(TARGET ${SD_LIBRARY_NAME} PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>")
install(TARGETS ${SD_LIBRARY_NAME} DESTINATION .)
endif() endif()
# on windows we want to make sure we use MT or MD, but since we use it in one lib, we must use it everywhere to avoid conflicts # on windows we want to make sure we use MT or MD, but since we use it in one lib, we must use it everywhere to avoid conflicts
set_property(TARGET nd4jobj PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>") set_property(TARGET samediff_obj PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>")
set_property(TARGET ${SD_LIBRARY_NAME} PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>") set_property(TARGET ${SD_LIBRARY_NAME} PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>")
if(WIN32) if(WIN32)
@ -324,20 +328,28 @@ elseif(SD_CPU)
message("CPU BLAS") message("CPU BLAS")
add_definitions(-D__CPUBLAS__=true) add_definitions(-D__CPUBLAS__=true)
add_library(nd4jobj OBJECT ${LEGACY_SOURCES} add_library(samediff_obj OBJECT ${LEGACY_SOURCES}
${LOOPS_SOURCES} ${HELPERS_SOURCES} ${EXEC_SOURCES} ${ARRAY_SOURCES} ${TYPES_SOURCES} ${LOOPS_SOURCES} ${HELPERS_SOURCES} ${EXEC_SOURCES} ${ARRAY_SOURCES} ${TYPES_SOURCES}
${MEMORY_SOURCES} ${GRAPH_SOURCES} ${CUSTOMOPS_SOURCES} ${EXCEPTIONS_SOURCES} ${INDEXING_SOURCES} ${CUSTOMOPS_MKLDNN_SOURCES} ${CUSTOMOPS_GENERIC_SOURCES} ${MEMORY_SOURCES} ${GRAPH_SOURCES} ${CUSTOMOPS_SOURCES} ${EXCEPTIONS_SOURCES} ${INDEXING_SOURCES} ${CUSTOMOPS_MKLDNN_SOURCES} ${CUSTOMOPS_GENERIC_SOURCES}
${OPS_SOURCES} ${PERF_SOURCES}) ${OPS_SOURCES} ${PERF_SOURCES})
if(IOS) if(IOS)
add_library(${SD_LIBRARY_NAME} STATIC $<TARGET_OBJECTS:nd4jobj>) add_library(${SD_LIBRARY_NAME} STATIC $<TARGET_OBJECTS:samediff_obj>)
else() else()
# static library is built only if we're going to build tests, skip otherwise # build shared library by default or when it's explicitly requested
if (SD_BUILD_TESTS OR SD_STATIC_LIB) if(NOT SD_STATIC_LIB OR SD_SHARED_LIB)
add_library(${SD_LIBRARY_NAME}static STATIC $<TARGET_OBJECTS:nd4jobj>) add_library(${SD_LIBRARY_NAME} SHARED $<TARGET_OBJECTS:samediff_obj>)
endif() endif()
if(SD_BUILD_TESTS OR NOT SD_STATIC_LIB) if (SD_STATIC_LIB AND SD_SHARED_LIB)
add_library(${SD_LIBRARY_NAME} SHARED $<TARGET_OBJECTS:nd4jobj>) # if both static and shared library are going to be built - static library will have special suffix
add_library(${SD_LIBRARY_NAME}static STATIC $<TARGET_OBJECTS:samediff_obj>)
set_property(TARGET ${SD_LIBRARY_NAME}static PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>")
install(TARGETS ${SD_LIBRARY_NAME}static DESTINATION .)
elseif(SD_STATIC_LIB)
# if we only build static library - use this name
add_library(${SD_LIBRARY_NAME} STATIC $<TARGET_OBJECTS:samediff_obj>)
set_property(TARGET ${SD_LIBRARY_NAME} PROPERTY MSVC_RUNTIME_LIBRARY "${MSVC_RT_LIB}$<$<CONFIG:Debug>:Debug>")
install(TARGETS ${SD_LIBRARY_NAME} DESTINATION .)
endif() endif()
endif() endif()
@ -350,7 +362,7 @@ elseif(SD_CPU)
if ("${SD_ALL_OPS}" AND "${SD_BUILD_MINIFIER}") if ("${SD_ALL_OPS}" AND "${SD_BUILD_MINIFIER}")
message(STATUS "Building minifier...") message(STATUS "Building minifier...")
add_executable(minifier ../minifier/minifier.cpp ../minifier/graphopt.cpp) add_executable(minifier ../minifier/minifier.cpp ../minifier/graphopt.cpp)
target_link_libraries(minifier ${SD_LIBRARY_NAME}static ${MKLDNN_LIBRARIES} ${OPENBLAS_LIBRARIES} ${MKLDNN} ${BLAS_LIBRARIES} ${CPU_FEATURES}) target_link_libraries(minifier samediff_obj ${MKLDNN_LIBRARIES} ${OPENBLAS_LIBRARIES} ${MKLDNN} ${BLAS_LIBRARIES} ${CPU_FEATURES})
endif() endif()
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" AND "${CMAKE_CXX_COMPILER_VERSION}" VERSION_LESS 4.9) if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU" AND "${CMAKE_CXX_COMPILER_VERSION}" VERSION_LESS 4.9)

View File

@ -981,12 +981,12 @@ namespace sd {
* these methods suited for FlatBuffers use * these methods suited for FlatBuffers use
*/ */
template <typename T> template <typename T>
std::vector<T> getBufferAsVector(); std::vector<T> getBufferAsVector() const;
std::vector<Nd4jLong> getShapeAsVector() const; std::vector<Nd4jLong> getShapeAsVector() const;
std::vector<int> getShapeAsVectorInt() const; std::vector<int> getShapeAsVectorInt() const;
std::vector<Nd4jLong> getShapeInfoAsVector(); std::vector<Nd4jLong> getShapeInfoAsVector() const;
std::vector<int64_t> getShapeInfoAsFlatVector(); std::vector<int64_t> getShapeInfoAsFlatVector() const;
std::vector<int64_t> getShapeAsFlatVector(); std::vector<int64_t> getShapeAsFlatVector() const;
/** /**
* set new order and shape in case of suitable array length (in-place operation) * set new order and shape in case of suitable array length (in-place operation)

View File

@ -982,16 +982,16 @@ std::string NDArray::asString(Nd4jLong limit) {
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
template<typename T> template<typename T>
std::vector<T> NDArray::getBufferAsVector() { std::vector<T> NDArray::getBufferAsVector() const {
std::vector<T> vector(lengthOf()); std::vector<T> vector(lengthOf());
for (Nd4jLong e = 0; e < lengthOf(); e++) for (Nd4jLong e = 0; e < lengthOf(); e++)
vector[e] = this->e<T>(e); vector[e] = this->e<T>(e);
return vector; return vector;
} }
BUILD_SINGLE_TEMPLATE(template ND4J_EXPORT std::vector, NDArray::getBufferAsVector(), LIBND4J_TYPES); BUILD_SINGLE_TEMPLATE(template ND4J_EXPORT std::vector, NDArray::getBufferAsVector() const, LIBND4J_TYPES);
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
std::vector<int64_t> NDArray::getShapeAsFlatVector() { std::vector<int64_t> NDArray::getShapeAsFlatVector() const {
std::vector<int64_t> vector(this->rankOf()); std::vector<int64_t> vector(this->rankOf());
for (int e = 0; e < this->rankOf(); e++) for (int e = 0; e < this->rankOf(); e++)
vector[e] = static_cast<int64_t>(this->sizeAt(e)); vector[e] = static_cast<int64_t>(this->sizeAt(e));
@ -1019,7 +1019,7 @@ std::vector<int> NDArray::getShapeAsVectorInt() const {
} }
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
std::vector<int64_t> NDArray::getShapeInfoAsFlatVector() { std::vector<int64_t> NDArray::getShapeInfoAsFlatVector() const {
int magicNumber = shape::shapeInfoLength(this->rankOf()); int magicNumber = shape::shapeInfoLength(this->rankOf());
std::vector<int64_t> vector(magicNumber); std::vector<int64_t> vector(magicNumber);
@ -1030,7 +1030,7 @@ std::vector<int64_t> NDArray::getShapeInfoAsFlatVector() {
} }
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
std::vector<Nd4jLong> NDArray::getShapeInfoAsVector() { std::vector<Nd4jLong> NDArray::getShapeInfoAsVector() const {
int magicNumber = shape::shapeInfoLength(this->rankOf()); int magicNumber = shape::shapeInfoLength(this->rankOf());
std::vector<Nd4jLong> vector(magicNumber); std::vector<Nd4jLong> vector(magicNumber);
for (int e = 0; e < magicNumber; e++) for (int e = 0; e < magicNumber; e++)

View File

@ -15,7 +15,8 @@
******************************************************************************/ ******************************************************************************/
// //
// @author raver119@gmail.com // @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
// //
#include <system/op_boilerplate.h> #include <system/op_boilerplate.h>
@ -27,24 +28,58 @@
namespace sd { namespace sd {
namespace ops { namespace ops {
//////////////////////////////////////////////////////////////////////////
CONFIGURABLE_OP_IMPL(clipbyavgnorm, 1, 1, true, 1, 0) { CONFIGURABLE_OP_IMPL(clipbyavgnorm, 1, 1, true, 1, 0) {
auto input = INPUT_VARIABLE(0); auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0);
const bool isInplace = block.isInplace(); const bool isInplace = block.isInplace();
auto ts = NDArrayFactory::create(T_ARG(0), block.launchContext()); auto clipNorm = NDArrayFactory::create(T_ARG(0), block.launchContext());
helpers::clipByAveraged(block.launchContext(), *input, *output, *block.getIArguments(), ts, isInplace); helpers::clipByNorm(block.launchContext(), *input, *output, *block.getIArguments(), clipNorm, isInplace, true);
return Status::OK(); return Status::OK();
} }
DECLARE_TYPES(clipbyavgnorm) { DECLARE_TYPES(clipbyavgnorm) {
getOpDescriptor() getOpDescriptor()
->setAllowedInputTypes(sd::DataType::ANY) ->setAllowedInputTypes(sd::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS}); ->setAllowedOutputTypes({ALL_FLOATS});
} }
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(clipbyavgnorm_bp, 2, 1, false, 1, 0) {
auto input = INPUT_VARIABLE(0);
auto gradO = INPUT_VARIABLE(1);
auto gradI = OUTPUT_VARIABLE(0);
const auto clipNorm = NDArrayFactory::create(gradI->dataType(), T_ARG(0), block.launchContext());
helpers::clipByNormBp(block.launchContext(), *input, *gradO, *gradI, *block.getIArguments(), clipNorm, true);
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(clipbyavgnorm_bp) {
Nd4jLong *newShape = nullptr;
COPY_SHAPE(inputShape->at(1), newShape);
return SHAPELIST(CONSTANT(newShape));
}
DECLARE_TYPES(clipbyavgnorm_bp) {
getOpDescriptor()
->setAllowedInputTypes(0, DataType::ANY)
->setAllowedInputTypes(1, {ALL_FLOATS})
->setAllowedOutputTypes(0, {ALL_FLOATS});
}
} }
} }

View File

@ -31,10 +31,10 @@ namespace ops {
auto input = INPUT_VARIABLE(0); auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0);
const auto clipNorm = NDArrayFactory::create(input->dataType(), T_ARG(0), block.launchContext()); const auto clipNorm = NDArrayFactory::create(output->dataType(), T_ARG(0), block.launchContext());
const bool isInplace = block.isInplace(); const bool isInplace = block.isInplace();
helpers::clipByNorm(block.launchContext(), *input, *output, *block.getIArguments(), clipNorm, isInplace); helpers::clipByNorm(block.launchContext(), *input, *output, *block.getIArguments(), clipNorm, isInplace, false);
return Status::OK(); return Status::OK();
} }
@ -45,15 +45,15 @@ namespace ops {
auto gradO = INPUT_VARIABLE(1); auto gradO = INPUT_VARIABLE(1);
auto gradI = OUTPUT_VARIABLE(0); auto gradI = OUTPUT_VARIABLE(0);
const auto clipNorm = NDArrayFactory::create(T_ARG(0)); const auto clipNorm = NDArrayFactory::create(gradI->dataType(), T_ARG(0), block.launchContext());
helpers::clipByNormBP(block.launchContext(), *input, *gradO, *gradI, *block.getIArguments(), clipNorm); helpers::clipByNormBp(block.launchContext(), *input, *gradO, *gradI, *block.getIArguments(), clipNorm, false);
return Status::OK(); return Status::OK();
} }
DECLARE_SHAPE_FN(clipbynorm_bp) { DECLARE_SHAPE_FN(clipbynorm_bp) {
auto inShapeInfo = inputShape->at(0); auto inShapeInfo = inputShape->at(1);
Nd4jLong *newShape = nullptr; Nd4jLong *newShape = nullptr;
COPY_SHAPE(inShapeInfo, newShape); COPY_SHAPE(inShapeInfo, newShape);

View File

@ -23,8 +23,8 @@
#include<ops/declarable/helpers/transforms.h> #include<ops/declarable/helpers/transforms.h>
#include<array> #include<array>
namespace sd { namespace sd {
namespace ops { namespace ops {
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -85,6 +85,7 @@ CUSTOM_OP_IMPL(concat, -1, 1, false, 0, 0) {
// ******** input validation ******** // // ******** input validation ******** //
REQUIRE_TRUE(allOfSameType, 0, "CONCAT op: all of input arrays must have same type !"); REQUIRE_TRUE(allOfSameType, 0, "CONCAT op: all of input arrays must have same type !");
REQUIRE_TRUE(nonEmptyArrs[0]->dataType() == OUTPUT_VARIABLE(0)->dataType(), 0, "CONCAT op: output array should have the same type as inputs arrays !");
REQUIRE_TRUE(0 <= axis && (axis < rank || (axis == 0 && rank == 0)), 0, "CONCAT op: input axis must be in range [0, %i], but got %i instead!", rank-1, axis); REQUIRE_TRUE(0 <= axis && (axis < rank || (axis == 0 && rank == 0)), 0, "CONCAT op: input axis must be in range [0, %i], but got %i instead!", rank-1, axis);
for(int i = 1; i < numOfNonEmptyArrs; ++i) for(int i = 1; i < numOfNonEmptyArrs; ++i)

View File

@ -46,7 +46,8 @@ DECLARE_SYN(MergeMaxIndex, mergemaxindex);
DECLARE_TYPES(mergemaxindex) { DECLARE_TYPES(mergemaxindex) {
getOpDescriptor() getOpDescriptor()
->setAllowedInputTypes({ALL_INTS, ALL_FLOATS}); ->setAllowedInputTypes({ALL_INTS, ALL_FLOATS})
->setAllowedOutputTypes({ALL_INDICES});
} }
} }
DECLARE_SHAPE_FN(mergemaxindex) { DECLARE_SHAPE_FN(mergemaxindex) {

View File

@ -52,7 +52,7 @@ namespace ops {
else { else {
// check the consistency of input dimensions to reverse along // check the consistency of input dimensions to reverse along
shape::checkDimensions(input->rankOf(), axis); shape::checkDimensions(input->rankOf(), axis);
helpers::reverse(block.launchContext(), input, output, &axis, false); helpers::reverse(block.launchContext(), input, output, &axis);
} }
return Status::OK(); return Status::OK();
@ -85,7 +85,7 @@ namespace ops {
// check the consistency of input dimensions to reverse along // check the consistency of input dimensions to reverse along
shape::checkDimensions(input->rankOf(), axis); shape::checkDimensions(input->rankOf(), axis);
// we just reverse back original array // we just reverse back original array
helpers::reverse(block.launchContext(), eps, output, &axis, false); helpers::reverse(block.launchContext(), eps, output, &axis);
} }
return Status::OK(); return Status::OK();

View File

@ -36,6 +36,7 @@ namespace sd {
#if NOT_EXCLUDED(OP_clipbyavgnorm) #if NOT_EXCLUDED(OP_clipbyavgnorm)
DECLARE_CONFIGURABLE_OP(clipbyavgnorm, 1, 1, true, 1, 0); DECLARE_CONFIGURABLE_OP(clipbyavgnorm, 1, 1, true, 1, 0);
DECLARE_CUSTOM_OP(clipbyavgnorm_bp, 2, 1, false, 1, 0);
#endif #endif
#if NOT_EXCLUDED(OP_cumsum) #if NOT_EXCLUDED(OP_cumsum)

View File

@ -15,83 +15,134 @@
******************************************************************************/ ******************************************************************************/
// //
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018 // @author Yurii Shyrma (iuriish@yahoo.com)
// @author sgazeos@gmail.com
// @author raver119@gmail.com
// //
#include <ops/declarable/helpers/transforms.h> #include <ops/declarable/helpers/transforms.h>
#include <helpers/Loops.h> #include <execution/Threads.h>
namespace sd { namespace sd {
namespace ops { namespace ops {
namespace helpers { namespace helpers {
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
template<typename T> void clipByNorm(sd::LaunchContext* context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace, const bool useAverage) {
static void clipByNorm_(NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
const int rank = input.rankOf(); NDArray* z = nullptr;
const auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions);
const T normActual = norm2.e<T>(0); if(isInplace) {
const T normClip = clipNorm.e<T>(0); z = &input;
}
else {
output.assign(input);
z = &output;
}
if (isInplace) { if(dimensions.empty()) {
if(norm2.lengthOf() == 1) { const NDArray actualNorm = useAverage ? z->reduceAlongDimension(reduce::Norm2, {}) / z->lengthOf() : z->reduceAlongDimension(reduce::Norm2, {});
if(normActual > normClip) if(actualNorm.e<float>(0) > clipNorm.e<float>(0))
input *= (normClip / normActual); *z *= clipNorm / actualNorm;
}
else {
auto listOfInSubArrs = input.allTensorsAlongDimension(dimensions);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
const T iNormActual = norm2.e<T>(i);
if (iNormActual > normClip)
*listOfInSubArrs.at(i) *= normClip / iNormActual;
}
};
samediff::Threads::parallel_tad(func, 0, listOfInSubArrs.size());
}
} }
else { else {
if(norm2.lengthOf() == 1) { auto listOfSubArrs = z->allTensorsAlongDimension(dimensions);
if(normActual > normClip) auto func = PRAGMA_THREADS_FOR {
output.assign(input * (normClip / normActual)); for (auto i = start; i < stop; i++) {
else const NDArray actualNorm = useAverage ? listOfSubArrs.at(i)->reduceAlongDimension(reduce::Norm2, {}) / listOfSubArrs.at(i)->lengthOf() : listOfSubArrs.at(i)->reduceAlongDimension(reduce::Norm2, {});
output.assign(input); if(actualNorm.e<float>(0) > clipNorm.e<float>(0))
} *listOfSubArrs.at(i) *= clipNorm / actualNorm;
else { }
};
auto listOfInSubArrs = input.allTensorsAlongDimension(dimensions); samediff::Threads::parallel_tad(func, 0, listOfSubArrs.size());
auto listOfOutSubArrs = output.allTensorsAlongDimension(dimensions);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto inputSubArr = listOfInSubArrs.at(i);
auto outputSubArr = listOfOutSubArrs.at(i);
outputSubArr->assign(inputSubArr);
const T iNormActual = norm2.e<T>(i);
if (iNormActual > clipNorm.e<T>(0))
*outputSubArr *= clipNorm / iNormActual;
}
};
samediff::Threads::parallel_tad(func, 0, listOfInSubArrs.size());
}
} }
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) { template<typename T>
BUILD_SINGLE_SELECTOR(output.dataType(), clipByNorm_, (input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES); static void clipByNormBp_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool useAverage) {
const int rank = input.rankOf();
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions);
auto sums = input.reduceAlongDimension(reduce::Sum, dimensions);
if(norm2.lengthOf() == 1) {
const T norm = useAverage ? norm2.e<T>(0) / input.lengthOf() : norm2.e<T>(0);
auto clipVal = clipNorm.e<T>(0);
if(norm > clipVal) {
const T sum = sums.e<T>(0); // reduce to scalar
const T factor1 = clipVal / norm;
const T factor2 = static_cast<T>(1.f) / (norm * norm); // 1 / (norm*norm*norm)
auto lambda = LAMBDA_TT(x, y, sum, factor1, factor2) {
return factor1 * y * (static_cast<T>(1.f) - factor2 * x * sum);
};
const_cast<NDArray&>(input).applyPairwiseLambda<T>(const_cast<NDArray&>(gradO), lambda, gradI);
}
else
gradI.assign(gradO);
}
else {
auto gradISubArrs = gradI.allTensorsAlongDimension({dimensions});
auto gradOSubArrs = gradO.allTensorsAlongDimension({dimensions});
auto inputSubArrs = input.allTensorsAlongDimension({dimensions});
auto clipVal = clipNorm.e<T>(0);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto gradOSubArr = gradOSubArrs.at(i);
auto gradISubArr = gradISubArrs.at(i);
const T norm = useAverage ? norm2.e<T>(i) / gradISubArr->lengthOf() : norm2.e<T>(i);
if (norm > clipVal) {
auto inputSubArr = inputSubArrs.at(i);
const T sum = sums.e<T>(i); // reduce to scalar
const T factor1 = clipVal / norm;
const T factor2 = static_cast<T>(1.f) / (norm * norm); // 1 / (norm*norm*norm)
auto lambda = LAMBDA_TT(x, y, sum, factor1, factor2) {
return factor1 * y * (static_cast<T>(1.f) - factor2 * x * sum);
};
inputSubArr->applyPairwiseLambda<T>(*gradOSubArr, lambda, *gradISubArr);
}
else
gradISubArr->assign(gradOSubArr);
}
};
samediff::Threads::parallel_tad(func, 0, gradISubArrs.size());
}
} }
BUILD_SINGLE_TEMPLATE(template void clipByNormBp_, (const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool useAverage), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
void clipByNormBp(sd::LaunchContext* context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool useAverage) {
const NDArray& castedInput = gradI.dataType() == input.dataType() ? input : input.cast(gradI.dataType());
BUILD_SINGLE_SELECTOR(gradI.dataType(), clipByNormBp_, (castedInput, gradO, gradI, dimensions, clipNorm, useAverage), FLOAT_TYPES);
}
template <typename T> template <typename T>
@ -132,125 +183,6 @@ void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, co
BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace), FLOAT_TYPES); BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByNormBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
const int rank = input.rankOf();
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions);
if(norm2.lengthOf() == 1) {
const T N = norm2.e<T>(0);
auto cn = clipNorm.e<T>(0);
if(N > cn) {
const T sumOfProd = (input * gradO).reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = static_cast<T>(1.f) / N;
const T factor3 = factor1 / (N * N); // 1 / (N*N*N)
auto lambda = LAMBDA_TT(elem1, elem2, cn, sumOfProd, factor1, factor3) {
return cn * (factor1 * elem2 - factor3 * elem1 * sumOfProd);
};
(const_cast<NDArray&>(input)).applyPairwiseLambda<T>(const_cast<NDArray&>(gradO), lambda, gradI);
}
else
gradI.assign(gradO);
}
else {
auto gradISubArrs = gradI.allTensorsAlongDimension({dimensions});
auto gradOSubArrs = gradO.allTensorsAlongDimension({dimensions});
auto inputSubArrs = input.allTensorsAlongDimension({dimensions});
auto cn = clipNorm.e<T>(0);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
T N = norm2.e<T>(i);
auto gradOSubArr = gradOSubArrs.at(i);
auto gradISubArr = gradISubArrs.at(i);
if (N > cn) {
auto inputSubArr = inputSubArrs.at(i);
const T sumOfProd = (*inputSubArr * *gradOSubArr).reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = static_cast<T>(1.f) / N;
const T factor3 = factor1 / (N * N); // 1 / (N*N*N)
auto lambda = LAMBDA_TT(elem1, elem2, cn, sumOfProd, factor1, factor3) {
return cn * (factor1 * elem2 - factor3 * elem1 * sumOfProd);
};
inputSubArr->applyPairwiseLambda<T>(*gradOSubArr, lambda, *gradISubArr);
} else
gradISubArr->assign(gradOSubArr);
}
};
samediff::Threads::parallel_tad(func, 0, gradISubArrs.size());
}
}
void clipByNormBP(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
BUILD_SINGLE_SELECTOR(gradI.dataType(), clipByNormBP_, (input, gradO, gradI, dimensions, clipNorm), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByNormBP_, (const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByAveraged_(NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
auto cn = clipNorm.e<T>(0);
if (dimensions.size() == 0) {
// all-reduce
T n2 = input.reduceNumber(reduce::Norm2).e<T>(0) / input.lengthOf();
if (n2 <= cn) {
if (!isInplace)
output.assign(input);
}
else {
const T factor = cn / n2;
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input.applyLambda<T>(lambda, output);
}
}
else {
// along dimension
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions, false);
if (!isInplace)
output.assign(input);
auto tads = output.allTensorsAlongDimension(dimensions);
// TODO: make this CUDA-compliant somehow
for (int e = 0; e < tads.size(); e++) {
T n2 = norm2.e<T>(e) / tads.at(e)->lengthOf();
const T factor = cn / n2;
if (n2 > cn) {
auto lambda = LAMBDA_T(_x, factor) {return _x * factor;};
tads.at(e)->applyLambda<T>(lambda, output);
}
}
}
}
void clipByAveraged(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByAveraged_, (input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByAveraged_, (NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES);
/*
if (d1 > params[1])
return params[1];
else if (d1 < params[0])
return params[0];
else return d1;
*/
template <typename T> template <typename T>
static void clipByValue_(NDArray& input, double leftBound, double rightBound, NDArray& output) { static void clipByValue_(NDArray& input, double leftBound, double rightBound, NDArray& output) {

View File

@ -29,7 +29,7 @@ namespace helpers {
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
template<typename T> template<typename X, typename Z>
static void mergeMaxIndex_(const std::vector<const NDArray*>& inArrs, NDArray& output) { static void mergeMaxIndex_(const std::vector<const NDArray*>& inArrs, NDArray& output) {
const Nd4jLong numArgs = inArrs.size(); const Nd4jLong numArgs = inArrs.size();
@ -37,17 +37,18 @@ static void mergeMaxIndex_(const std::vector<const NDArray*>& inArrs, NDArray& o
auto func = PRAGMA_THREADS_FOR { auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) { for (auto e = start; e < stop; e++) {
T max = -DataTypeUtils::max<T>(); X max = -DataTypeUtils::max<X>();
Nd4jLong idx = 0; Z idx = static_cast<Z>(0);
for (Nd4jLong i = 0; i < numArgs; i++) { for (Nd4jLong i = 0; i < numArgs; i++) {
T v = inArrs[i]->e<T>(e); X v = inArrs[i]->t<X>(e);
if (v > max) { if (v > max) {
max = v; max = v;
idx = i; idx = static_cast<Z>(i);
} }
} }
output.p(e, idx); // FIXME, use .r<Z>(e)
output.t<Z>(e) = static_cast<Z>(idx);
} }
}; };
@ -55,7 +56,7 @@ static void mergeMaxIndex_(const std::vector<const NDArray*>& inArrs, NDArray& o
} }
void mergeMaxIndex(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) { void mergeMaxIndex(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), mergeMaxIndex_, (inArrs, output), LIBND4J_TYPES); BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (inArrs, output), LIBND4J_TYPES, INDEXING_TYPES);
} }

View File

@ -193,13 +193,10 @@ static void reverseSequence_(sd::LaunchContext * context, const NDArray* input,
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
void reverse(sd::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>* intArgs, bool isBackProp) { void reverse(sd::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>* intArgs) {
// we need to reverse axis only if that's new op auto listOut = output->allTensorsAlongDimension(*intArgs);
std::vector<int> dimensions = isBackProp ? ShapeUtils::evalDimsToExclude(input->rankOf(), *intArgs) : *intArgs; auto listIn = input->allTensorsAlongDimension(*intArgs);
auto listOut = output->allTensorsAlongDimension(dimensions);
auto listIn = input->allTensorsAlongDimension(dimensions);
NDArray *subArrIn, *subArrOut; NDArray *subArrIn, *subArrOut;

View File

@ -0,0 +1,334 @@
/*******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
// @author sgazeos@gmail.com
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/transforms.h>
#include <helpers/ShapeUtils.h>
#include <helpers/PointersManager.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void clipByNormCuda(const void* vClipNorm, const void* vNorm, const Nd4jLong* normShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int* dimensions, const int dimsLen, const bool useAverage) {
const T clipNorm = *reinterpret_cast<const T*>(vClipNorm);
const T* norm = reinterpret_cast<const T*>(vNorm);
T* z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen, tadLen, totalThreads;
if (threadIdx.x == 0) {
zLen = shape::length(zShapeInfo);
tadLen = zLen / shape::length(normShapeInfo);
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
int zCoords[MAX_RANK], normCoords[MAX_RANK];
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(i, zShapeInfo, zCoords);
// deduce norm coords
for (int j = 0; j < dimsLen; ++j)
normCoords[j] = zCoords[dimensions[j]];
const T actualNorm = useAverage ? norm[shape::getOffset(normShapeInfo, normCoords)] / tadLen : norm[shape::getOffset(normShapeInfo, normCoords)];
if(actualNorm > clipNorm)
z[shape::getOffset(zShapeInfo, zCoords)] *= clipNorm / actualNorm;
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
__host__ static void clipByNormCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vClipNorm, const void* vNorm, const Nd4jLong* normShapeInfo, void* vz, const Nd4jLong* zShapeInfo,
const int* dimensions, const int dimsLen, const bool useAverage) {
clipByNormCuda<T><<<blocksPerGrid, threadsPerBlock, 512, *stream>>>(vClipNorm, vNorm, normShapeInfo, vz, zShapeInfo, dimensions, dimsLen, useAverage);
}
//////////////////////////////////////////////////////////////////////////
void clipByNorm(sd::LaunchContext* context, NDArray& input, NDArray& output, const std::vector<int>& dims, const NDArray& clipNorm, const bool isInplace, const bool useAverage) {
NDArray* z = nullptr;
if(isInplace) {
z = &input;
}
else {
output.assign(input);
z = &output;
}
if(dims.empty()) {
const NDArray actualNorm = useAverage ? z->reduceAlongDimension(reduce::Norm2, {}) / z->lengthOf() : z->reduceAlongDimension(reduce::Norm2, {});
if(actualNorm.e<float>(0) > clipNorm.e<float>(0))
*z *= clipNorm / actualNorm;
}
else {
const NDArray actualNorms = z->reduceAlongDimension(reduce::Norm2, dims);
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(z->rankOf(), dims);
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (z->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "clipByNorm");
const int* dimensions = reinterpret_cast<const int*>(manager.replicatePointer(dimsToExclude.data(), dimsToExclude.size() * sizeof(int)));
NDArray::prepareSpecialUse({z}, {z, &actualNorms, &clipNorm});
BUILD_SINGLE_SELECTOR(z->dataType(), clipByNormCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), clipNorm.specialBuffer(), actualNorms.specialBuffer(), actualNorms.specialShapeInfo(), z->specialBuffer(), z->specialShapeInfo(), dimensions, (int)dimsToExclude.size(), useAverage), FLOAT_TYPES);
NDArray::registerSpecialUse({z}, {z, &actualNorms, &clipNorm});
manager.synchronize();
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void clipByNormBpCuda(const void* vClipNorm,
const void* vx, const Nd4jLong* xShapeInfo, // input
const void* vy, const Nd4jLong* yShapeInfo, // gradO
const void* vNorm, const Nd4jLong* normShapeInfo,
const void* vSum, const Nd4jLong* sumShapeInfo,
void* vz, const Nd4jLong* zShapeInfo, // gradI
const int* dimensions, const int dimsLen, const bool useAverage) {
const T clipNorm = *reinterpret_cast<const T*>(vClipNorm);
const T* norm = reinterpret_cast<const T*>(vNorm);
const T* sum = reinterpret_cast<const T*>(vSum);
const T* x = reinterpret_cast<const T*>(vx);
const T* y = reinterpret_cast<const T*>(vy);
T* z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen, tadLen, totalThreads;
__shared__ bool sameOffsets;
if (threadIdx.x == 0) {
zLen = shape::length(zShapeInfo);
tadLen = zLen / shape::length(normShapeInfo);
totalThreads = gridDim.x * blockDim.x;
sameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, yShapeInfo, zShapeInfo);
}
__syncthreads();
int zCoords[MAX_RANK], normCoords[MAX_RANK];
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(i, zShapeInfo, zCoords);
const auto zOffset = shape::getOffset(zShapeInfo, zCoords);
const auto yOffset = sameOffsets ? zOffset : shape::getOffset(yShapeInfo, zCoords);
// deduce norm coords
for (int j = 0; j < dimsLen; ++j)
normCoords[j] = zCoords[dimensions[j]];
const T actualNorm = useAverage ? norm[shape::getOffset(normShapeInfo, normCoords)] / tadLen : norm[shape::getOffset(normShapeInfo, normCoords)];
if(actualNorm > clipNorm) {
const T sumVal = sum[shape::getOffset(sumShapeInfo, normCoords)];
const auto xOffset = sameOffsets ? zOffset : shape::getOffset(xShapeInfo, zCoords);
z[zOffset] = (clipNorm / actualNorm) * y[yOffset] * (static_cast<T>(1.f) - (x[xOffset] * sumVal) / (actualNorm * actualNorm));
}
else
z[zOffset] = y[yOffset];
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
void clipByNormBp_(sd::LaunchContext* context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dims, const NDArray& clipNorm, const bool useAverage) {
const int rank = input.rankOf();
auto actualNorms = input.reduceAlongDimension(reduce::Norm2, dims);
if(actualNorms.lengthOf() == 1) {
const T norm = useAverage ? actualNorms.e<T>(0) / static_cast<T>(input.lengthOf()) : actualNorms.e<T>(0);
auto clipVal = clipNorm.e<T>(0);
if(norm > clipVal) {
const T sum = input.reduceNumber(reduce::Sum).e<T>(0); // reduce to scalar
const T factor1 = clipVal / norm;
const T factor2 = static_cast<T>(1.f) / (norm * norm); // 1 / (norm*norm*norm)
auto lambda = LAMBDA_TT(x, y, sum, factor1, factor2) {
return factor1 * y * (static_cast<T>(1.f) - factor2 * x * sum);
};
const_cast<NDArray&>(input).applyPairwiseLambda(const_cast<NDArray&>(gradO), lambda, gradI);
}
else
gradI.assign(gradO);
}
else {
const NDArray actualNorms = input.reduceAlongDimension(reduce::Norm2, dims);
const NDArray sums = input.reduceAlongDimension(reduce::Sum, dims);
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(gradI.rankOf(), dims);
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (gradI.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "clipByNormBp");
const int* dimensions = reinterpret_cast<const int*>(manager.replicatePointer(dimsToExclude.data(), dimsToExclude.size() * sizeof(int)));
NDArray::prepareSpecialUse({&gradI}, {&actualNorms, &sums, &clipNorm, &input, &gradO});
clipByNormBpCuda<T><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(clipNorm.specialBuffer(), input.specialBuffer(), input.specialShapeInfo(), gradO.specialBuffer(), gradO.specialShapeInfo(), actualNorms.specialBuffer(), actualNorms.specialShapeInfo(), sums.specialBuffer(), sums.specialShapeInfo(), gradI.specialBuffer(), gradI.specialShapeInfo(), dimensions, (int)dimsToExclude.size(), useAverage);
NDArray::registerSpecialUse({&gradI}, {&actualNorms, &sums, &clipNorm, &input, &gradO});
manager.synchronize();
}
}
BUILD_SINGLE_TEMPLATE(template void clipByNormBp_, (sd::LaunchContext* context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool useAverage), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
void clipByNormBp(sd::LaunchContext* context, const NDArray& input, const NDArray& gradO, NDArray& gradI, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool useAverage) {
const NDArray& castedInput = gradI.dataType() == input.dataType() ? input : input.cast(gradI.dataType());
BUILD_SINGLE_SELECTOR(gradI.dataType(), clipByNormBp_, (context, castedInput, gradO, gradI, dimensions, clipNorm, useAverage), FLOAT_TYPES);
}
template <typename T>
void clipByGlobalNorm_(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
NDArray globalNorm = NDArrayFactory::create<T>(0, inputs[0]->getContext()); //sqrt(sum([l2norm(t)**2 for t in t_list]))
for (auto i = 0; i < inputs.size(); i++) {
auto input = inputs[i];
auto l2norm = input->reduceNumber(reduce::Norm2);
globalNorm += l2norm * l2norm;
}
globalNorm.applyTransform(transform::Sqrt, globalNorm); // = sd::math::nd4j_sqrt(globalNorm);
outputs[inputs.size()]->p(0, globalNorm);
globalNorm.syncToHost();
const T factor = static_cast<T>(clipNorm) / globalNorm.e<T>(0);
for (size_t e = 0; e < inputs.size(); e++) {
// all-reduce
auto input = inputs[e];
auto output = outputs[e];
if (globalNorm.e<double>(0) <= clipNorm) {
output->assign(input);
}
else {
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input->applyLambda(lambda, *output);
}
}
}
void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
BUILD_SINGLE_SELECTOR(outputs[0]->dataType(), clipByGlobalNorm_, (context, inputs, clipNorm, workspace, outputs, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace), FLOAT_TYPES);
template <typename T>
static void __global__ clipByValueKernel(void* input, const Nd4jLong* inputShape, void* output, const Nd4jLong* outputShape, double leftBound, double rightBound) {
__shared__ T* outputBuf;
__shared__ T* inputBuf;
__shared__ Nd4jLong length;
__shared__ bool linearBuffers;
if (threadIdx.x == 0) {
outputBuf = reinterpret_cast<T *>(output);
inputBuf = reinterpret_cast<T *>(input);
length = shape::length(inputShape);
linearBuffers = shape::elementWiseStride(inputShape) == shape::elementWiseStride(outputShape) && shape::elementWiseStride(inputShape) == 1;
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
if (linearBuffers) {
if (inputBuf[e] > rightBound) outputBuf[e] = (T) rightBound;
else if (inputBuf[e] < leftBound) outputBuf[e] = (T) leftBound;
else outputBuf[e] = inputBuf[e];
}
else {
auto inputOffset = shape::getIndexOffset(e, inputShape);
auto outputOffset = shape::getIndexOffset(e, outputShape);
if (inputBuf[inputOffset] > rightBound) outputBuf[outputOffset] = (T) rightBound;
else if (inputBuf[inputOffset] < leftBound) outputBuf[outputOffset] = (T) leftBound;
else outputBuf[outputOffset] = inputBuf[outputOffset];
}
}
}
template <typename T>
static void clipByValue_(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
auto stream = context->getCudaStream();
if (!input.isActualOnDeviceSide())
input.syncToDevice();
NDArray::prepareSpecialUse({&output}, {&input});
clipByValueKernel<T><<<256, 512, 8192, *stream>>>(input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftBound, rightBound);
NDArray::registerSpecialUse({&output}, {&input});
}
void clipByValue(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByValue_, (context, input, leftBound, rightBound, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByValue_, (sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES);
}
}
}

View File

@ -210,14 +210,10 @@ namespace helpers {
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
void reverse(sd::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>* intArgs, bool isBackProp) { void reverse(sd::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>* intArgs) {
// we need to reverse axis only if that's new op
std::vector<int> dimensions = isBackProp ? ShapeUtils::evalDimsToExclude(input->rankOf(), *intArgs) : *intArgs;
std::vector<int> axis = ShapeUtils::evalDimsToExclude(input->rankOf(), dimensions);
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), dimensions);
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimensions);
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), *intArgs);
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), *intArgs);
NDArray::prepareSpecialUse({output}, {input}); NDArray::prepareSpecialUse({output}, {input});

View File

@ -300,269 +300,6 @@ void tileBP(sd::LaunchContext * context, const NDArray& gradO /*input*/, NDArray
manager.synchronize(); manager.synchronize();
} }
//////////////////////////////////////////////////////////////////////////
// x - input, y - gradO, z - gradI
template<typename X, typename Z>
__global__ static void clipByNormBPWholeArrCuda(const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, void* vreducBuff, const Z clipNormVal) {
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid >= shape::length(zShapeInfo))
return;
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Z*>(vy);
auto z = reinterpret_cast<Z*>(vz);
auto reducBuff = reinterpret_cast<Z*>(vreducBuff);
uint* count = reinterpret_cast<uint*>(vreducBuff) + 16384;
__shared__ Z* shMem;
__shared__ Nd4jLong len;
__shared__ bool amIinLastBlock;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
shMem = reinterpret_cast<Z*>(shmem);
len = shape::length(zShapeInfo); // xLen = yLen = zLen
}
__syncthreads();
// fill shared memory with array elements
const auto xVal = x[shape::getIndexOffset(tid, xShapeInfo)];
const auto yVal = y[shape::getIndexOffset(tid, yShapeInfo)];
shMem[2*threadIdx.x] = static_cast<Z>(xVal * xVal); // for norm
shMem[2*threadIdx.x + 1] = static_cast<Z>(xVal * yVal); // for input * gradO
__syncthreads();
// accumulate sum per block
for (int activeThreads = blockDim.x / 2; activeThreads > 0; activeThreads /= 2) {
if (threadIdx.x < activeThreads && tid + activeThreads < len) {
shMem[2*threadIdx.x] += shMem[2*(threadIdx.x + activeThreads)];
shMem[2*threadIdx.x + 1] += shMem[2*(threadIdx.x + activeThreads) + 1];
}
__syncthreads();
}
// store accumulated sums in reduction buffer (reducBuff)
if (threadIdx.x == 0) {
reducBuff[2*blockIdx.x] = shMem[0];
reducBuff[2*blockIdx.x + 1] = shMem[1];
__threadfence();
amIinLastBlock = gridDim.x == 1 || (atomicInc(count, gridDim.x) == gridDim.x - 1);
}
__syncthreads();
// shared memory of last block is used for final summation of values stored in reduction buffer
if (amIinLastBlock) {
for (int i = threadIdx.x; i < gridDim.x; i += blockDim.x) {
shMem[2*threadIdx.x] = (i == threadIdx.x ) ? reducBuff[2*i] : reducBuff[2*i] + shMem[2*threadIdx.x];
shMem[2*threadIdx.x + 1] = (i == threadIdx.x ) ? reducBuff[2*i + 1] : reducBuff[2*i + 1] + shMem[2*threadIdx.x + 1];
}
__syncthreads();
// accumulate sum
for (int activeThreads = blockDim.x / 2; activeThreads > 0; activeThreads /= 2) {
if (threadIdx.x < activeThreads && threadIdx.x + activeThreads < gridDim.x) {
shMem[2*threadIdx.x] += shMem[2*(threadIdx.x + activeThreads)];
shMem[2*threadIdx.x + 1] += shMem[2*(threadIdx.x + activeThreads) + 1];
}
__syncthreads();
}
if (threadIdx.x == 0) {
reducBuff[0] = math::nd4j_sqrt<Z,Z>(shMem[0]);
reducBuff[1] = shMem[1];
count = 0;
}
}
}
//////////////////////////////////////////////////////////////////////////
// x - input, y - gradO, z - gradI
template<typename X, typename Z>
__global__ static void clipByNormBPCalcGradCuda(const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, void* vreducBuff, const Z clipNormVal) {
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const Nd4jLong len = shape::length(zShapeInfo); // xLen = yLen = zLen
if(tid >= len)
return;
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Z*>(vy);
auto z = reinterpret_cast<Z*>(vz);
__shared__ Z norm, sumOfProd;
if (threadIdx.x == 0) {
norm = reinterpret_cast<Z*>(vreducBuff)[0];
sumOfProd = reinterpret_cast<Z*>(vreducBuff)[1];
}
__syncthreads();
const auto yOffset = shape::getIndexOffset(tid, yShapeInfo);
const auto zOffset = shape::getIndexOffset(tid, zShapeInfo);
if(norm > clipNormVal) {
const auto xOffset = shape::getIndexOffset(tid, xShapeInfo);
const Z factor1 = static_cast<Z>(1) / norm; // 1 / norm
const Z factor2 = factor1 / (norm * norm); // 1 / (norm * norm * norm)
z[zOffset] = clipNormVal * (factor1 * y[yOffset] - factor2 * sumOfProd * x[xOffset]);
}
else {
z[zOffset] = y[yOffset];
}
}
//////////////////////////////////////////////////////////////////////////
// x - input, y - gradO, z - gradI
template<typename X, typename Z>
__global__ static void clipByNormBPTadsCuda(const void* vx, const Nd4jLong* xTadShapeInfo, const Nd4jLong* xTadOffsets, const void* vy, const Nd4jLong* yTadShapeInfo, const Nd4jLong* yTadOffsets, void* vz, const Nd4jLong* zTadShapeInfo, const Nd4jLong* zTadOffsets, const Z clipNormVal) {
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Z*>(vy);
auto z = reinterpret_cast<Z*>(vz);
__shared__ Z* shMem;
__shared__ Nd4jLong tadLen;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
shMem = reinterpret_cast<Z*>(shmem);
tadLen = shape::length(zTadShapeInfo); // xTadLen = yTadLen = zTadLen
}
__syncthreads();
const auto* xTad = x + xTadOffsets[blockIdx.x];
const auto* yTad = y + yTadOffsets[blockIdx.x];
auto* zTad = z + zTadOffsets[blockIdx.x];
// *** FIRST STAGE - ACCUMULATE REQUIRED SUMS *** //
Z norm = 0;
Z sumOfProd = 0;
for (uint i = threadIdx.x; i < tadLen; i += blockDim.x) {
const auto xOffset = shape::getIndexOffset(i, xTadShapeInfo);
const auto yOffset = shape::getIndexOffset(i, yTadShapeInfo);
shMem[2*threadIdx.x] = static_cast<Z>(xTad[xOffset] * xTad[xOffset]); // for norm
shMem[2*threadIdx.x + 1] = static_cast<Z>(xTad[xOffset] * yTad[yOffset]); // for input * gradO
__syncthreads();
// accumulate sum per block
for (uint activeThreads = blockDim.x / 2; activeThreads > 0; activeThreads /= 2) {
if (threadIdx.x < activeThreads && i + activeThreads < tadLen) {
shMem[2*threadIdx.x] += shMem[2*(threadIdx.x + activeThreads)];
shMem[2*threadIdx.x + 1] += shMem[2*(threadIdx.x + activeThreads) + 1];
}
__syncthreads();
}
norm += shMem[0];
sumOfProd += shMem[1];
}
// *** SECOND STAGE - GRADIENT CALCULATION *** //
norm = math::nd4j_sqrt<Z,Z>(norm);
for (uint i = threadIdx.x; i < tadLen; i += blockDim.x) {
const auto yOffset = shape::getIndexOffset(i, yTadShapeInfo);
const auto zOffset = shape::getIndexOffset(i, zTadShapeInfo);
if(norm > clipNormVal) {
const auto xOffset = shape::getIndexOffset(i, xTadShapeInfo);
const Z factor1 = static_cast<Z>(1) / norm; // 1 / norm
const Z factor2 = factor1 / (norm * norm); // 1 / (norm * norm * norm)
zTad[zOffset] = clipNormVal * (factor1 * yTad[yOffset] - factor2 * sumOfProd * xTad[xOffset]);
}
else {
zTad[zOffset] = yTad[yOffset];
}
}
}
//////////////////////////////////////////////////////////////////////////
template<typename X, typename Z>
static void clipByNormBPCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
const void* vy, const Nd4jLong* yShapeInfo, const Nd4jLong* yTadOffsets,
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
void* vreducBuff, const double clipNormVal) {
if(xTadOffsets == nullptr) { // means whole array
clipByNormBPWholeArrCuda<X,Z><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, vreducBuff, static_cast<Z>(clipNormVal));
clipByNormBPCalcGradCuda<X,Z><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, vreducBuff, static_cast<Z>(clipNormVal));
}
else // means tads using
clipByNormBPTadsCuda<X,Z><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, xTadOffsets, vy, yShapeInfo, yTadOffsets, vz, zShapeInfo, zTadOffsets, static_cast<Z>(clipNormVal));
}
BUILD_DOUBLE_TEMPLATE(template void clipByNormBPCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, const Nd4jLong* xTadOffsets, const void *vy, const Nd4jLong *yShapeInfo, const Nd4jLong* yTadOffsets, void *vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, void* vreducBuff, const double clipNormVal), FLOAT_TYPES, FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
void clipByNormBP(sd::LaunchContext* context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm) {
PointersManager manager(context, "clipByNormBP");
const double clipNormVal = clipNorm.e<double>(0);
const auto xType = input.dataType();
const auto zType = gradI.dataType();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int sharedMem = threadsPerBlock * 2 * input.sizeOfT() + 128;
NDArray::prepareSpecialUse({&gradI}, {&input, &gradO});
if(dimensions.empty() || dimensions.size() == input.rankOf()) { // means whole array
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
BUILD_DOUBLE_SELECTOR(xType, zType, clipByNormBPCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), nullptr, gradO.specialBuffer(), gradO.specialShapeInfo(), nullptr, gradI.specialBuffer(), gradI.specialShapeInfo(), nullptr, context->getReductionPointer(), clipNormVal), FLOAT_TYPES, FLOAT_TYPES);
}
else { // means tads using
auto packX = ConstantTadHelper::getInstance()->tadForDimensions(input.shapeInfo(), dimensions);
auto packY = ConstantTadHelper::getInstance()->tadForDimensions(gradO.shapeInfo(), dimensions);
auto packZ = ConstantTadHelper::getInstance()->tadForDimensions(gradI.shapeInfo(), dimensions);
const int blocksPerGrid = packX.numberOfTads();
BUILD_DOUBLE_SELECTOR(xType, zType, clipByNormBPCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.specialBuffer(), packX.platformShapeInfo(), packX.platformOffsets(), gradO.specialBuffer(), packY.platformShapeInfo(), packY.platformOffsets(), gradI.specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), nullptr, clipNormVal), FLOAT_TYPES, FLOAT_TYPES);
}
NDArray::registerSpecialUse({&gradI}, {&input, &gradO});
manager.synchronize();
}
template <typename T> template <typename T>
static __global__ void swapShuffleKernel(T* input, Nd4jLong const* shape, Nd4jLong firstDim, sd::graph::RandomGenerator* rng) { static __global__ void swapShuffleKernel(T* input, Nd4jLong const* shape, Nd4jLong firstDim, sd::graph::RandomGenerator* rng) {
auto tid = blockIdx.x * blockDim.x; auto tid = blockIdx.x * blockDim.x;
@ -692,252 +429,6 @@ void clipByNormBP(sd::LaunchContext* context, const NDArray& input, const NDArra
output.setIdentity(); output.setIdentity();
} }
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void clipByNormInplaceKernel(Nd4jLong numOfSubArrs, T* inputBuffer, Nd4jLong const* shape, Nd4jLong const* inputOffsets, T* norm2Buf, Nd4jLong const* norm2shape, T clipNorm) {
for (int arr = blockIdx.x; arr < numOfSubArrs; arr += gridDim.x) {
__shared__ T* z;
__shared__ Nd4jLong len;
if (threadIdx.x == 0) {
len = shape::length(shape);
z = inputBuffer + inputOffsets[arr];
}
__syncthreads();
for (int j = threadIdx.x; j < len; j+= blockDim.x) {
auto xIndex = shape::getIndexOffset(j, shape);
if(norm2Buf[arr] > clipNorm)
z[xIndex] *= clipNorm / norm2Buf[arr]; // case with ews = 1 and ordering is 'c'
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void clipByNormKernel(Nd4jLong numOfSubArrs, T* inputBuffer, Nd4jLong const* shape, Nd4jLong const* inputOffsets, T* outputBuffer, Nd4jLong const* outputShape, Nd4jLong const* outputOffsets, T* norm2Buf, Nd4jLong const* norm2shape, T clipNorm) {
for (Nd4jLong arr = blockIdx.x; arr < numOfSubArrs; arr += gridDim.x) {
__shared__ T* x, *z;
__shared__ Nd4jLong lenZ;
__shared__ T norm2;
if (threadIdx.x == 0) {
x = inputBuffer + inputOffsets[arr];
z = outputBuffer + outputOffsets[arr];
lenZ = shape::length(outputShape);
norm2 = norm2Buf[shape::getIndexOffset(arr, norm2shape)];
}
__syncthreads();
for (Nd4jLong j = threadIdx.x; j < lenZ; j+= blockDim.x) {
auto xIndex = shape::getIndexOffset(j, shape);
auto zIndex = shape::getIndexOffset(j, outputShape);
if(norm2 > clipNorm) {
z[zIndex] = x[xIndex] * clipNorm / norm2; // case with ews = 1 and ordering is 'c'
} else {
z[zIndex] = x[xIndex];
}
//printf("%lld: %lf %lf\n", j, z[zIndex], x[xIndex]);
}
__syncthreads();
}
}
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByNorm_(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, NDArray const& clipNormA, const bool isInplace) {
const int rank = input.rankOf();
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions);
clipNormA.syncToHost();
//norm2.printBuffer("Norm2");
T const clipNorm = clipNormA.e<T>(0);
//clipNormA.printBuffer("ClipNorm");
auto stream = context->getCudaStream();
if (isInplace) {
if(norm2.lengthOf() == 1) {
norm2.syncToHost();
T norm2Val = norm2.e<T>(0);
if(norm2Val > clipNorm)
input *= clipNorm / norm2Val;
}
else {
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rank, dimensions);
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.shapeInfo(), dimsToExclude);
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input.shapeInfo(), dimensions);
//auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output.shapeInfo(), dimsToExclude);
T* inputBuffer = reinterpret_cast<T*>(input.specialBuffer());
T* norm2buf = reinterpret_cast<T*>(norm2.specialBuffer());
clipByNormInplaceKernel<T><<<256, 512, 1024, *stream>>>(numOfSubArrs, inputBuffer, packX.specialShapeInfo(), packX.specialOffsets(), norm2buf, norm2.specialShapeInfo(), clipNorm);
}
}
else {
if(norm2.lengthOf() == 1) {
norm2.syncToHost();
T norm2Val = norm2.e<T>(0);
if(norm2Val > clipNorm)
output.assign( input * (clipNorm / norm2Val));
else
output.assign( input );
}
else {
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rank, dimensions);
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(input.shapeInfo(), dimsToExclude);
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input.shapeInfo(), dimensions);
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output.shapeInfo(), dimensions);
T* inputBuffer = reinterpret_cast<T*>(input.specialBuffer());
T* norm2buf = reinterpret_cast<T*>(norm2.specialBuffer());
T* outputBuffer = reinterpret_cast<T*>(output.specialBuffer());
clipByNormKernel<T><<<256, 512, 1024, *stream>>>(numOfSubArrs, inputBuffer, packX.specialShapeInfo(), packX.specialOffsets(), outputBuffer, packZ.specialShapeInfo(), packZ.specialOffsets(), norm2buf, norm2.specialShapeInfo(), clipNorm);
}
}
}
void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(output.dataType(), clipByNorm_, (context, input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByNorm_, (sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES);
template <typename T>
void clipByGlobalNorm_(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
NDArray globalNorm = NDArrayFactory::create<T>(0, inputs[0]->getContext()); //sqrt(sum([l2norm(t)**2 for t in t_list]))
for (auto i = 0; i < inputs.size(); i++) {
auto input = inputs[i];
auto l2norm = input->reduceNumber(reduce::Norm2);
globalNorm += l2norm * l2norm;
}
globalNorm.applyTransform(transform::Sqrt, globalNorm); // = sd::math::nd4j_sqrt(globalNorm);
outputs[inputs.size()]->p(0, globalNorm);
globalNorm.syncToHost();
const T factor = static_cast<T>(clipNorm) / globalNorm.e<T>(0);
for (size_t e = 0; e < inputs.size(); e++) {
// all-reduce
auto input = inputs[e];
auto output = outputs[e];
if (globalNorm.e<double>(0) <= clipNorm) {
output->assign(input);
}
else {
auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
input->applyLambda(lambda, *output);
}
}
}
void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace) {
BUILD_SINGLE_SELECTOR(outputs[0]->dataType(), clipByGlobalNorm_, (context, inputs, clipNorm, workspace, outputs, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByGlobalNorm_, (sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace), FLOAT_TYPES);
//////////////////////////////////////////////////////////////////////////
template<typename T>
static void clipByAveraged_(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
auto cn = clipNorm.e<T>(0);
if (dimensions.size() == 0) {
// all-reduce
T n2 = input.reduceNumber(reduce::Norm2).e<T>(0) / static_cast<T>(input.lengthOf());
if (n2 <= cn) {
if (!isInplace)
output.assign(input);
}
else {
const T factor = cn / n2;
//auto lambda = LAMBDA_T(_x, factor) { return _x * factor; };
//input.applyLambda<T>(lambda, output);
output.assign(input * factor);
}
}
else {
// along dimension
auto norm2 = input.reduceAlongDimension(reduce::Norm2, dimensions, false);
if (!isInplace)
output.assign(input);
auto tads = output.allTensorsAlongDimension(dimensions);
auto outTads = output.allTensorsAlongDimension(dimensions);
// TODO: make this CUDA-compliant somehow
for (int e = 0; e < tads.size(); e++) {
T n2 = norm2.e<T>(e) / static_cast<T>(tads.at(e)->lengthOf());
const T factor = cn / n2;
if (n2 > cn) {
//auto lambda = LAMBDA_T(_x, factor) {return _x * factor;};
tads.at(e)->applyScalar(scalar::Multiply, factor, *outTads.at(e));//applyLambda<T>(lambda, &output);
}
}
}
}
void clipByAveraged(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByAveraged_, (context, input, output, dimensions, clipNorm, isInplace), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByAveraged_, (sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace), FLOAT_TYPES);
/*
if (d1 > params[1])
return params[1];
else if (d1 < params[0])
return params[0];
else return d1;
*/
template <typename T>
static void __global__ clipByValueKernel(void* input, Nd4jLong const* inputShape, void* output, Nd4jLong const* outputShape, double leftBound, double rightBound) {
__shared__ T* outputBuf;
__shared__ T* inputBuf;
__shared__ Nd4jLong length;
__shared__ bool linearBuffers;
if (threadIdx.x == 0) {
outputBuf = reinterpret_cast<T *>(output);
inputBuf = reinterpret_cast<T *>(input);
length = shape::length(inputShape);
linearBuffers = shape::elementWiseStride(inputShape) == shape::elementWiseStride(outputShape) && shape::elementWiseStride(inputShape) == 1;
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
if (linearBuffers) {
if (inputBuf[e] > rightBound) outputBuf[e] = (T) rightBound;
else if (inputBuf[e] < leftBound) outputBuf[e] = (T) leftBound;
else outputBuf[e] = inputBuf[e];
}
else {
auto inputOffset = shape::getIndexOffset(e, inputShape);
auto outputOffset = shape::getIndexOffset(e, outputShape);
if (inputBuf[inputOffset] > rightBound) outputBuf[outputOffset] = (T) rightBound;
else if (inputBuf[inputOffset] < leftBound) outputBuf[outputOffset] = (T) leftBound;
else outputBuf[outputOffset] = inputBuf[outputOffset];
}
}
}
template <typename T>
static void clipByValue_(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
auto stream = context->getCudaStream();
if (!input.isActualOnDeviceSide())
input.syncToDevice();
NDArray::prepareSpecialUse({&output}, {&input});
clipByValueKernel<T><<<256, 512, 8192, *stream>>>(input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftBound, rightBound);
NDArray::registerSpecialUse({&output}, {&input});
}
void clipByValue(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output) {
BUILD_SINGLE_SELECTOR(input.dataType(), clipByValue_, (context, input, leftBound, rightBound, output), FLOAT_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void clipByValue_, (sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output);, FLOAT_TYPES);
} }
} }
} }

View File

@ -29,7 +29,7 @@ namespace helpers {
void reverseSequence(sd::LaunchContext * context, const NDArray* input, const NDArray* seqLengths, NDArray* output, int seqDim, const int batchDim); void reverseSequence(sd::LaunchContext * context, const NDArray* input, const NDArray* seqLengths, NDArray* output, int seqDim, const int batchDim);
void reverse(sd::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>* intArgs, bool isBackProp); void reverse(sd::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>* intArgs);

View File

@ -63,13 +63,13 @@ namespace helpers {
void mergeAdd(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output); void mergeAdd(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output);
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs); void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs);
void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace); void clipByNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace, const bool useAverage);
void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace); void clipByGlobalNorm(sd::LaunchContext * context, std::vector<NDArray*> const& inputs, double clipNorm, sd::memory::Workspace* workspace, std::vector<NDArray*>& outputs, bool isInplace);
void clipByNormBP(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm); void clipByNormBp(sd::LaunchContext * context, const NDArray& input, const NDArray& gradO, NDArray& gradI /*output*/, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool useAverage);
void clipByAveraged(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace); void clipByAveragedNorm(sd::LaunchContext * context, NDArray& input, NDArray& output, const std::vector<int>& dimensions, const NDArray& clipNorm, const bool isInplace);
void clipByValue(sd::LaunchContext * context, NDArray& input, double leftBound, double rightBound, NDArray& output);
void mirrorPad(sd::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode); void mirrorPad(sd::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode);

View File

@ -1093,7 +1093,7 @@ namespace sd {
return ND4J_STATUS_OK; return ND4J_STATUS_OK;
NDArray *a0 = block.array(0); NDArray *a0 = block.array(0);
for (int e = 0; e < block.width(); e++) { for (int e = 1; e < block.width(); e++) {
auto aV = block.array(e); auto aV = block.array(e);
if (!shape::equalsSoft(a0->shapeInfo(), aV->shapeInfo())) if (!shape::equalsSoft(a0->shapeInfo(), aV->shapeInfo()))
return ND4J_STATUS_BAD_DIMENSIONS; return ND4J_STATUS_BAD_DIMENSIONS;

View File

@ -90,13 +90,12 @@ static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray
// x // x
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format);
dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(*x, x_user_md);
mkldnnUtils::setBlockStrides(x, x_user_md);
// z, output // z, output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any); dnnl::memory::desc z_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc z_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(*z, z_user_md);
mkldnnUtils::setBlockStrides(z, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -112,15 +111,10 @@ static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray
// provide memory and check whether reorder is required // provide memory and check whether reorder is required
// x // x
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// z // z
auto z_user_mem = dnnl::memory(z_user_md, engine, z->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*z, engine, stream, z_user_md, op_ff_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_ff_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_ff_prim_desc.dst_desc(), engine) : z_user_mem;
if (zReorder)
dnnl::reorder(z_user_mem, z_mkl_mem).execute(stream, z_user_mem, z_mkl_mem);
args[DNNL_ARG_DST] = z_mkl_mem;
// mean // mean
auto mean_mkl_mem = dnnl::memory(op_ff_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer())); auto mean_mkl_mem = dnnl::memory(op_ff_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer()));
@ -141,8 +135,8 @@ static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray
dnnl::batch_normalization_forward(op_ff_prim_desc).execute(stream, args); dnnl::batch_normalization_forward(op_ff_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_ff_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
@ -151,7 +145,7 @@ static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray &dLdO, const NDArray* weights, static void batchnormBpMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray &dLdO, const NDArray* weights,
NDArray* dLdI, NDArray* dLdW, const float epsilon, const bool isNCHW) { NDArray* dLdI, NDArray* dLdW, const float epsilon, const bool isNCHW) {
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x // unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x
@ -206,20 +200,17 @@ static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const
// x // x
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format);
dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(*x, x_user_md);
mkldnnUtils::setBlockStrides(x, x_user_md);
// dLdO // dLdO
dnnl::memory::desc dLdO_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any); dnnl::memory::desc dLdO_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc dLdO_user_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc dLdO_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(dLdO, dLdO_user_md);
mkldnnUtils::setBlockStrides(&dLdO, dLdO_user_md);
// dLdI // dLdI
dnnl::memory::desc dLdI_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any); dnnl::memory::desc dLdI_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc dLdI_user_md = dnnl::memory::desc(dims, type, format); dnnl::memory::desc dLdI_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(*dLdI, dLdI_user_md);
mkldnnUtils::setBlockStrides(dLdI, dLdI_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -239,10 +230,10 @@ static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const
// provide memory and check whether reorder is required // provide memory and check whether reorder is required
// x // x
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// dLdO // dLdO
mkldnnUtils::loadDataToMklStream(&dLdO, engine, stream, dLdO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]); mkldnnUtils::loadDataToMklStream(dLdO, engine, stream, dLdO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]);
// mean // mean
auto mean_mkl_mem = dnnl::memory(op_bp_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer())); auto mean_mkl_mem = dnnl::memory(op_bp_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer()));
@ -253,10 +244,7 @@ static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const
args[DNNL_ARG_VARIANCE] = var_mkl_mem; args[DNNL_ARG_VARIANCE] = var_mkl_mem;
// dLdI // dLdI
auto dLdI_user_mem = dnnl::memory(dLdI_user_md, engine, dLdI->buffer()); auto dLdI_user_mem = mkldnnUtils::loadDataToMklStream(*dLdI, engine, stream, dLdI_user_md, op_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool dLdIReorder = op_bp_prim_desc.diff_src_desc() != dLdI_user_mem.get_desc();
auto dLdI_mkl_mem = dLdIReorder ? dnnl::memory(op_bp_prim_desc.diff_src_desc(), engine) : dLdI_user_mem;
args[DNNL_ARG_DIFF_SRC] = dLdI_mkl_mem;
// gamma and beta (and their gradients) if they are present // gamma and beta (and their gradients) if they are present
if(weights != nullptr) { if(weights != nullptr) {
@ -272,8 +260,8 @@ static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const
dnnl::batch_normalization_backward(op_bp_prim_desc).execute(stream, args); dnnl::batch_normalization_backward(op_bp_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (dLdIReorder) if (op_bp_prim_desc.diff_src_desc() != dLdI_user_mem.get_desc())
dnnl::reorder(dLdI_mkl_mem, dLdI_user_mem).execute(stream, dLdI_mkl_mem, dLdI_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], dLdI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], dLdI_user_mem);
stream.wait(); stream.wait();
@ -662,9 +650,9 @@ PLATFORM_IMPL(batchnorm_bp, ENGINE_CPU) {
const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2); const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2);
if (shape::strideDescendingCAscendingF(dLdO->shapeInfo())) if (shape::strideDescendingCAscendingF(dLdO->shapeInfo()))
batchnormBackPropMKLDNN(input, mean, variance, *dLdO, weights, dLdI, dLdW, epsilon, isNCHW); batchnormBpMKLDNN(input, mean, variance, *dLdO, weights, dLdI, dLdW, epsilon, isNCHW);
else else
batchnormBackPropMKLDNN(input, mean, variance, dLdO->dup(), weights, dLdI, dLdW, epsilon, isNCHW); batchnormBpMKLDNN(input, mean, variance, dLdO->dup(), weights, dLdI, dLdW, epsilon, isNCHW);
*dLdM = 0; *dLdM = 0;
*dLdV = 0; *dLdV = 0;

View File

@ -0,0 +1,186 @@
/*******************************************************************************
* Copyright (c) 2020 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <system/platform_boilerplate.h>
#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <numeric>
namespace sd {
namespace ops {
namespace platforms {
//////////////////////////////////////////////////////////////////////////
static void concatMKLDNN(const std::vector<const NDArray*>& inArrs, NDArray& output, const int axis) {
// data type
dnnl::memory::data_type type;
if(output.dataType() == DataType::FLOAT32)
type = dnnl::memory::data_type::f32;
else if(output.dataType() == DataType::HALF)
type = dnnl::memory::data_type::f16;
else if(output.dataType() == DataType::BFLOAT16)
type = dnnl::memory::data_type::bf16;
else if(output.dataType() == DataType::UINT8)
type = dnnl::memory::data_type::u8;
else
type = dnnl::memory::data_type::s8;
std::vector<dnnl::memory::desc> x_user_md(inArrs.size()), x_mkl_md(inArrs.size());
// inputs
for (int i = 0; i < inArrs.size(); ++i) {
dnnl::memory::dims dims = inArrs[i]->getShapeAsFlatVector();
x_user_md[i] = x_mkl_md[i] = dnnl::memory::desc(dims, type, mkldnnUtils::getFormat(*inArrs[i]));
mkldnnUtils::setBlockStrides(*inArrs[i], x_user_md[i]);
}
// output
dnnl::memory::dims dims = output.getShapeAsFlatVector();
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(dims, type, mkldnnUtils::getFormat(output));
mkldnnUtils::setBlockStrides(output, z_user_md);
std::unordered_map<int, dnnl::memory> args;
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
dnnl::concat::primitive_desc op_prim_desc(axis, x_mkl_md, engine);
dnnl::stream stream(engine);
// inputs
for (int i = 0; i < inArrs.size(); ++i)
mkldnnUtils::loadDataToMklStream(*inArrs[i], engine, stream, x_user_md[i], op_prim_desc.src_desc(i), args[DNNL_ARG_MULTIPLE_SRC + i]);
// outputs
auto z_user_mem = mkldnnUtils::loadDataToMklStream(output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
// primitive execution
dnnl::concat(op_prim_desc).execute(stream, args);
// reorder output if necessary
if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait();
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(concat, ENGINE_CPU) {
REQUIRE_TRUE(block.width() > 0, 0, "CONCAT MKLDNN op: No input arrays were provided");
const bool isAxisInLastArr = block.getBArguments()->size() == 0 ? false : B_ARG(0);
const int numOfInArrs = isAxisInLastArr ? block.width() - 1 : block.width();
// first of all take into account possible presence of empty arrays
// also if scalar is present -> copy its value to vector with length=1
std::vector<const NDArray*> nonEmptyArrs;
std::vector<int> arrsToDelete;
int index = 0;
bool allOfSameType = true;
auto rankOfFirstArr = block.width() > 0 ? INPUT_VARIABLE(0)->rankOf() : 0;
auto typeOfFirstArr = block.width() > 0 ? INPUT_VARIABLE(0)->dataType() : block.dataType();
for(int i = 0; i < numOfInArrs; ++i) {
auto input = INPUT_VARIABLE(i);
auto currentRank = input->rankOf();
if(!input->isEmpty()) {
allOfSameType &= (typeOfFirstArr == input->dataType());
if(input->rankOf() == 0) {
auto vec = new NDArray('c', {1}, input->dataType(), block.launchContext());
vec->assign(input);
nonEmptyArrs.push_back(vec);
arrsToDelete.push_back(index);
}
else{
nonEmptyArrs.push_back(input);
}
++index;
}
}
const int numOfNonEmptyArrs = nonEmptyArrs.size();
if(numOfNonEmptyArrs == 0){
//All inputs are empty arrays -> return empty, mainly for TF import compatibility (no op)
REQUIRE_TRUE(OUTPUT_VARIABLE(0)->isEmpty(), 0, "CONCAT MKLDNN op: If all input variables are empty, output must be empty");
return Status::OK();
}
const int rank = nonEmptyArrs[0]->rankOf(); // look up to first non-empty array
int axis = isAxisInLastArr ? INPUT_VARIABLE(block.width() - 1)->e<int>(0) : INT_ARG(0);
if(axis < 0){
axis += rank;
}
// ******** input validation ******** //
REQUIRE_TRUE(allOfSameType, 0, "CONCAT MKLDNN op: all of input arrays must have same type !");
REQUIRE_TRUE(nonEmptyArrs[0]->dataType() == OUTPUT_VARIABLE(0)->dataType(), 0, "CONCAT MKLDNN op: output array should have the same type as inputs arrays !");
REQUIRE_TRUE(0 <= axis && (axis < rank || (axis == 0 && rank == 0)), 0, "CONCAT MKLDNN op: input axis must be in range [0, %i], but got %i instead!", rank-1, axis);
for(int i = 1; i < numOfNonEmptyArrs; ++i)
REQUIRE_TRUE(nonEmptyArrs[i]->rankOf() == rank, 0, "CONCAT MKLDNN op: all input arrays must have the same rank !");
for(int i = 1; i < numOfNonEmptyArrs; ++i) {
for(int dim = 0; dim < rank; ++dim)
if(dim != axis)
REQUIRE_TRUE(nonEmptyArrs[i]->sizeAt(dim) == nonEmptyArrs[0]->sizeAt(dim), 0, "CONCAT MKLDNN op: all input arrays must have the same dimensions (except those on input axis) !");
}
// ******** end of input validation ******** //
auto output = OUTPUT_VARIABLE(0);
if(numOfNonEmptyArrs == 1)
output->assign(nonEmptyArrs[0]);
else
concatMKLDNN(nonEmptyArrs, *output, axis);
// delete dynamically allocated vectors with length=1
for(int index : arrsToDelete)
delete nonEmptyArrs[index];
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_CHECK(concat, ENGINE_CPU) {
auto z = OUTPUT_VARIABLE(0);
const auto zType = z->dataType();
return z->rankOf() < 7 && (zType==DataType::FLOAT32 || zType==DataType::HALF || zType==DataType::BFLOAT16 || zType==DataType::UINT8 || zType==DataType::INT8);
}
}
}
}

View File

@ -62,33 +62,23 @@ static void conv2dMKLDNN(const NDArray *input, const NDArray *weights,
auto type = dnnl::memory::data_type::f32; auto type = dnnl::memory::data_type::f32;
std::vector<int> permut;
if(0 == wFormat)
permut = {3,2,0,1}; // [kH, kW, iC, oC] -> [oC, iC, kH, kW]
else if(2 == wFormat)
permut = {0,3,1,2}; // [oC, kH, kW, iC] -> [oC, iC, kH, kW]
// memory descriptors for arrays // memory descriptors for arrays
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormatMkl);
if(weights->ews() != 1 || weights->ordering() != 'c' || 1 != wFormat) { mkldnnUtils::setBlockStrides(*weights, w_user_md, permut);
w_user_md.data.format_kind = dnnl_blocked; // overrides format
uint i0, i1, i2, i3;
if(0 == wFormat) {
i0 = 3; i1 = 2; i2 = 0; i3 = 1; // [kH, kW, iC, oC] -> [oC, iC, kH, kW]
}
else if(1 == wFormat) {
i0 = 0; i1 = 1; i2 = 2; i3 = 3;
}
else {
i0 = 0; i1 = 3; i2 = 1; i3 = 2; // [oC, kH, kW, iC] -> [oC, iC, kH, kW]
}
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(i0);
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(i1);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(i2);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(i3);
}
// bias // bias
dnnl::memory::desc b_mkl_md; dnnl::memory::desc b_mkl_md;
@ -98,7 +88,7 @@ static void conv2dMKLDNN(const NDArray *input, const NDArray *weights,
// output // output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, type, xzFormatMkl); dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(output, z_user_md); mkldnnUtils::setBlockStrides(*output, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -114,10 +104,10 @@ static void conv2dMKLDNN(const NDArray *input, const NDArray *weights,
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// bias // bias
if(bias != nullptr) { if(bias != nullptr) {
@ -126,17 +116,14 @@ static void conv2dMKLDNN(const NDArray *input, const NDArray *weights,
} }
// output // output
auto z_user_mem = dnnl::memory(z_user_md, engine, output->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::convolution_forward(op_prim_desc).execute(stream, args); dnnl::convolution_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
// shape::printArray(z_mkl_mem.map_data<float>(),8); // shape::printArray(z_mkl_mem.map_data<float>(),8);
@ -170,64 +157,38 @@ static void conv2dBpMKLDNN(const NDArray *input, const NDArray *weights, const N
auto type = dnnl::memory::data_type::f32; auto type = dnnl::memory::data_type::f32;
std::vector<int> permut;
if(0 == wFormat)
permut = {3,2,0,1}; // [kH, kW, iC, oC] -> [oC, iC, kH, kW]
else if(2 == wFormat)
permut = {0,3,1,2}; // [oC, kH, kW, iC] -> [oC, iC, kH, kW]
// memory descriptors for arrays // memory descriptors for arrays
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormatMkl);
if(weights->ews() != 1 || weights->ordering() != 'c' || 1 != wFormat) { mkldnnUtils::setBlockStrides(*weights, w_user_md, permut);
w_user_md.data.format_kind = dnnl_blocked; // overrides format
uint i0, i1, i2, i3;
if(0 == wFormat) {
i0 = 3; i1 = 2; i2 = 0; i3 = 1; // [kH, kW, iC, oC] -> [oC, iC, kH, kW]
}
else if(1 == wFormat) {
i0 = 0; i1 = 1; i2 = 2; i3 = 3;
}
else {
i0 = 0; i1 = 3; i2 = 1; i3 = 2; // [oC, kH, kW, iC] -> [oC, iC, kH, kW]
}
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(i0);
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(i1);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(i2);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(i3);
}
// gradO // gradO
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, type, xzFormatMkl); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(gradO, gradO_user_md); mkldnnUtils::setBlockStrides(*gradO, gradO_user_md);
// gradI // gradI
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(gradI, gradI_user_md); mkldnnUtils::setBlockStrides(*gradI, gradI_user_md);
// gradW // gradW
dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, type, wFormatMkl); dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, type, wFormatMkl);
if(gradW->ews() != 1 || gradW->ordering() != 'c' || 1 != wFormat) { mkldnnUtils::setBlockStrides(*gradW, gradW_user_md, permut);
gradW_user_md.data.format_kind = dnnl_blocked; // overrides format
uint i0, i1, i2, i3;
if(0 == wFormat) {
i0 = 3; i1 = 2; i2 = 0; i3 = 1; // [kH, kW, iC, oC] -> [oC, iC, kH, kW]
}
else if(1 == wFormat) {
i0 = 0; i1 = 1; i2 = 2; i3 = 3;
}
else {
i0 = 0; i1 = 3; i2 = 1; i3 = 2; // [oC, kH, kW, iC] -> [oC, iC, kH, kW]
}
gradW_user_md.data.format_desc.blocking.strides[0] = gradW->strideAt(i0);
gradW_user_md.data.format_desc.blocking.strides[1] = gradW->strideAt(i1);
gradW_user_md.data.format_desc.blocking.strides[2] = gradW->strideAt(i2);
gradW_user_md.data.format_desc.blocking.strides[3] = gradW->strideAt(i3);
}
// gradB // gradB
dnnl::memory::desc gradB_mkl_md; dnnl::memory::desc gradB_mkl_md;
@ -256,10 +217,10 @@ static void conv2dBpMKLDNN(const NDArray *input, const NDArray *weights, const N
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// gradO // gradO
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer())); auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer()));
@ -274,16 +235,10 @@ static void conv2dBpMKLDNN(const NDArray *input, const NDArray *weights, const N
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD; args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD;
// gradI // gradI
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->buffer()); auto gradI_user_mem = mkldnnUtils::loadDataToMklStream(*gradI, engine, stream, gradI_user_md, op_data_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
// gradW // gradW
auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->buffer()); auto gradW_user_mem = mkldnnUtils::loadDataToMklStream(*gradW, engine, stream, gradW_user_md, op_weights_bp_prim_desc.diff_weights_desc(), args[DNNL_ARG_DIFF_WEIGHTS]);
const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc();
auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem;
args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem;
// gradB // gradB
if(gradB != nullptr) { if(gradB != nullptr) {
@ -301,10 +256,10 @@ static void conv2dBpMKLDNN(const NDArray *input, const NDArray *weights, const N
dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args); dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args);
// reorder gradI if necessary // reorder gradI if necessary
if (gradIReorder) if (op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc())
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], gradI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], gradI_user_mem);
if (gradWReorder) if (op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc())
dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem).execute(stream, args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem);
stream.wait(); stream.wait();

View File

@ -63,6 +63,12 @@ static void conv3dMKLDNN(const NDArray *input, const NDArray *weights,
dnnl::memory::dims wDims = {oC, iC, kD, kH, kW}; dnnl::memory::dims wDims = {oC, iC, kD, kH, kW};
dnnl::memory::dims zDims = {bS, oC, oD, oH, oW}; dnnl::memory::dims zDims = {bS, oC, oD, oH, oW};
std::vector<int> permut;
if(0 == wFormat)
permut = {4,3,0,1,2}; // [kD, kH, kW, iC, oC] -> [oC, iC, kD, kH, kW]
else if(2 == wFormat)
permut = {0,4,1,2,3}; // [oC, kD, kH, kW, iC] -> [oC, iC, kD, kH, kW]
auto type = dnnl::memory::data_type::f32; auto type = dnnl::memory::data_type::f32;
// memory descriptors for arrays // memory descriptors for arrays
@ -70,29 +76,12 @@ static void conv3dMKLDNN(const NDArray *input, const NDArray *weights,
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormatMkl);
if(weights->ews() != 1 || weights->ordering() != 'c' || 1 != wFormat) { mkldnnUtils::setBlockStrides(*weights, w_user_md, permut);
w_user_md.data.format_kind = dnnl_blocked; // overrides format
uint i0, i1, i2, i3, i4;
if(0 == wFormat) {
i0 = 4; i1 = 3; i2 = 0; i3 = 1; i4 = 2; // [kD, kH, kW, iC, oC] -> [oC, iC, kD, kH, kW]
}
else if(1 == wFormat) {
i0 = 0; i1 = 1; i2 = 2; i3 = 3; i4 = 4;
}
else {
i0 = 0; i1 = 4; i2 = 1; i3 = 2; i4 = 3; // [oC, kD, kH, kW, iC] -> [oC, iC, kD, kH, kW]
}
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(i0);
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(i1);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(i2);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(i3);
w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(i4);
}
// bias // bias
dnnl::memory::desc b_mkl_md; dnnl::memory::desc b_mkl_md;
@ -102,7 +91,7 @@ static void conv3dMKLDNN(const NDArray *input, const NDArray *weights,
// output // output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, type, xzFormatMkl); dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(output, z_user_md); mkldnnUtils::setBlockStrides(*output, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -118,10 +107,10 @@ static void conv3dMKLDNN(const NDArray *input, const NDArray *weights,
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// bias // bias
if(bias != nullptr) { if(bias != nullptr) {
@ -130,17 +119,14 @@ static void conv3dMKLDNN(const NDArray *input, const NDArray *weights,
} }
// output // output
auto z_user_mem = dnnl::memory(z_user_md, engine, output->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::convolution_forward(op_prim_desc).execute(stream, args); dnnl::convolution_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
} }
@ -177,68 +163,40 @@ static void conv3dBpMKLDNN(const NDArray *input, const NDArray *weights, const N
auto type = dnnl::memory::data_type::f32; auto type = dnnl::memory::data_type::f32;
std::vector<int> permut;
if(0 == wFormat)
permut = {4,3,0,1,2}; // [kD, kH, kW, iC, oC] -> [oC, iC, kD, kH, kW]
else if(2 == wFormat)
permut = {0,4,1,2,3}; // [oC, kD, kH, kW, iC] -> [oC, iC, kD, kH, kW]
// memory descriptors for arrays // memory descriptors for arrays
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, type, wFormatMkl);
if(weights->ews() != 1 || weights->ordering() != 'c' || 1 != wFormat) { mkldnnUtils::setBlockStrides(*weights, w_user_md, permut);
w_user_md.data.format_kind = dnnl_blocked; // overrides format
uint i0, i1, i2, i3, i4;
if(0 == wFormat) {
i0 = 4; i1 = 3; i2 = 0; i3 = 1; i4 = 2; // [kD, kH, kW, iC, oC] -> [oC, iC, kD, kH, kW]
}
else if(1 == wFormat) {
i0 = 0; i1 = 1; i2 = 2; i3 = 3; i4 = 4;
}
else {
i0 = 0; i1 = 4; i2 = 1; i3 = 2; i4 = 3; // [oC, kD, kH, kW, iC] -> [oC, iC, kD, kH, kW]
}
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(i0);
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(i1);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(i2);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(i3);
w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(i4);
}
// gradO // gradO
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, type, xzFormatMkl); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(gradO, gradO_user_md); mkldnnUtils::setBlockStrides(*gradO, gradO_user_md);
// gradI // gradI
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, type, xzFormatMkl);
mkldnnUtils::setBlockStrides(gradI, gradI_user_md); mkldnnUtils::setBlockStrides(*gradI, gradI_user_md);
// gradW // gradW
dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, type, wFormatMkl); dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, type, wFormatMkl);
if(gradW->ews() != 1 || gradW->ordering() != 'c' || 1 != wFormat) { mkldnnUtils::setBlockStrides(*gradW, gradW_user_md, permut);
gradW_user_md.data.format_kind = dnnl_blocked; // overrides format
uint i0, i1, i2, i3, i4;
if(0 == wFormat) {
i0 = 4; i1 = 3; i2 = 0; i3 = 1; i4 = 2; // [kD, kH, kW, iC, oC] -> [oC, iC, kD, kH, kW]
}
else if(1 == wFormat) {
i0 = 0; i1 = 1; i2 = 2; i3 = 3; i4 = 4;
}
else {
i0 = 0; i1 = 4; i2 = 1; i3 = 2; i4 = 3; // [oC, kD, kH, kW, iC] -> [oC, iC, kD, kH, kW]
}
gradW_user_md.data.format_desc.blocking.strides[0] = gradW->strideAt(i0);
gradW_user_md.data.format_desc.blocking.strides[1] = gradW->strideAt(i1);
gradW_user_md.data.format_desc.blocking.strides[2] = gradW->strideAt(i2);
gradW_user_md.data.format_desc.blocking.strides[3] = gradW->strideAt(i3);
gradW_user_md.data.format_desc.blocking.strides[4] = gradW->strideAt(i4);
}
// gradB // gradB
dnnl::memory::desc gradB_mkl_md; dnnl::memory::desc gradB_mkl_md;
@ -267,10 +225,10 @@ static void conv3dBpMKLDNN(const NDArray *input, const NDArray *weights, const N
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// gradO // gradO
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer())); auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer()));
@ -285,16 +243,10 @@ static void conv3dBpMKLDNN(const NDArray *input, const NDArray *weights, const N
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD; args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD;
// gradI // gradI
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->buffer()); auto gradI_user_mem = mkldnnUtils::loadDataToMklStream(*gradI, engine, stream, gradI_user_md, op_data_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
// gradW // gradW
auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->buffer()); auto gradW_user_mem = mkldnnUtils::loadDataToMklStream(*gradW, engine, stream, gradW_user_md, op_weights_bp_prim_desc.diff_weights_desc(), args[DNNL_ARG_DIFF_WEIGHTS]);
const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc();
auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem;
args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem;
// gradB // gradB
if(gradB != nullptr) { if(gradB != nullptr) {
@ -312,10 +264,10 @@ static void conv3dBpMKLDNN(const NDArray *input, const NDArray *weights, const N
dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args); dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args);
// reorder gradI if necessary // reorder gradI if necessary
if (gradIReorder) if (op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc())
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], gradI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], gradI_user_mem);
if (gradWReorder) if (op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc())
dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem).execute(stream, args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem);
stream.wait(); stream.wait();

View File

@ -47,16 +47,13 @@ static void deconv2dMKLDNN(const NDArray* input, const NDArray* weights, const N
dnnl::memory::dims padding_r = { (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW }; dnnl::memory::dims padding_r = { (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW };
dnnl::memory::dims dilation = { dH-1, dW-1 }; dnnl::memory::dims dilation = { dH-1, dW-1 };
uint i0, i1, i2, i3; std::vector<int> permut;
if(0 == wFormat) { if(0 == wFormat)
i0 = 2; i1 = 3; i2 = 0; i3 = 1; // [kH, kW, oC, iC] -> [oC, iC, kH, kW] permut = {2,3,0,1}; // [kH, kW, oC, iC] -> [oC, iC, kH, kW]
} else if(1 == wFormat)
else if(1 == wFormat) { permut = {1,0,2,3}; // [iC, oC, kH, kW] -> [oC, iC, kH, kW]
i0 = 1; i1 = 0; i2 = 2; i3 = 3; // [iC, oC, kH, kW] -> [oC, iC, kH, kW] else
} permut = {3,0,1,2}; // [iC, kH, kW, oC] -> [oC, iC, kH, kW]
else {
i0 = 3; i1 = 0; i2 = 1; i3 = 2; // [iC, kH, kW, oC] -> [oC, iC, kH, kW]
}
// input type // input type
dnnl::memory::data_type xType; dnnl::memory::data_type xType;
@ -99,16 +96,12 @@ static void deconv2dMKLDNN(const NDArray* input, const NDArray* weights, const N
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl);
w_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*weights, w_user_md, permut);
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(i0);
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(i1);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(i2);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(i3);
// bias // bias
dnnl::memory::desc b_mkl_md; dnnl::memory::desc b_mkl_md;
@ -118,7 +111,7 @@ static void deconv2dMKLDNN(const NDArray* input, const NDArray* weights, const N
// output // output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any); dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xFormatMkl); dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xFormatMkl);
mkldnnUtils::setBlockStrides(output, z_user_md); mkldnnUtils::setBlockStrides(*output, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -135,10 +128,10 @@ static void deconv2dMKLDNN(const NDArray* input, const NDArray* weights, const N
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// bias // bias
if(bias != nullptr) { if(bias != nullptr) {
@ -147,17 +140,14 @@ static void deconv2dMKLDNN(const NDArray* input, const NDArray* weights, const N
} }
// output // output
auto z_user_mem = dnnl::memory(z_user_md, engine, output->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::deconvolution_forward(op_prim_desc).execute(stream, args); dnnl::deconvolution_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
@ -180,16 +170,13 @@ static void deconv2dBpMKLDNN(const NDArray* input, const NDArray* weights, const
dnnl::memory::dims padding_r = { (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW }; dnnl::memory::dims padding_r = { (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW };
dnnl::memory::dims dilation = { dH-1, dW-1 }; dnnl::memory::dims dilation = { dH-1, dW-1 };
uint i0, i1, i2, i3; std::vector<int> permut;
if(0 == wFormat) { if(0 == wFormat)
i0 = 2; i1 = 3; i2 = 0; i3 = 1; // [kH, kW, oC, iC] -> [oC, iC, kH, kW] permut = {2,3,0,1}; // [kH, kW, oC, iC] -> [oC, iC, kH, kW]
} else if(1 == wFormat)
else if(1 == wFormat) { permut = {1,0,2,3}; // [iC, oC, kH, kW] -> [oC, iC, kH, kW]
i0 = 1; i1 = 0; i2 = 2; i3 = 3; // [iC, oC, kH, kW] -> [oC, iC, kH, kW] else
} permut = {3,0,1,2}; // [iC, kH, kW, oC] -> [oC, iC, kH, kW]
else {
i0 = 3; i1 = 0; i2 = 1; i3 = 2; // [iC, kH, kW, oC] -> [oC, iC, kH, kW]
}
// input type // input type
dnnl::memory::data_type xType = input->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; dnnl::memory::data_type xType = input->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
@ -216,35 +203,27 @@ static void deconv2dBpMKLDNN(const NDArray* input, const NDArray* weights, const
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl);
w_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*weights, w_user_md, permut);
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(i0);
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(i1);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(i2);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(i3);
// gradO // gradO
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormatMkl); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormatMkl);
mkldnnUtils::setBlockStrides(gradO, gradO_user_md); mkldnnUtils::setBlockStrides(*gradO, gradO_user_md);
// gradI // gradI
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormatMkl); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormatMkl);
mkldnnUtils::setBlockStrides(gradI, gradI_user_md); mkldnnUtils::setBlockStrides(*gradI, gradI_user_md);
// gradW // gradW
dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any); dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, gradWType, wFormatMkl); dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, gradWType, wFormatMkl);
gradW_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*gradW, gradW_user_md, permut);
gradW_user_md.data.format_desc.blocking.strides[0] = gradW->strideAt(i0);
gradW_user_md.data.format_desc.blocking.strides[1] = gradW->strideAt(i1);
gradW_user_md.data.format_desc.blocking.strides[2] = gradW->strideAt(i2);
gradW_user_md.data.format_desc.blocking.strides[3] = gradW->strideAt(i3);
// gradB // gradB
dnnl::memory::desc gradB_mkl_md; dnnl::memory::desc gradB_mkl_md;
@ -273,10 +252,10 @@ static void deconv2dBpMKLDNN(const NDArray* input, const NDArray* weights, const
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// gradO // gradO
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer())); auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer()));
@ -291,16 +270,10 @@ static void deconv2dBpMKLDNN(const NDArray* input, const NDArray* weights, const
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD; args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD;
// gradI // gradI
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->buffer()); auto gradI_user_mem = mkldnnUtils::loadDataToMklStream(*gradI, engine, stream, gradI_user_md, op_data_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
// gradW // gradW
auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->buffer()); auto gradW_user_mem = mkldnnUtils::loadDataToMklStream(*gradW, engine, stream, gradW_user_md, op_weights_bp_prim_desc.diff_weights_desc(), args[DNNL_ARG_DIFF_WEIGHTS]);
const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc();
auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem;
args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem;
// gradB // gradB
if(gradB != nullptr) { if(gradB != nullptr) {
@ -318,10 +291,10 @@ static void deconv2dBpMKLDNN(const NDArray* input, const NDArray* weights, const
dnnl::deconvolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args); dnnl::deconvolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args);
// reorder gradI if necessary // reorder gradI if necessary
if (gradIReorder) if (op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc())
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], gradI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], gradI_user_mem);
if (gradWReorder) if (op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc())
dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem).execute(stream, args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem);
stream.wait(); stream.wait();

View File

@ -31,7 +31,7 @@ namespace ops {
namespace platforms { namespace platforms {
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
static void deconv2TFdBackPropMKLDNN(const NDArray* weights, const NDArray* gradO, NDArray* gradI, static void deconv2TFdBpMKLDNN(const NDArray* weights, const NDArray* gradO, NDArray* gradI,
const int bS, const int iC, const int iH, const int iW, const int oC, const int oH, const int oW, const int bS, const int iC, const int iH, const int iW, const int oC, const int oH, const int oW,
const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW,
const bool isNCHW, const int wFormat) { const bool isNCHW, const int wFormat) {
@ -67,21 +67,17 @@ static void deconv2TFdBackPropMKLDNN(const NDArray* weights, const NDArray* grad
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl);
w_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*weights, w_user_md, {3,2,0,1}); // permute [kH, kW, iC, oC] -> [oC, iC, kH, kW]
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(3); // permute [kH, kW, iC, oC] -> [oC, iC, kH, kW]
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(2);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(0);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(1);
// gradO // gradO
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormatMkl); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormatMkl);
mkldnnUtils::setBlockStrides(gradO, gradO_user_md); mkldnnUtils::setBlockStrides(*gradO, gradO_user_md);
// gradI // gradI
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormatMkl); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormatMkl);
mkldnnUtils::setBlockStrides(gradI, gradI_user_md); mkldnnUtils::setBlockStrides(*gradI, gradI_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -101,23 +97,20 @@ static void deconv2TFdBackPropMKLDNN(const NDArray* weights, const NDArray* grad
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// gradO // gradO
mkldnnUtils::loadDataToMklStream(gradO, engine, stream, gradO_user_md, op_data_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]); mkldnnUtils::loadDataToMklStream(*gradO, engine, stream, gradO_user_md, op_data_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]);
// gradI // gradI
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->buffer()); auto gradI_user_mem = mkldnnUtils::loadDataToMklStream(*gradI, engine, stream, gradI_user_md, op_data_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
// run backward data calculations // run backward data calculations
dnnl::convolution_backward_data(op_data_bp_prim_desc).execute(stream, args); dnnl::convolution_backward_data(op_data_bp_prim_desc).execute(stream, args);
// reorder gradI if necessary // reorder gradI if necessary
if (gradIReorder) if (op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc())
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], gradI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], gradI_user_mem);
stream.wait(); stream.wait();
@ -189,7 +182,7 @@ PLATFORM_IMPL(deconv2d_tf, ENGINE_CPU) {
// gradO = new NDArray(gradO->permute({0,3,1,2})); // [bS, oH, oW, oC] -> [bS, oC, oH, oW] // gradO = new NDArray(gradO->permute({0,3,1,2})); // [bS, oH, oW, oC] -> [bS, oC, oH, oW]
// } // }
deconv2TFdBackPropMKLDNN(weights, gradO, gradI, bS, iC, iH, iW, oC, oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, isNCHW, wFormat); deconv2TFdBpMKLDNN(weights, gradO, gradI, bS, iC, iH, iW, oC, oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, isNCHW, wFormat);
// delete weights; // delete weights;

View File

@ -48,16 +48,13 @@ static void deconv3dMKLDNN(const NDArray* input, const NDArray* weights, const N
dnnl::memory::dims padding_r = { (iD - 1) * sD - oD + kD - pD, (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW }; dnnl::memory::dims padding_r = { (iD - 1) * sD - oD + kD - pD, (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW };
dnnl::memory::dims dilation = { dD-1, dH-1, dW-1 }; dnnl::memory::dims dilation = { dD-1, dH-1, dW-1 };
uint i0, i1, i2, i3, i4; std::vector<int> permut;
if(0 == wFormat) { if(0 == wFormat)
i0 = 3; i1 = 4; i2 = 0; i3 = 1; i4 = 2; // [kD, kH, kW, oC, iC] -> [oC, iC, kD, kH, kW] permut = {3,4,0,1,2}; // [kD, kH, kW, oC, iC] -> [oC, iC, kD, kH, kW]
} else if(1 == wFormat)
else if(1 == wFormat) { permut = {1,0,2,3,4}; // [iC, oC, kD, kH, kW] -> [oC, iC, kD, kH, kW]
i0 = 1; i1 = 0; i2 = 2; i3 = 3; i4 = 4; // [iC, oC, kD, kH, kW] -> [oC, iC, kD, kH, kW] else
} permut = {4,0,1,2,3}; // [iC, kD, kH, kW, oC] -> [oC, iC, kD, kH, kW]
else {
i0 = 4; i1 = 0; i2 = 1; i3 = 2; i4 = 3; // [iC, kD, kH, kW, oC] -> [oC, iC, kD, kH, kW]
}
// input type // input type
dnnl::memory::data_type xType; dnnl::memory::data_type xType;
@ -100,17 +97,12 @@ static void deconv3dMKLDNN(const NDArray* input, const NDArray* weights, const N
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl);
w_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*weights, w_user_md, permut);
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(i0);
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(i1);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(i2);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(i3);
w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(i4);
// bias // bias
dnnl::memory::desc b_mkl_md; dnnl::memory::desc b_mkl_md;
@ -120,7 +112,7 @@ static void deconv3dMKLDNN(const NDArray* input, const NDArray* weights, const N
// output // output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any); dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xFormatMkl); dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xFormatMkl);
mkldnnUtils::setBlockStrides(output, z_user_md); mkldnnUtils::setBlockStrides(*output, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -137,10 +129,10 @@ static void deconv3dMKLDNN(const NDArray* input, const NDArray* weights, const N
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// bias // bias
if(bias != nullptr) { if(bias != nullptr) {
@ -149,17 +141,14 @@ static void deconv3dMKLDNN(const NDArray* input, const NDArray* weights, const N
} }
// output // output
auto z_user_mem = dnnl::memory(z_user_md, engine, output->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::deconvolution_forward(op_prim_desc).execute(stream, args); dnnl::deconvolution_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
@ -185,16 +174,13 @@ static void deconv3dBackPropMKLDNN(const NDArray* input, const NDArray* weights,
dnnl::memory::dims padding_r = { (iD - 1) * sD - oD + kD - pD, (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW }; dnnl::memory::dims padding_r = { (iD - 1) * sD - oD + kD - pD, (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW };
dnnl::memory::dims dilation = { dD-1, dH-1, dW-1 }; dnnl::memory::dims dilation = { dD-1, dH-1, dW-1 };
uint i0, i1, i2, i3, i4; std::vector<int> permut;
if(0 == wFormat) { if(0 == wFormat)
i0 = 3; i1 = 4; i2 = 0; i3 = 1; i4 = 2; // [kD, kH, kW, oC, iC] -> [oC, iC, kD, kH, kW] permut = {3,4,0,1,2}; // [kD, kH, kW, oC, iC] -> [oC, iC, kD, kH, kW]
} else if(1 == wFormat)
else if(1 == wFormat) { permut = {1,0,2,3,4}; // [iC, oC, kD, kH, kW] -> [oC, iC, kD, kH, kW]
i0 = 1; i1 = 0; i2 = 2; i3 = 3; i4 = 4; // [iC, oC, kD, kH, kW] -> [oC, iC, kD, kH, kW] else
} permut = {4,0,1,2,3}; // [iC, kD, kH, kW, oC] -> [oC, iC, kD, kH, kW]
else {
i0 = 4; i1 = 0; i2 = 1; i3 = 2; i4 = 3; // [iC, kD, kH, kW, oC] -> [oC, iC, kD, kH, kW]
}
// input type // input type
dnnl::memory::data_type xType = input->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; dnnl::memory::data_type xType = input->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16;
@ -221,37 +207,27 @@ static void deconv3dBackPropMKLDNN(const NDArray* input, const NDArray* weights,
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl);
w_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*weights, w_user_md, permut);
w_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(i0);
w_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(i1);
w_user_md.data.format_desc.blocking.strides[2] = weights->strideAt(i2);
w_user_md.data.format_desc.blocking.strides[3] = weights->strideAt(i3);
w_user_md.data.format_desc.blocking.strides[4] = weights->strideAt(i4);
// gradO // gradO
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormatMkl); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormatMkl);
mkldnnUtils::setBlockStrides(gradO, gradO_user_md); mkldnnUtils::setBlockStrides(*gradO, gradO_user_md);
// gradI // gradI
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormatMkl); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormatMkl);
mkldnnUtils::setBlockStrides(gradI, gradI_user_md); mkldnnUtils::setBlockStrides(*gradI, gradI_user_md);
// gradW // gradW
dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any); dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, gradWType, wFormatMkl); dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, gradWType, wFormatMkl);
gradW_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*gradW, gradW_user_md, permut);
gradW_user_md.data.format_desc.blocking.strides[0] = gradW->strideAt(i0);
gradW_user_md.data.format_desc.blocking.strides[1] = gradW->strideAt(i1);
gradW_user_md.data.format_desc.blocking.strides[2] = gradW->strideAt(i2);
gradW_user_md.data.format_desc.blocking.strides[3] = gradW->strideAt(i3);
gradW_user_md.data.format_desc.blocking.strides[4] = gradW->strideAt(i4);
// gradB // gradB
dnnl::memory::desc gradB_mkl_md; dnnl::memory::desc gradB_mkl_md;
@ -281,10 +257,10 @@ static void deconv3dBackPropMKLDNN(const NDArray* input, const NDArray* weights,
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// gradO // gradO
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer())); auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer()));
@ -299,16 +275,10 @@ static void deconv3dBackPropMKLDNN(const NDArray* input, const NDArray* weights,
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD; args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD;
// gradI // gradI
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->buffer()); auto gradI_user_mem = mkldnnUtils::loadDataToMklStream(*gradI, engine, stream, gradI_user_md, op_data_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
// gradW // gradW
auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->buffer()); auto gradW_user_mem = mkldnnUtils::loadDataToMklStream(*gradW, engine, stream, gradW_user_md, op_weights_bp_prim_desc.diff_weights_desc(), args[DNNL_ARG_DIFF_WEIGHTS]);
const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc();
auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem;
args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem;
// gradB // gradB
if(gradB != nullptr) { if(gradB != nullptr) {
@ -326,10 +296,10 @@ static void deconv3dBackPropMKLDNN(const NDArray* input, const NDArray* weights,
dnnl::deconvolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args); dnnl::deconvolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args);
// reorder gradI if necessary // reorder gradI if necessary
if (gradIReorder) if (op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc())
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], gradI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], gradI_user_mem);
if (gradWReorder) if (op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc())
dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem).execute(stream, args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem);
stream.wait(); stream.wait();

View File

@ -28,7 +28,7 @@
using namespace dnnl; using namespace dnnl;
namespace sd { namespace sd {
namespace ops { namespace ops {
namespace platforms { namespace platforms {
@ -109,7 +109,7 @@ static void depthwiseConv2dMKLDNN(const NDArray* input, const NDArray* weights,
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xzFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xzFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
@ -129,7 +129,7 @@ static void depthwiseConv2dMKLDNN(const NDArray* input, const NDArray* weights,
// output // output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any); dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xzFormatMkl); dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xzFormatMkl);
mkldnnUtils::setBlockStrides(output, z_user_md); mkldnnUtils::setBlockStrides(*output, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -146,10 +146,10 @@ static void depthwiseConv2dMKLDNN(const NDArray* input, const NDArray* weights,
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// bias // bias
if(bias != nullptr) { if(bias != nullptr) {
@ -158,24 +158,21 @@ static void depthwiseConv2dMKLDNN(const NDArray* input, const NDArray* weights,
} }
// output // output
auto z_user_mem = dnnl::memory(z_user_md, engine, output->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::convolution_forward(op_prim_desc).execute(stream, args); dnnl::convolution_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
// shape::printArray(z_mkl_mem.map_data<float>(),8); // shape::printArray(z_mkl_mem.map_data<float>(),8);
} }
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
static void depthwiseConv2dNackPropMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* gradO, NDArray* gradI, NDArray* gradW, NDArray* gradB, static void depthwiseConv2dBpMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* gradO, NDArray* gradI, NDArray* gradW, NDArray* gradB,
const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW,
const int paddingMode, const bool isNCHW, const int wFormat) { const int paddingMode, const bool isNCHW, const int wFormat) {
@ -235,7 +232,7 @@ static void depthwiseConv2dNackPropMKLDNN(const NDArray* input, const NDArray* w
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xzFormatMkl); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xzFormatMkl);
mkldnnUtils::setBlockStrides(input, x_user_md); mkldnnUtils::setBlockStrides(*input, x_user_md);
// weights // weights
dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any);
@ -250,12 +247,12 @@ static void depthwiseConv2dNackPropMKLDNN(const NDArray* input, const NDArray* w
// gradO // gradO
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xzFormatMkl); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xzFormatMkl);
mkldnnUtils::setBlockStrides(gradO, gradO_user_md); mkldnnUtils::setBlockStrides(*gradO, gradO_user_md);
// gradI // gradI
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any);
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xzFormatMkl); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xzFormatMkl);
mkldnnUtils::setBlockStrides(gradI, gradI_user_md); mkldnnUtils::setBlockStrides(*gradI, gradI_user_md);
// gradW // gradW
dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any); dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any);
@ -294,10 +291,10 @@ static void depthwiseConv2dNackPropMKLDNN(const NDArray* input, const NDArray* w
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// gradO // gradO
auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer())); auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast<void*>(gradO->buffer()));
@ -312,16 +309,10 @@ static void depthwiseConv2dNackPropMKLDNN(const NDArray* input, const NDArray* w
args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD; args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD;
// gradI // gradI
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->buffer()); auto gradI_user_mem = mkldnnUtils::loadDataToMklStream(*gradI, engine, stream, gradI_user_md, op_data_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool gradIReorder = op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_data_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
// gradW // gradW
auto gradW_user_mem = dnnl::memory(gradW_user_md, engine, gradW->buffer()); auto gradW_user_mem = mkldnnUtils::loadDataToMklStream(*gradW, engine, stream, gradW_user_md, op_weights_bp_prim_desc.diff_weights_desc(), args[DNNL_ARG_DIFF_WEIGHTS]);
const bool gradWReorder = op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc();
auto gradW_mkl_mem = gradWReorder ? dnnl::memory(op_weights_bp_prim_desc.diff_weights_desc(), engine) : gradW_user_mem;
args[DNNL_ARG_DIFF_WEIGHTS] = gradW_mkl_mem;
// gradB // gradB
if(gradB != nullptr) { if(gradB != nullptr) {
@ -339,10 +330,10 @@ static void depthwiseConv2dNackPropMKLDNN(const NDArray* input, const NDArray* w
dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args); dnnl::convolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args);
// reorder gradI if necessary // reorder gradI if necessary
if (gradIReorder) if (op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc())
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], gradI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], gradI_user_mem);
if (gradWReorder) if (op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc())
dnnl::reorder(gradW_mkl_mem, gradW_user_mem).execute(stream, gradW_mkl_mem, gradW_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem).execute(stream, args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem);
stream.wait(); stream.wait();
@ -458,7 +449,7 @@ PLATFORM_IMPL(depthwise_conv2d_bp, ENGINE_CPU) {
if(bias) if(bias)
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
depthwiseConv2dNackPropMKLDNN(input, weights, gradO, gradI, gradW, gradB, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW, wFormat); depthwiseConv2dBpMKLDNN(input, weights, gradO, gradI, gradW, gradB, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW, wFormat);
return Status::OK(); return Status::OK();
} }

View File

@ -169,71 +169,43 @@ static void lstmLayerMKLDNN(const NDArray* x, const NDArray* Wx, const NDArray*
x_lstm_md = dnnl::memory::desc({sL, bS, nIn}, xType, dnnl::memory::format_tag::any); x_lstm_md = dnnl::memory::desc({sL, bS, nIn}, xType, dnnl::memory::format_tag::any);
// x_user_md = dataFormat == 0 ? dnnl::memory::desc({sL, bS, nIn}, type, dnnl::memory::format_tag::tnc) : dnnl::memory::desc({bS, sL, nIn}, type, dnnl::memory::format_tag::ntc); // x_user_md = dataFormat == 0 ? dnnl::memory::desc({sL, bS, nIn}, type, dnnl::memory::format_tag::tnc) : dnnl::memory::desc({bS, sL, nIn}, type, dnnl::memory::format_tag::ntc);
x_user_md = dnnl::memory::desc({sL, bS, nIn}, xType, dnnl::memory::format_tag::tnc); x_user_md = dnnl::memory::desc({sL, bS, nIn}, xType, dnnl::memory::format_tag::tnc);
x_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*x, x_user_md);
x_user_md.data.format_desc.blocking.strides[0] = x->stridesOf()[0];
x_user_md.data.format_desc.blocking.strides[1] = x->stridesOf()[1];
x_user_md.data.format_desc.blocking.strides[2] = x->stridesOf()[2];
// wx // wx
wx_lstm_md = dnnl::memory::desc({1,dirDim,nIn,4,nOut}, wType, dnnl::memory::format_tag::any); wx_lstm_md = dnnl::memory::desc({1,dirDim,nIn,4,nOut}, wType, dnnl::memory::format_tag::any);
wx_user_md = dnnl::memory::desc({1,dirDim,nIn,4,nOut}, wType, dnnl::memory::format_tag::ldigo); wx_user_md = dnnl::memory::desc({1,dirDim,nIn,4,nOut}, wType, dnnl::memory::format_tag::ldigo);
wx_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*Wx, wx_user_md);
wx_user_md.data.format_desc.blocking.strides[0] = Wx->stridesOf()[0];
wx_user_md.data.format_desc.blocking.strides[1] = Wx->stridesOf()[1];
wx_user_md.data.format_desc.blocking.strides[2] = Wx->stridesOf()[2];
wx_user_md.data.format_desc.blocking.strides[3] = Wx->stridesOf()[3];
wx_user_md.data.format_desc.blocking.strides[4] = Wx->stridesOf()[4];
// wr // wr
wr_lstm_md = dnnl::memory::desc({1,dirDim,nOut,4,nOut}, wType, dnnl::memory::format_tag::any); wr_lstm_md = dnnl::memory::desc({1,dirDim,nOut,4,nOut}, wType, dnnl::memory::format_tag::any);
wr_user_md = dnnl::memory::desc({1,dirDim,nOut,4,nOut}, wType, dnnl::memory::format_tag::ldigo); wr_user_md = dnnl::memory::desc({1,dirDim,nOut,4,nOut}, wType, dnnl::memory::format_tag::ldigo);
wr_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*Wr, wr_user_md);
wr_user_md.data.format_desc.blocking.strides[0] = Wr->stridesOf()[0];
wr_user_md.data.format_desc.blocking.strides[1] = Wr->stridesOf()[1];
wr_user_md.data.format_desc.blocking.strides[2] = Wr->stridesOf()[2];
wr_user_md.data.format_desc.blocking.strides[3] = Wr->stridesOf()[3];
wr_user_md.data.format_desc.blocking.strides[4] = Wr->stridesOf()[4];
// h // h
h_lstm_md = dnnl::memory::desc({sL, bS, hDirDim*nOut}, hType, dnnl::memory::format_tag::any); h_lstm_md = dnnl::memory::desc({sL, bS, hDirDim*nOut}, hType, dnnl::memory::format_tag::any);
// h_user_md = dataFormat == 0 ? dnnl::memory::desc({sL, bS, hDirDim*nOut}, type, dnnl::memory::format_tag::tnc) : dnnl::memory::desc({bS, sL, hDirDim*nOut}, type, dnnl::memory::format_tag::ntc); // h_user_md = dataFormat == 0 ? dnnl::memory::desc({sL, bS, hDirDim*nOut}, type, dnnl::memory::format_tag::tnc) : dnnl::memory::desc({bS, sL, hDirDim*nOut}, type, dnnl::memory::format_tag::ntc);
h_user_md = dnnl::memory::desc({sL, bS, hDirDim*nOut}, hType, dnnl::memory::format_tag::tnc); h_user_md = dnnl::memory::desc({sL, bS, hDirDim*nOut}, hType, dnnl::memory::format_tag::tnc);
h_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*h, h_user_md);
h_user_md.data.format_desc.blocking.strides[0] = h->stridesOf()[0];
h_user_md.data.format_desc.blocking.strides[1] = h->stridesOf()[1];
h_user_md.data.format_desc.blocking.strides[2] = h->stridesOf()[2];
// b // b
if(b) { if(b) {
b_lstm_md = dnnl::memory::desc({1,dirDim,4,nOut}, bType, dnnl::memory::format_tag::any); b_lstm_md = dnnl::memory::desc({1,dirDim,4,nOut}, bType, dnnl::memory::format_tag::any);
b_user_md = dnnl::memory::desc({1,dirDim,4,nOut}, bType, dnnl::memory::format_tag::ldgo); b_user_md = dnnl::memory::desc({1,dirDim,4,nOut}, bType, dnnl::memory::format_tag::ldgo);
b_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*b, b_user_md);
b_user_md.data.format_desc.blocking.strides[0] = b->stridesOf()[0];
b_user_md.data.format_desc.blocking.strides[1] = b->stridesOf()[1];
b_user_md.data.format_desc.blocking.strides[2] = b->stridesOf()[2];
b_user_md.data.format_desc.blocking.strides[3] = b->stridesOf()[3];
} }
// hI // hI
if(hI) { if(hI) {
hI_lstm_md = dnnl::memory::desc({1,dirDim,bS,nOut}, xType, dnnl::memory::format_tag::any); hI_lstm_md = dnnl::memory::desc({1,dirDim,bS,nOut}, xType, dnnl::memory::format_tag::any);
hI_user_md = dnnl::memory::desc({1,dirDim,bS,nOut}, xType, dnnl::memory::format_tag::ldnc); hI_user_md = dnnl::memory::desc({1,dirDim,bS,nOut}, xType, dnnl::memory::format_tag::ldnc);
hI_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*hI, hI_user_md);
hI_user_md.data.format_desc.blocking.strides[0] = hI->stridesOf()[0];
hI_user_md.data.format_desc.blocking.strides[1] = hI->stridesOf()[1];
hI_user_md.data.format_desc.blocking.strides[2] = hI->stridesOf()[2];
hI_user_md.data.format_desc.blocking.strides[3] = hI->stridesOf()[3];
} }
// cI // cI
if(cI) { if(cI) {
cI_lstm_md = dnnl::memory::desc({1,dirDim,bS,nOut}, xType, dnnl::memory::format_tag::any); cI_lstm_md = dnnl::memory::desc({1,dirDim,bS,nOut}, xType, dnnl::memory::format_tag::any);
cI_user_md = dnnl::memory::desc({1,dirDim,bS,nOut}, xType, dnnl::memory::format_tag::ldnc); cI_user_md = dnnl::memory::desc({1,dirDim,bS,nOut}, xType, dnnl::memory::format_tag::ldnc);
cI_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*cI, cI_user_md);
cI_user_md.data.format_desc.blocking.strides[0] = cI->stridesOf()[0];
cI_user_md.data.format_desc.blocking.strides[1] = cI->stridesOf()[1];
cI_user_md.data.format_desc.blocking.strides[2] = cI->stridesOf()[2];
cI_user_md.data.format_desc.blocking.strides[2] = cI->stridesOf()[3];
} }
// hL // hL
@ -241,20 +213,13 @@ static void lstmLayerMKLDNN(const NDArray* x, const NDArray* Wx, const NDArray*
hL_lstm_md = dnnl::memory::desc({1,dirDim,bS,nOut}, hType, dnnl::memory::format_tag::any); hL_lstm_md = dnnl::memory::desc({1,dirDim,bS,nOut}, hType, dnnl::memory::format_tag::any);
hL_user_md = dnnl::memory::desc({1,dirDim,bS,nOut}, hType, dnnl::memory::format_tag::ldnc); hL_user_md = dnnl::memory::desc({1,dirDim,bS,nOut}, hType, dnnl::memory::format_tag::ldnc);
hL_user_md.data.format_kind = dnnl_blocked; // overrides format hL_user_md.data.format_kind = dnnl_blocked; // overrides format
hL_user_md.data.format_desc.blocking.strides[0] = hL->stridesOf()[0]; mkldnnUtils::setBlockStrides(*hL, hL_user_md);
hL_user_md.data.format_desc.blocking.strides[1] = hL->stridesOf()[1];
hL_user_md.data.format_desc.blocking.strides[2] = hL->stridesOf()[2];
hL_user_md.data.format_desc.blocking.strides[3] = hL->stridesOf()[3];
} }
if(cL) { if(cL) {
cL_lstm_md = dnnl::memory::desc({1,dirDim,bS,nOut}, hType, dnnl::memory::format_tag::ldnc); cL_lstm_md = dnnl::memory::desc({1,dirDim,bS,nOut}, hType, dnnl::memory::format_tag::ldnc);
cL_user_md = dnnl::memory::desc({1,dirDim,bS,nOut}, hType, dnnl::memory::format_tag::ldnc); cL_user_md = dnnl::memory::desc({1,dirDim,bS,nOut}, hType, dnnl::memory::format_tag::ldnc);
cL_user_md.data.format_kind = dnnl_blocked; // overrides format mkldnnUtils::setBlockStrides(*cL, cL_user_md);
cL_user_md.data.format_desc.blocking.strides[0] = cL->stridesOf()[0];
cL_user_md.data.format_desc.blocking.strides[1] = cL->stridesOf()[1];
cL_user_md.data.format_desc.blocking.strides[2] = cL->stridesOf()[2];
cL_user_md.data.format_desc.blocking.strides[3] = cL->stridesOf()[3];
} }
// lstm memory description // lstm memory description
@ -272,64 +237,49 @@ static void lstmLayerMKLDNN(const NDArray* x, const NDArray* Wx, const NDArray*
// provide memory and check whether reorder is required // provide memory and check whether reorder is required
// x // x
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, lstm_prim_desc.src_layer_desc(), args[DNNL_ARG_SRC_LAYER]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, lstm_prim_desc.src_layer_desc(), args[DNNL_ARG_SRC_LAYER]);
// wx // wx
mkldnnUtils::loadDataToMklStream(Wx, engine, stream, wx_user_md, lstm_prim_desc.weights_layer_desc(), args[DNNL_ARG_WEIGHTS_LAYER]); mkldnnUtils::loadDataToMklStream(*Wx, engine, stream, wx_user_md, lstm_prim_desc.weights_layer_desc(), args[DNNL_ARG_WEIGHTS_LAYER]);
// wr // wr
mkldnnUtils::loadDataToMklStream(Wr, engine, stream, wr_user_md, lstm_prim_desc.weights_iter_desc(), args[DNNL_ARG_WEIGHTS_ITER]); mkldnnUtils::loadDataToMklStream(*Wr, engine, stream, wr_user_md, lstm_prim_desc.weights_iter_desc(), args[DNNL_ARG_WEIGHTS_ITER]);
// h // h
auto h_user_mem = dnnl::memory(h_user_md, engine, h->buffer()); auto h_user_mem = mkldnnUtils::loadDataToMklStream(*h, engine, stream, h_user_md, lstm_prim_desc.dst_layer_desc(), args[DNNL_ARG_DST_LAYER]);
const bool hReorder = lstm_prim_desc.dst_layer_desc() != h_user_mem.get_desc();
auto h_lstm_mem = hReorder ? dnnl::memory(lstm_prim_desc.dst_layer_desc(), engine) : h_user_mem;
args[DNNL_ARG_DST_LAYER] = h_lstm_mem;
// b // b
if(b) { if(b)
mkldnnUtils::loadDataToMklStream(b, engine, stream, b_user_md, lstm_prim_desc.bias_desc(), args[DNNL_ARG_BIAS]); mkldnnUtils::loadDataToMklStream(*b, engine, stream, b_user_md, lstm_prim_desc.bias_desc(), args[DNNL_ARG_BIAS]);
}
// hI // hI
if(hI) { if(hI)
mkldnnUtils::loadDataToMklStream(hI, engine, stream, hI_user_md, lstm_prim_desc.src_iter_desc(), args[DNNL_ARG_SRC_ITER]); mkldnnUtils::loadDataToMklStream(*hI, engine, stream, hI_user_md, lstm_prim_desc.src_iter_desc(), args[DNNL_ARG_SRC_ITER]);
}
// cI // cI
if(cI) { if(cI)
mkldnnUtils::loadDataToMklStream(cI, engine, stream, cI_user_md, lstm_prim_desc.src_iter_c_desc(), args[DNNL_ARG_SRC_ITER_C]); mkldnnUtils::loadDataToMklStream(*cI, engine, stream, cI_user_md, lstm_prim_desc.src_iter_c_desc(), args[DNNL_ARG_SRC_ITER_C]);
}
bool hLReorder(false), cLReorder(false);
dnnl::memory hL_user_mem, cL_user_mem, hL_lstm_mem, cL_lstm_mem; dnnl::memory hL_user_mem, cL_user_mem, hL_lstm_mem, cL_lstm_mem;
// hL // hL
if(hL) { if(hL)
hL_user_mem = dnnl::memory(hL_user_md, engine, hL->buffer()); hL_user_mem = mkldnnUtils::loadDataToMklStream(*hL, engine, stream, hL_user_md, lstm_prim_desc.dst_iter_desc(), args[DNNL_ARG_DST_ITER]);
hLReorder = lstm_prim_desc.dst_iter_desc() != hL_user_mem.get_desc();
hL_lstm_mem = hLReorder ? dnnl::memory(lstm_prim_desc.dst_iter_desc(), engine) : hL_user_mem;
args[DNNL_ARG_DST_ITER] = hL_lstm_mem;
}
// cL // cL
if(cL) { if(cL)
cL_user_mem = dnnl::memory(cL_user_md, engine, cL->buffer()); cL_user_mem = mkldnnUtils::loadDataToMklStream(*cL, engine, stream, cL_user_md, lstm_prim_desc.dst_iter_c_desc(), args[DNNL_ARG_DST_ITER_C]);
cLReorder = lstm_prim_desc.dst_iter_c_desc() != cL_user_mem.get_desc();
cL_lstm_mem = cLReorder ? dnnl::memory(lstm_prim_desc.dst_iter_c_desc(), engine) : cL_user_mem;
args[DNNL_ARG_DST_ITER_C] = cL_lstm_mem;
}
// run calculations // run calculations
lstm_forward(lstm_prim_desc).execute(stream, args); lstm_forward(lstm_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (hReorder) if (lstm_prim_desc.dst_layer_desc() != h_user_mem.get_desc())
reorder(h_lstm_mem, h_user_mem).execute(stream, h_lstm_mem, h_user_mem); reorder(args[DNNL_ARG_DST_LAYER], h_user_mem).execute(stream, args[DNNL_ARG_DST_LAYER], h_user_mem);
if(hLReorder) if(lstm_prim_desc.dst_iter_desc() != hL_user_mem.get_desc())
reorder(hL_lstm_mem, hL_user_mem).execute(stream, hL_lstm_mem, hL_user_mem); reorder(args[DNNL_ARG_DST_ITER], hL_user_mem).execute(stream, args[DNNL_ARG_DST_ITER], hL_user_mem);
if(cLReorder) if(lstm_prim_desc.dst_iter_c_desc() != cL_user_mem.get_desc())
reorder(cL_lstm_mem, cL_user_mem).execute(stream, cL_lstm_mem, cL_user_mem); reorder(args[DNNL_ARG_DST_ITER_C], cL_user_mem).execute(stream, args[DNNL_ARG_DST_ITER_C], cL_user_mem);
stream.wait(); stream.wait();
} }
@ -377,9 +327,9 @@ PLATFORM_IMPL(lstmLayer, ENGINE_CPU) {
auto cL = retLastC ? OUTPUT_VARIABLE(count++) : nullptr; // cell state at last step auto cL = retLastC ? OUTPUT_VARIABLE(count++) : nullptr; // cell state at last step
// evaluate dimensions // evaluate dimensions
const Nd4jLong sL = dataFormat == 3 ? x->sizeAt(0) : x->sizeAt(dataFormat); const Nd4jLong sL = x->sizeAt(dataFormat);
const Nd4jLong bS = dataFormat == 1 || dataFormat == 2 ? x->sizeAt(0) : x->sizeAt(-2); const Nd4jLong bS = dataFormat == 0 ? x->sizeAt(1) : x->sizeAt(0);
const Nd4jLong nIn = dataFormat == 2 ? x->sizeAt(1) : x->sizeAt(-1); const Nd4jLong nIn = x->sizeAt(2);
const Nd4jLong nOut = Wx->sizeAt(-1) / 4; const Nd4jLong nOut = Wx->sizeAt(-1) / 4;
// inputs validations // inputs validations
@ -435,14 +385,21 @@ PLATFORM_IMPL(lstmLayer, ENGINE_CPU) {
WxR = new NDArray(Wx->reshape(Wx->ordering(), {1,dirDim,nIn,4,nOut})); WxR = new NDArray(Wx->reshape(Wx->ordering(), {1,dirDim,nIn,4,nOut}));
WrR = new NDArray(Wr->reshape(Wr->ordering(), {1,dirDim,nOut,4,nOut})); WrR = new NDArray(Wr->reshape(Wr->ordering(), {1,dirDim,nOut,4,nOut}));
if(b) if(b)
bR = new NDArray(b->reshape(b->ordering(), {1,dirDim,4,nOut})); bR = new NDArray(b->reshape(b->ordering(), {1,dirDim,4,nOut}));
else
bR = new NDArray(x->ordering(), {1,dirDim,4,nOut}, x->dataType(), x->getContext()); // already nullified
if(hI) if(hI)
hIR = new NDArray(hI->reshape(hI->ordering(), {1,dirDim,bS,nOut})); hIR = new NDArray(hI->reshape(hI->ordering(), {1,dirDim,bS,nOut}));
if(cI) if(cI)
cIR = new NDArray(cI->reshape(cI->ordering(), {1,dirDim,bS,nOut})); cIR = new NDArray(cI->reshape(cI->ordering(), {1,dirDim,bS,nOut}));
if(hL) if(hL)
hLR = new NDArray(hL->reshape(hL->ordering(), {1,dirDim,bS,nOut}, false)); hLR = new NDArray(hL->reshape(hL->ordering(), {1,dirDim,bS,nOut}, false));
if(cL) if(cL)
cLR = new NDArray(cL->reshape(cL->ordering(), {1,dirDim,bS,nOut}, false)); cLR = new NDArray(cL->reshape(cL->ordering(), {1,dirDim,bS,nOut}, false));

View File

@ -31,20 +31,6 @@ namespace sd {
namespace ops { namespace ops {
namespace platforms { namespace platforms {
dnnl::memory::format_tag get_format_tag(const sd::NDArray &array) {
switch (array.rankOf()) {
case 1:
return dnnl::memory::format_tag::ab;
case 2:
return array.ordering() == 'c' ? dnnl::memory::format_tag::ab : dnnl::memory::format_tag::ba;
case 3:
return array.ordering() == 'c' ? dnnl::memory::format_tag::abc : dnnl::memory::format_tag::cba;
default:
throw std::runtime_error("MKLDNN matmul only supports 2D/3D arrays");
}
}
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
static void matmulMKLDNN(const NDArray* x, const NDArray* y, NDArray* z, const bool transX, const bool transY, float alpha = 1.f, float beta = 0.f) { static void matmulMKLDNN(const NDArray* x, const NDArray* y, NDArray* z, const bool transX, const bool transY, float alpha = 1.f, float beta = 0.f) {
@ -123,11 +109,16 @@ static void matmulMKLDNN(const NDArray* x, const NDArray* y, NDArray* z, const b
else if(z->dataType() == DataType::INT8) else if(z->dataType() == DataType::INT8)
zType = dnnl::memory::data_type::s8; zType = dnnl::memory::data_type::s8;
const auto xFormat = xRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*xTR);
const auto yFormat = yRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*yTR);
const auto zFormat = zRank == 1 ? dnnl::memory::format_tag::ab : mkldnnUtils::getFormat(*zR);
// memory descriptors for arrays // memory descriptors for arrays
dnnl::memory::desc x_mkl_md, x_user_md, y_mkl_md, y_user_md, z_mkl_md, z_user_md;
// x // x
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, xType, get_format_tag(*xTR)); x_user_md = x_mkl_md = dnnl::memory::desc(xShape, xType, xFormat);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, xType, get_format_tag(*xTR));
if(xTR->ews() != 1) { if(xTR->ews() != 1) {
x_user_md.data.format_kind = dnnl_blocked; // overrides format x_user_md.data.format_kind = dnnl_blocked; // overrides format
x_user_md.data.format_desc.blocking.strides[0] = xRank == 1 ? 1 : xTR->strideAt(0); x_user_md.data.format_desc.blocking.strides[0] = xRank == 1 ? 1 : xTR->strideAt(0);
@ -137,8 +128,7 @@ static void matmulMKLDNN(const NDArray* x, const NDArray* y, NDArray* z, const b
} }
// y // y
dnnl::memory::desc y_mkl_md = dnnl::memory::desc(yShape, yType, get_format_tag(*yTR)); y_user_md = y_mkl_md = dnnl::memory::desc(yShape, yType, yFormat);
dnnl::memory::desc y_user_md = dnnl::memory::desc(yShape, yType, get_format_tag(*yTR));
if(yTR->ews() != 1) { if(yTR->ews() != 1) {
y_user_md.data.format_kind = dnnl_blocked; // overrides format y_user_md.data.format_kind = dnnl_blocked; // overrides format
y_user_md.data.format_desc.blocking.strides[0] = yRank == 1 ? 1 : yTR->strideAt(0); y_user_md.data.format_desc.blocking.strides[0] = yRank == 1 ? 1 : yTR->strideAt(0);
@ -148,8 +138,7 @@ static void matmulMKLDNN(const NDArray* x, const NDArray* y, NDArray* z, const b
} }
// z // z
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zShape, zType, get_format_tag(*zR)); z_user_md = z_mkl_md = dnnl::memory::desc(zShape, zType, zFormat);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zShape, zType, get_format_tag(*zR));
if(zR->ews() != 1) { if(zR->ews() != 1) {
z_user_md.data.format_kind = dnnl_blocked; // overrides format z_user_md.data.format_kind = dnnl_blocked; // overrides format
z_user_md.data.format_desc.blocking.strides[0] = zRank == 1 ? 1 : zR->strideAt(0); z_user_md.data.format_desc.blocking.strides[0] = zRank == 1 ? 1 : zR->strideAt(0);
@ -181,37 +170,20 @@ static void matmulMKLDNN(const NDArray* x, const NDArray* y, NDArray* z, const b
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(xTR, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*xTR, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
/*
auto x_user_mem = dnnl::memory(x_user_md, engine, xTR->buffer());
const bool xReorder = op_prim_desc.src_desc() != x_user_mem.get_desc();
auto x_mkl_mem = xReorder ? dnnl::memory(op_prim_desc.src_desc(), engine) : x_user_mem;
if (xReorder)
dnnl::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem);
args[DNNL_ARG_SRC] = x_mkl_mem;
*/
// y // y
mkldnnUtils::loadDataToMklStream(yTR, engine, stream, y_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*yTR, engine, stream, y_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
/*
auto y_user_mem = dnnl::memory(y_user_md, engine, yTR->buffer());
const bool yReorder = op_prim_desc.weights_desc() != y_user_mem.get_desc();
auto y_mkl_mem = yReorder ? dnnl::memory(op_prim_desc.weights_desc(), engine) : y_user_mem;
if (yReorder)
dnnl::reorder(y_user_mem, y_mkl_mem).execute(stream, y_user_mem, y_mkl_mem);
args[DNNL_ARG_WEIGHTS] = y_mkl_mem;
*/
// z // z
auto z_user_mem = dnnl::memory(z_user_md, engine, zR->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*zR, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::matmul(op_prim_desc).execute(stream, args); dnnl::matmul(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();

View File

@ -38,45 +38,65 @@ void getDims(const NDArray* array, const int rank, dnnl::memory::dims& mklDims){
mklDims = dnnl::memory::dims(vDims); mklDims = dnnl::memory::dims(vDims);
} }
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
dnnl::memory::format_tag getFormat(const int rank){ dnnl::memory::format_tag getFormat(const NDArray& arr) {
if (2 == rank) {
return dnnl::memory::format_tag::ab; dnnl::memory::format_tag result;
}
else if (3 == rank) { switch (arr.rankOf()) {
return dnnl::memory::format_tag::abc; case 1:
} result = dnnl::memory::format_tag::a;
else if (4 == rank) { break;
return dnnl::memory::format_tag::abcd; case 2:
} result = arr.ordering() == 'c' ? dnnl::memory::format_tag::ab : dnnl::memory::format_tag::ba;
else if (5 == rank) { break;
return dnnl::memory::format_tag::abcde; case 3:
} result = arr.ordering() == 'c' ? dnnl::memory::format_tag::abc : dnnl::memory::format_tag::cba;
else if (6 == rank) { break;
return dnnl::memory::format_tag::abcdef; case 4:
} result = dnnl::memory::format_tag::abcd;
return dnnl::memory::format_tag::a; // 1 == dataSetRank break;
case 5:
result = dnnl::memory::format_tag::abcde;
break;
case 6:
result = dnnl::memory::format_tag::abcdef;
break;
default:
throw std::invalid_argument("MKLDNN getFormat: do we really want to use arras with rank > 6 ?");
}
return result;
} }
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
void setBlockStrides(const NDArray* array, dnnl::memory::desc& mklMd){ void setBlockStrides(const NDArray& array, dnnl::memory::desc& mklMd, const std::vector<int>& permut) {
if (array->ews() != 1 || array->ordering() != 'c') { if (array.ews() != 1 || (array.rankOf() > 3 && array.ordering() == 'f') || !permut.empty()) {
mklMd.data.format_kind = dnnl_blocked; // overrides format
for (auto i = 0; i < array->rankOf(); ++i) { mklMd.data.format_kind = dnnl_blocked; // overrides format
mklMd.data.format_desc.blocking.strides[i] = array->strideAt(i);
if(permut.empty())
for (auto i = 0; i < array.rankOf(); ++i)
mklMd.data.format_desc.blocking.strides[i] = array.strideAt(i);
else {
if(array.rankOf() != permut.size())
throw std::invalid_argument("mkldnnUtils::setBlockStrides: size of permut vector is not equal to array rank !");
for (auto i = 0; i < array.rankOf(); ++i)
mklMd.data.format_desc.blocking.strides[i] = array.strideAt(permut[i]);
} }
} }
} }
//////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////
void loadDataToMklStream(const NDArray* array, const dnnl::engine& engine, const dnnl::stream& stream, const dnnl::memory::desc& user_md, const dnnl::memory::desc& primitive_md, dnnl::memory loadDataToMklStream(const NDArray& array, const dnnl::engine& engine, const dnnl::stream& stream,
dnnl::memory& arg) { const dnnl::memory::desc& user_md, const dnnl::memory::desc& primitive_md, dnnl::memory& arg) {
auto user_mem = dnnl::memory(user_md, engine,const_cast<void*>(array->buffer())); auto user_mem = dnnl::memory(user_md, engine, const_cast<NDArray&>(array).buffer());
const bool bReorder = primitive_md != user_mem.get_desc(); const bool bReorder = primitive_md != user_mem.get_desc();
auto mkl_mem = bReorder ? dnnl::memory(primitive_md, engine) : user_mem; auto mkl_mem = bReorder ? dnnl::memory(primitive_md, engine) : user_mem;
if (bReorder) if (bReorder)
dnnl::reorder(user_mem, mkl_mem).execute(stream, user_mem, mkl_mem); dnnl::reorder(user_mem, mkl_mem).execute(stream, user_mem, mkl_mem);
arg = mkl_mem; arg = mkl_mem;
return user_mem;
} }
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
@ -122,33 +142,21 @@ void poolingMKLDNN(const NDArray *input, NDArray *output,
xzFrmat = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc; xzFrmat = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
} }
std::vector<int> permut;
if(!isNCHW)
permut = rank == 4 ? std::vector<int>({0,3,1,2}) : std::vector<int>({0,4,1,2,3});
// memory descriptors for arrays // memory descriptors for arrays
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, xzFrmat); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, xzFrmat);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFrmat); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
if(input->ews() != 1 || input->ordering() != 'c') { mkldnnUtils::setBlockStrides(*input, x_user_md, permut);
x_user_md.data.format_kind = dnnl_blocked; // overrides format
x_user_md.data.format_desc.blocking.strides[0] = input->strideAt(0);
x_user_md.data.format_desc.blocking.strides[1] = input->strideAt(isNCHW ? 1 :-1);
x_user_md.data.format_desc.blocking.strides[2] = input->strideAt(isNCHW ? 2 : 1);
x_user_md.data.format_desc.blocking.strides[3] = input->strideAt(isNCHW ? 3 : 2);
if(rank == 5)
x_user_md.data.format_desc.blocking.strides[4] = input->strideAt(isNCHW ? 4 : 3);
}
// output // output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, type, xzFrmat); dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, type, xzFrmat);
if(output->ews() != 1 || output->ordering() != 'c') { mkldnnUtils::setBlockStrides(*output, z_user_md, permut);
z_user_md.data.format_kind = dnnl_blocked; // overrides format
z_user_md.data.format_desc.blocking.strides[0] = output->strideAt(0);
z_user_md.data.format_desc.blocking.strides[1] = output->strideAt(isNCHW ? 1 :-1);
z_user_md.data.format_desc.blocking.strides[2] = output->strideAt(isNCHW ? 2 : 1);
z_user_md.data.format_desc.blocking.strides[3] = output->strideAt(isNCHW ? 3 : 2);
if(rank == 5)
z_user_md.data.format_desc.blocking.strides[4] = output->strideAt(isNCHW ? 4 : 3);
}
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -164,20 +172,17 @@ void poolingMKLDNN(const NDArray *input, NDArray *output,
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// output // output
auto z_user_mem = dnnl::memory(z_user_md, engine, output->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::pooling_forward(op_prim_desc).execute(stream, args); dnnl::pooling_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
} }
@ -226,46 +231,27 @@ void poolingBpMKLDNN(const NDArray *input, const NDArray *gradO, NDArray *gradI,
xzFrmat = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc; xzFrmat = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
} }
std::vector<int> permut;
if(!isNCHW)
permut = rank == 4 ? std::vector<int>({0,3,1,2}) : std::vector<int>({0,4,1,2,3});
// memory descriptors for arrays // memory descriptors for arrays
// input // input
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, xzFrmat); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, type, xzFrmat);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFrmat); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
if(input->ews() != 1 || input->ordering() != 'c') { mkldnnUtils::setBlockStrides(*input, x_user_md, permut);
x_user_md.data.format_kind = dnnl_blocked; // overrides format
x_user_md.data.format_desc.blocking.strides[0] = input->strideAt(0);
x_user_md.data.format_desc.blocking.strides[1] = input->strideAt(isNCHW ? 1 :-1);
x_user_md.data.format_desc.blocking.strides[2] = input->strideAt(isNCHW ? 2 : 1);
x_user_md.data.format_desc.blocking.strides[3] = input->strideAt(isNCHW ? 3 : 2);
if(rank == 5)
x_user_md.data.format_desc.blocking.strides[4] = input->strideAt(isNCHW ? 4 : 3);
}
// gradO // gradO
dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, type, xzFrmat); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, type, xzFrmat);
if(gradO->ews() != 1 || gradO->ordering() != 'c') { mkldnnUtils::setBlockStrides(*gradO, gradO_user_md, permut);
gradO_user_md.data.format_kind = dnnl_blocked; // overrides format
gradO_user_md.data.format_desc.blocking.strides[0] = gradO->strideAt(0);
gradO_user_md.data.format_desc.blocking.strides[1] = gradO->strideAt(isNCHW ? 1 :-1);
gradO_user_md.data.format_desc.blocking.strides[2] = gradO->strideAt(isNCHW ? 2 : 1);
gradO_user_md.data.format_desc.blocking.strides[3] = gradO->strideAt(isNCHW ? 3 : 2);
if(rank == 5)
gradO_user_md.data.format_desc.blocking.strides[4] = gradO->strideAt(isNCHW ? 4 : 3);
}
// gradI // gradI
dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, type, xzFrmat); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, type, xzFrmat);
if(gradI->ews() != 1 || gradI->ordering() != 'c') { mkldnnUtils::setBlockStrides(*gradI, gradI_user_md, permut);
gradI_user_md.data.format_kind = dnnl_blocked; // overrides format
gradI_user_md.data.format_desc.blocking.strides[0] = gradI->strideAt(0);
gradI_user_md.data.format_desc.blocking.strides[1] = gradI->strideAt(isNCHW ? 1 :-1);
gradI_user_md.data.format_desc.blocking.strides[2] = gradI->strideAt(isNCHW ? 2 : 1);
gradI_user_md.data.format_desc.blocking.strides[3] = gradI->strideAt(isNCHW ? 3 : 2);
if(rank == 5)
gradI_user_md.data.format_desc.blocking.strides[4] = gradI->strideAt(isNCHW ? 4 : 3);
}
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
dnnl::stream stream(engine); dnnl::stream stream(engine);
@ -282,18 +268,15 @@ void poolingBpMKLDNN(const NDArray *input, const NDArray *gradO, NDArray *gradI,
std::unordered_map<int, dnnl::memory> args; std::unordered_map<int, dnnl::memory> args;
// gradO // gradO
mkldnnUtils::loadDataToMklStream(gradO, engine, stream, gradO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]); mkldnnUtils::loadDataToMklStream(*gradO, engine, stream, gradO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]);
// gradI // gradI
auto gradI_user_mem = dnnl::memory(gradI_user_md, engine, gradI->buffer()); auto gradI_user_mem = mkldnnUtils::loadDataToMklStream(*gradI, engine, stream, gradI_user_md, op_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool gradIReorder = op_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc();
auto gradI_mkl_mem = gradIReorder ? dnnl::memory(op_bp_prim_desc.diff_src_desc(), engine) : gradI_user_mem;
args[DNNL_ARG_DIFF_SRC] = gradI_mkl_mem;
if(mode == algorithm::pooling_max) { if(mode == algorithm::pooling_max) {
// input // input
mkldnnUtils::loadDataToMklStream(input, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// z // z
auto z_mkl_mem = dnnl::memory(op_ff_prim_desc.dst_desc(), engine); auto z_mkl_mem = dnnl::memory(op_ff_prim_desc.dst_desc(), engine);
@ -310,10 +293,9 @@ void poolingBpMKLDNN(const NDArray *input, const NDArray *gradO, NDArray *gradI,
// run backward calculations // run backward calculations
dnnl::pooling_backward(op_bp_prim_desc).execute(stream, args); dnnl::pooling_backward(op_bp_prim_desc).execute(stream, args);
// reorder gradI if necessary // reorder gradI if necessary
if (gradIReorder) if (op_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc())
dnnl::reorder(gradI_mkl_mem, gradI_user_mem).execute(stream, gradI_mkl_mem, gradI_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], gradI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], gradI_user_mem);
stream.wait(); stream.wait();
} }

View File

@ -100,6 +100,8 @@ namespace sd {
DECLARE_PLATFORM(xw_plus_b_bp, ENGINE_CPU); DECLARE_PLATFORM(xw_plus_b_bp, ENGINE_CPU);
DECLARE_PLATFORM(concat, ENGINE_CPU);
} }
} }
@ -123,19 +125,13 @@ namespace sd {
*/ */
void getDims(const NDArray* array, const int rank, dnnl::memory::dims& mklDims); void getDims(const NDArray* array, const int rank, dnnl::memory::dims& mklDims);
/** /**
* This function generate memory format tag based on rank * This function evaluate memory format tag based on array shapeInfo
* @param const array rank * @param const array
* @return memory format * @return memory format
*/ */
dnnl::memory::format_tag getFormat(const int rank); dnnl::memory::format_tag getFormat(const NDArray& arr);
/**
* This function generate memory format tag based on rank void setBlockStrides(const NDArray& array, dnnl::memory::desc& mklMd, const std::vector<int>& permut = {});
* @param const pointer to dataset
* @param const dataset rank
* @param reference to memory descriptor
* @return memory format
*/
void setBlockStrides(const NDArray* array, dnnl::memory::desc& mklMd);
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
/** /**
* This function load and reorder user memory to mkl * This function load and reorder user memory to mkl
@ -147,7 +143,7 @@ namespace sd {
* @param primitive memory descriptor * @param primitive memory descriptor
* @param dnnl arg activation enumerator * @param dnnl arg activation enumerator
*/ */
void loadDataToMklStream(const NDArray* array, const dnnl::engine& engine, const dnnl::stream& stream, const dnnl::memory::desc& user_md, const dnnl::memory::desc& primitive_md, dnnl::memory loadDataToMklStream(const NDArray& array, const dnnl::engine& engine, const dnnl::stream& stream, const dnnl::memory::desc& user_md, const dnnl::memory::desc& primitive_md,
dnnl::memory& arg); dnnl::memory& arg);
/** /**

View File

@ -35,32 +35,37 @@ namespace sd {
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
static void softmaxMKLDNN(const NDArray* x, NDArray* z, const int axis) { static void softmaxMKLDNN(const NDArray* x, NDArray* z, const int axis) {
const auto xRank = x->rankOf(); dnnl::memory::dims shape = x->getShapeAsFlatVector();
dnnl::memory::dims xShape, zShape;
mkldnnUtils::getDims(x, xRank, xShape); const int xRank = x->rankOf();
mkldnnUtils::getDims(z, xRank, zShape);
dnnl::memory::format_tag xFormat = mkldnnUtils::getFormat(*x);
dnnl::memory::format_tag zFormat = mkldnnUtils::getFormat(*z);
dnnl::memory::format_tag format = mkldnnUtils::getFormat(xRank);
// optimized cases // optimized cases
if (2 == xRank && 0 == axis) { if (2 == xRank && 0 == axis) {
format = dnnl::memory::format_tag::ba; if(x->ews() == 1)
xFormat = dnnl::memory::format_tag::ba;
if(z->ews() == 1)
zFormat = dnnl::memory::format_tag::ba;
} }
else if (4 == xRank && 1 == axis && (x->sizeAt(2) * x->sizeAt(3)) > 1) { else if (4 == xRank && 1 == axis && (x->sizeAt(2) * x->sizeAt(3)) > 1) {
format = dnnl::memory::format_tag::acdb; if(x->ews() == 1)
xFormat = dnnl::memory::format_tag::acdb;
if(z->ews() == 1)
zFormat = dnnl::memory::format_tag::acdb;
} }
dnnl::memory::data_type xType = dnnl::memory::data_type::f32; dnnl::memory::data_type xType = dnnl::memory::data_type::f32;
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, xType, format); dnnl::memory::desc x_mkl_md, x_user_md, z_mkl_md, z_user_md;
dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, xType, format);
mkldnnUtils::setBlockStrides(x, x_user_md); x_user_md = x_mkl_md = dnnl::memory::desc(shape, xType, xFormat);
mkldnnUtils::setBlockStrides(*x, x_user_md);
// z // z
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zShape, xType, format); z_user_md = z_mkl_md = dnnl::memory::desc(shape, xType, zFormat);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zShape, xType, format); mkldnnUtils::setBlockStrides(*z, z_user_md);
mkldnnUtils::setBlockStrides(z, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -80,20 +85,17 @@ namespace sd {
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// z // z
auto z_user_mem = dnnl::memory(z_user_md, engine, z->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*z, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::softmax_forward(op_prim_desc).execute(stream, args); dnnl::softmax_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
} }
@ -142,33 +144,19 @@ namespace sd {
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
static void softmaxBpMKLDNN(const NDArray* x, const NDArray* dLdz, NDArray* dLdx, const int axis) { static void softmaxBpMKLDNN(const NDArray* x, const NDArray* dLdz, NDArray* dLdx, const int axis) {
const auto xRank = x->rankOf(); dnnl::memory::desc x_user_md, x_mkl_md, dLdx_mkl_md, dLdx_user_md, dLdz_mkl_md, dLdz_user_md;
const auto dLdzRank = dLdz->rankOf();
dnnl::memory::dims xShape, dLdxShape, dLdzShape;
mkldnnUtils::getDims(x, xRank, xShape);
mkldnnUtils::getDims(dLdx, xRank, dLdxShape);
mkldnnUtils::getDims(dLdz, dLdzRank, dLdzShape);
dnnl::memory::format_tag format = mkldnnUtils::getFormat(xRank);
// x // x
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format); x_mkl_md = x_user_md = dnnl::memory::desc(x->getShapeAsFlatVector(), dnnl::memory::data_type::f32, mkldnnUtils::getFormat(*x));
dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format); mkldnnUtils::setBlockStrides(*x, x_user_md);
mkldnnUtils::setBlockStrides(x, x_user_md);
// dLdx // dLdx
dnnl::memory::desc dLdx_mkl_md = dnnl::memory::desc(dLdxShape, dnnl::memory::data_type::f32, format); dLdx_mkl_md = dLdx_user_md = dnnl::memory::desc(dLdx->getShapeAsFlatVector(), dnnl::memory::data_type::f32, mkldnnUtils::getFormat(*dLdx));
dnnl::memory::desc dLdx_user_md = dnnl::memory::desc(dLdxShape, dnnl::memory::data_type::f32, format); mkldnnUtils::setBlockStrides(*dLdx, dLdx_user_md);
mkldnnUtils::setBlockStrides(dLdx, dLdx_user_md);
// todo if mkl does not support broadcast we can remove this
format = mkldnnUtils::getFormat(dLdzRank);
// dLdz // dLdz
dnnl::memory::desc dLdz_mkl_md = dnnl::memory::desc(dLdzShape, dnnl::memory::data_type::f32, format); dLdz_mkl_md = dLdz_user_md = dnnl::memory::desc(dLdz->getShapeAsFlatVector(), dnnl::memory::data_type::f32, mkldnnUtils::getFormat(*dLdz));
dnnl::memory::desc dLdz_user_md = dnnl::memory::desc(dLdzShape, dnnl::memory::data_type::f32, format); mkldnnUtils::setBlockStrides(*dLdz, dLdz_user_md);
mkldnnUtils::setBlockStrides(dLdz, dLdz_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -188,19 +176,18 @@ namespace sd {
// provide memory buffers and check whether reorder is required for forward // provide memory buffers and check whether reorder is required for forward
// input // input
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), argsff[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), argsff[DNNL_ARG_SRC]);
// dLdz
mkldnnUtils::loadDataToMklStream(*dLdz, engine, stream, dLdz_user_md, op_bp_prim_desc.diff_dst_desc(), argsbp[DNNL_ARG_DIFF_DST]);
// dLdx // dLdx
auto dLdx_user_mem = dnnl::memory(dLdx_user_md, engine, dLdx->buffer()); auto dLdx_user_mem = mkldnnUtils::loadDataToMklStream(*dLdx, engine, stream, dLdx_user_md, op_ff_prim_desc.src_desc(), argsff[DNNL_ARG_DST]);
const bool dLdxReorder = op_ff_prim_desc.dst_desc() != dLdx_user_mem.get_desc();
auto dLdx_mkl_mem = dLdxReorder ? dnnl::memory(op_ff_prim_desc.dst_desc(), engine) : dLdx_user_mem;
argsff[DNNL_ARG_DST] = dLdx_mkl_mem;
// check and arg set for backprob // check and arg set for backprob
argsbp[DNNL_ARG_DIFF_SRC] = dLdx_mkl_mem; argsbp[DNNL_ARG_DIFF_SRC] = argsff[DNNL_ARG_DST];
argsbp[DNNL_ARG_DST] = dLdx_mkl_mem; argsbp[DNNL_ARG_DST] = argsff[DNNL_ARG_DST];
// dLdz
mkldnnUtils::loadDataToMklStream(dLdz, engine, stream, dLdz_user_md, op_bp_prim_desc.diff_dst_desc(), argsbp[DNNL_ARG_DIFF_DST]);
// run calculations forward // run calculations forward
dnnl::softmax_forward(op_ff_prim_desc).execute(stream, argsff); dnnl::softmax_forward(op_ff_prim_desc).execute(stream, argsff);
@ -209,8 +196,8 @@ namespace sd {
dnnl::softmax_backward(op_bp_prim_desc).execute(stream, argsbp); dnnl::softmax_backward(op_bp_prim_desc).execute(stream, argsbp);
// reorder outputs if necessary // reorder outputs if necessary
if (dLdxReorder) if (op_ff_prim_desc.dst_desc() != dLdx_user_mem.get_desc())
dnnl::reorder(dLdx_mkl_mem, dLdx_user_mem).execute(stream, dLdx_mkl_mem, dLdx_user_mem); dnnl::reorder(argsff[DNNL_ARG_DST], dLdx_user_mem).execute(stream, argsff[DNNL_ARG_DST], dLdx_user_mem);
stream.wait(); stream.wait();
} }

View File

@ -34,22 +34,16 @@ namespace sd {
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
static void tanhMKLDNN(const NDArray* x, NDArray* z) { static void tanhMKLDNN(const NDArray* x, NDArray* z) {
const auto xRank = x->rankOf(); dnnl::memory::dims shape = x->getShapeAsFlatVector();
dnnl::memory::dims xShape, zShape;
mkldnnUtils::getDims(x, xRank, xShape); dnnl::memory::desc x_mkl_md, x_user_md, z_mkl_md, z_user_md;
mkldnnUtils::getDims(z, xRank, zShape);
dnnl::memory::format_tag format = mkldnnUtils::getFormat(xRank); x_user_md = x_mkl_md = dnnl::memory::desc(shape, dnnl::memory::data_type::f32, mkldnnUtils::getFormat(*x));
mkldnnUtils::setBlockStrides(*x, x_user_md);
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format);
mkldnnUtils::setBlockStrides(x, x_user_md);
// z // z
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zShape, dnnl::memory::data_type::f32, format); z_user_md = z_mkl_md = dnnl::memory::desc(shape, dnnl::memory::data_type::f32, mkldnnUtils::getFormat(*z));
dnnl::memory::desc z_user_md = dnnl::memory::desc(zShape, dnnl::memory::data_type::f32, format); mkldnnUtils::setBlockStrides(*z, z_user_md);
mkldnnUtils::setBlockStrides(z, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -68,20 +62,17 @@ namespace sd {
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// z // z
auto z_user_mem = dnnl::memory(z_user_md, engine, z->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*z, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::eltwise_forward(op_prim_desc).execute(stream, args); dnnl::eltwise_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
} }
@ -121,28 +112,21 @@ namespace sd {
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
static void tanhBpMKLDNN(const NDArray* x, const NDArray* dLdz, NDArray* dLdx) { static void tanhBpMKLDNN(const NDArray* x, const NDArray* dLdz, NDArray* dLdx) {
const auto xRank = x->rankOf(); dnnl::memory::dims shape = x->getShapeAsFlatVector();
dnnl::memory::dims xShape, dLdzShape, dLdxShape;
mkldnnUtils::getDims(x, xRank, xShape); dnnl::memory::desc x_mkl_md, x_user_md, dLdx_mkl_md, dLdx_user_md, dLdz_mkl_md, dLdz_user_md;
mkldnnUtils::getDims(dLdz, xRank, dLdzShape);
mkldnnUtils::getDims(dLdx, xRank, dLdxShape);
dnnl::memory::format_tag format = mkldnnUtils::getFormat(xRank); // x
x_user_md = x_mkl_md = dnnl::memory::desc(shape, dnnl::memory::data_type::f32, mkldnnUtils::getFormat(*x));
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format); mkldnnUtils::setBlockStrides(*x, x_user_md);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format);
mkldnnUtils::setBlockStrides(x, x_user_md);
// dLdz // dLdz
dnnl::memory::desc dLdz_mkl_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format); dLdz_user_md = dLdz_mkl_md = dnnl::memory::desc(shape, dnnl::memory::data_type::f32, mkldnnUtils::getFormat(*dLdz));
dnnl::memory::desc dLdz_user_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format); mkldnnUtils::setBlockStrides(*dLdz, dLdz_user_md);
mkldnnUtils::setBlockStrides(dLdz, dLdz_user_md);
// dLdx // dLdx
dnnl::memory::desc dLdx_mkl_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format); dLdx_user_md = dLdx_mkl_md = dnnl::memory::desc(shape, dnnl::memory::data_type::f32, mkldnnUtils::getFormat(*dLdx));
dnnl::memory::desc dLdx_user_md = dnnl::memory::desc(xShape, dnnl::memory::data_type::f32, format); mkldnnUtils::setBlockStrides(*dLdx, dLdx_user_md);
mkldnnUtils::setBlockStrides(dLdx, dLdx_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -162,23 +146,20 @@ namespace sd {
// provide memory buffers and check whether reorder is required for forward // provide memory buffers and check whether reorder is required for forward
// input // input
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// dLdz // dLdz
mkldnnUtils::loadDataToMklStream(dLdz, engine, stream, dLdz_user_md, op_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]); mkldnnUtils::loadDataToMklStream(*dLdz, engine, stream, dLdz_user_md, op_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]);
// dLdx // dLdx
auto dLdx_user_mem = dnnl::memory(dLdx_user_md, engine, dLdx->buffer()); auto dLdx_user_mem = mkldnnUtils::loadDataToMklStream(*dLdx, engine, stream, dLdx_user_md, op_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]);
const bool dLdxReorder = op_prim_desc.diff_src_desc() != dLdx_user_mem.get_desc();
auto dLdx_mkl_mem = dLdxReorder ? dnnl::memory(op_prim_desc.diff_src_desc(), engine) : dLdx_user_mem;
args[DNNL_ARG_DIFF_SRC] = dLdx_mkl_mem;
// run calculations backward // run calculations backward
dnnl::eltwise_backward(op_prim_desc).execute(stream, args); dnnl::eltwise_backward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (dLdxReorder) if (op_prim_desc.diff_src_desc() != dLdx_user_mem.get_desc())
dnnl::reorder(dLdx_mkl_mem, dLdx_user_mem).execute(stream, dLdx_mkl_mem, dLdx_user_mem); dnnl::reorder(args[DNNL_ARG_DIFF_SRC], dLdx_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], dLdx_user_mem);
stream.wait(); stream.wait();
} }

View File

@ -82,33 +82,23 @@ namespace sd {
// memory descriptors for arrays // memory descriptors for arrays
// x // x
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, xType, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, xType, format); dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, xType, mkldnnUtils::getFormat(*x));
mkldnnUtils::setBlockStrides(x, x_user_md); mkldnnUtils::setBlockStrides(*x, x_user_md);
// weights // weights
dnnl::memory::desc weights_mkl_md = dnnl::memory::desc(wShape, wType, dnnl::memory::format_tag::any); dnnl::memory::desc weights_mkl_md = dnnl::memory::desc(wShape, wType, dnnl::memory::format_tag::any);
dnnl::memory::desc weights_user_md = dnnl::memory::desc(wShape, wType, format); dnnl::memory::desc weights_user_md = dnnl::memory::desc(wShape, wType, mkldnnUtils::getFormat(*weights));
if (weights->ews() != 1 || weights->ordering() != 'c' || bShouldTransp) { mkldnnUtils::setBlockStrides(*weights, weights_user_md, bShouldTransp ? std::vector<int>({1,0}) : std::vector<int>());
weights_user_md.data.format_kind = dnnl_blocked; // overrides format
if (bShouldTransp) {
weights_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(1);
weights_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(0);
}
else {
weights_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(0);
weights_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(1);
}
}
// bias // bias
dnnl::memory::desc bias_mkl_md = dnnl::memory::desc(bShape, bType, dnnl::memory::format_tag::x); dnnl::memory::desc bias_mkl_md = dnnl::memory::desc(bShape, bType, dnnl::memory::format_tag::a);
dnnl::memory::desc bias_user_md = dnnl::memory::desc(bShape, bType, dnnl::memory::format_tag::x); dnnl::memory::desc bias_user_md = dnnl::memory::desc(bShape, bType, dnnl::memory::format_tag::a);
mkldnnUtils::setBlockStrides(bias, bias_user_md); mkldnnUtils::setBlockStrides(*bias, bias_user_md);
// z // z
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zShape, zType, dnnl::memory::format_tag::any); dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zShape, zType, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(zShape, zType, format); dnnl::memory::desc z_user_md = dnnl::memory::desc(zShape, zType, mkldnnUtils::getFormat(*z));
mkldnnUtils::setBlockStrides(z, z_user_md); mkldnnUtils::setBlockStrides(*z, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
@ -125,27 +115,24 @@ namespace sd {
// provide memory buffers and check whether reorder is required // provide memory buffers and check whether reorder is required
// input // input
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// weights // weights
mkldnnUtils::loadDataToMklStream(weights, engine, stream, weights_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, weights_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]);
// bias // bias
auto bias_mkl_mem = dnnl::memory(bias_mkl_md, engine, const_cast<void*>(bias->buffer())); auto bias_mkl_mem = dnnl::memory(bias_mkl_md, engine, const_cast<void*>(bias->buffer()));
args[DNNL_ARG_BIAS] = bias_mkl_mem; args[DNNL_ARG_BIAS] = bias_mkl_mem;
// z // z
auto z_user_mem = dnnl::memory(z_user_md, engine, z->buffer()); auto z_user_mem = mkldnnUtils::loadDataToMklStream(*z, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]);
const bool zReorder = op_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_prim_desc.dst_desc(), engine) : z_user_mem;
args[DNNL_ARG_DST] = z_mkl_mem;
// run calculations // run calculations
dnnl::inner_product_forward(op_prim_desc).execute(stream, args); dnnl::inner_product_forward(op_prim_desc).execute(stream, args);
// reorder outputs if necessary // reorder outputs if necessary
if (zReorder) if (op_prim_desc.dst_desc() != z_user_mem.get_desc())
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem); dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem);
stream.wait(); stream.wait();
} }
@ -168,71 +155,53 @@ namespace sd {
dnnl::memory::dims dLdzShape = dnnl::memory::dims({ M, N }); dnnl::memory::dims dLdzShape = dnnl::memory::dims({ M, N });
dnnl::memory::dims bShape = dnnl::memory::dims({ N }); dnnl::memory::dims bShape = dnnl::memory::dims({ N });
// output dims // output dims
dnnl::memory::dims dLdxShape = xShape; dnnl::memory::dims dLdxShape = xShape;
dnnl::memory::dims dLdwShape = wShape; dnnl::memory::dims dLdwShape = wShape;
dnnl::memory::format_tag format = dnnl::memory::format_tag::ab;
dnnl::memory::data_type dataType = dnnl::memory::data_type::f32; dnnl::memory::data_type dataType = dnnl::memory::data_type::f32;
// memory descriptors for arrays // memory descriptors for arrays
// x // x
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, dataType, dnnl::memory::format_tag::any); dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xShape, dataType, dnnl::memory::format_tag::any);
dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, dataType, format); dnnl::memory::desc x_user_md = dnnl::memory::desc(xShape, dataType, mkldnnUtils::getFormat(*x));
mkldnnUtils::setBlockStrides(x, x_user_md); mkldnnUtils::setBlockStrides(*x, x_user_md);
// weights // weights
dnnl::memory::desc weights_mkl_md = dnnl::memory::desc(wShape, dataType, dnnl::memory::format_tag::any); dnnl::memory::desc weights_mkl_md = dnnl::memory::desc(wShape, dataType, dnnl::memory::format_tag::any);
dnnl::memory::desc weights_user_md = dnnl::memory::desc(wShape, dataType, format); dnnl::memory::desc weights_user_md = dnnl::memory::desc(wShape, dataType, mkldnnUtils::getFormat(*weights));
if (weights->ews() != 1 || weights->ordering() != 'c' || bShouldTransp) { mkldnnUtils::setBlockStrides(*weights, weights_user_md, bShouldTransp ? std::vector<int>({1,0}) : std::vector<int>());
weights_user_md.data.format_kind = dnnl_blocked; // overrides format
if (bShouldTransp) {
weights_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(1);
weights_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(0);
}
else {
weights_user_md.data.format_desc.blocking.strides[0] = weights->strideAt(0);
weights_user_md.data.format_desc.blocking.strides[1] = weights->strideAt(1);
}
}
// bias // bias
dnnl::memory::desc bias_mkl_md = dnnl::memory::desc(bShape, dataType, dnnl::memory::format_tag::x); dnnl::memory::desc bias_mkl_md = dnnl::memory::desc(bShape, dataType, dnnl::memory::format_tag::any);
dnnl::memory::desc bias_user_md = dnnl::memory::desc(bShape, dataType, dnnl::memory::format_tag::x); dnnl::memory::desc bias_user_md = dnnl::memory::desc(bShape, dataType, mkldnnUtils::getFormat(*bias));
mkldnnUtils::setBlockStrides(bias, bias_user_md); mkldnnUtils::setBlockStrides(*bias, bias_user_md);
// dLdz // dLdz
dnnl::memory::desc dLdz_mkl_md = dnnl::memory::desc(dLdzShape, dataType, dnnl::memory::format_tag::any); dnnl::memory::desc dLdz_mkl_md = dnnl::memory::desc(dLdzShape, dataType, dnnl::memory::format_tag::any);
dnnl::memory::desc dLdz_user_md = dnnl::memory::desc(dLdzShape, dataType, format); dnnl::memory::desc dLdz_user_md = dnnl::memory::desc(dLdzShape, dataType, mkldnnUtils::getFormat(*dLdz));
mkldnnUtils::setBlockStrides(dLdz, dLdz_user_md); mkldnnUtils::setBlockStrides(*dLdz, dLdz_user_md);
// dLdw // dLdw
dnnl::memory::desc dLdw_mkl_md = dnnl::memory::desc(wShape, dataType, format); dnnl::memory::desc dLdw_mkl_md = dnnl::memory::desc(wShape, dataType, dnnl::memory::format_tag::any);
dnnl::memory::desc dLdw_user_md = dnnl::memory::desc(wShape, dataType, format); dnnl::memory::desc dLdw_user_md = dnnl::memory::desc(wShape, dataType, mkldnnUtils::getFormat(*dLdw));
if (dLdw->ews() != 1 || dLdw->ordering() != 'c' || bShouldTransp) { mkldnnUtils::setBlockStrides(*dLdw, dLdw_user_md, bShouldTransp ? std::vector<int>({1,0}) : std::vector<int>());
dLdw_user_md.data.format_kind = dnnl_blocked; // overrides format
if (bShouldTransp) {
dLdw_user_md.data.format_desc.blocking.strides[0] = dLdw->strideAt(1);
dLdw_user_md.data.format_desc.blocking.strides[1] = dLdw->strideAt(0);
}
else {
dLdw_user_md.data.format_desc.blocking.strides[0] = dLdw->strideAt(0);
dLdw_user_md.data.format_desc.blocking.strides[1] = dLdw->strideAt(1);
}
}
// dLdb // dLdb
dnnl::memory::desc dLdb_mkl_md = dnnl::memory::desc(bShape, dataType, dnnl::memory::format_tag::x); dnnl::memory::desc dLdb_mkl_md = dnnl::memory::desc(bShape, dataType, dnnl::memory::format_tag::any);
dnnl::memory::desc dLdb_user_md = dnnl::memory::desc(bShape, dataType, dnnl::memory::format_tag::x); dnnl::memory::desc dLdb_user_md = dnnl::memory::desc(bShape, dataType, mkldnnUtils::getFormat(*dLdb));
mkldnnUtils::setBlockStrides(dLdb, dLdb_user_md); mkldnnUtils::setBlockStrides(*dLdb, dLdb_user_md);
// dLdx // dLdx
dnnl::memory::desc dLdx_mkl_md = dnnl::memory::desc(xShape, dataType, dnnl::memory::format_tag::any); dnnl::memory::desc dLdx_mkl_md = dnnl::memory::desc(xShape, dataType, dnnl::memory::format_tag::any);
dnnl::memory::desc dLdx_user_md = dnnl::memory::desc(xShape, dataType, format); dnnl::memory::desc dLdx_user_md = dnnl::memory::desc(xShape, dataType, mkldnnUtils::getFormat(*dLdx));
mkldnnUtils::setBlockStrides(dLdx, dLdx_user_md); mkldnnUtils::setBlockStrides(*dLdx, dLdx_user_md);
// create engine
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// forward // forward
// operation primitive description // operation primitive description
dnnl::inner_product_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, weights_mkl_md, bias_mkl_md, dLdz_mkl_md); dnnl::inner_product_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, weights_mkl_md, bias_mkl_md, dLdz_mkl_md);
@ -254,34 +223,25 @@ namespace sd {
dnnl::stream stream(engine); dnnl::stream stream(engine);
// dLdz dw // dLdz dw
mkldnnUtils::loadDataToMklStream(dLdz, engine, stream, dLdz_user_md, op_bpdw_prim_desc.diff_dst_desc(), argsDw[DNNL_ARG_DIFF_DST]); mkldnnUtils::loadDataToMklStream(*dLdz, engine, stream, dLdz_user_md, op_bpdw_prim_desc.diff_dst_desc(), argsDw[DNNL_ARG_DIFF_DST]);
// dLdz - dx // dLdz - dx
mkldnnUtils::loadDataToMklStream(dLdz, engine, stream, dLdz_user_md, op_bpdx_prim_desc.diff_dst_desc(), argsDx[DNNL_ARG_DIFF_DST]); mkldnnUtils::loadDataToMklStream(*dLdz, engine, stream, dLdz_user_md, op_bpdx_prim_desc.diff_dst_desc(), argsDx[DNNL_ARG_DIFF_DST]);
// input x for dw // input x for dw
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_bpdw_prim_desc.src_desc(), argsDw[DNNL_ARG_SRC]); mkldnnUtils::loadDataToMklStream(*x, engine, stream, x_user_md, op_bpdw_prim_desc.src_desc(), argsDw[DNNL_ARG_SRC]);
// weights - dx // weights - dx
mkldnnUtils::loadDataToMklStream(weights, engine, stream, weights_user_md, op_bpdx_prim_desc.weights_desc(), argsDx[DNNL_ARG_WEIGHTS]); mkldnnUtils::loadDataToMklStream(*weights, engine, stream, weights_user_md, op_bpdx_prim_desc.weights_desc(), argsDx[DNNL_ARG_WEIGHTS]);
// dLdw // dLdw
auto dLdw_user_mem = dnnl::memory(dLdw_user_md, engine, dLdw->buffer()); auto dLdw_user_mem = mkldnnUtils::loadDataToMklStream(*dLdw, engine, stream, dLdw_user_md, op_bpdw_prim_desc.diff_weights_desc(), argsDw[DNNL_ARG_DIFF_WEIGHTS]);
const bool dLdwReorder = op_bpdw_prim_desc.diff_weights_desc() != dLdw_user_mem.get_desc();
auto dLdw_mkl_mem = dLdwReorder ? dnnl::memory(op_bpdw_prim_desc.diff_weights_desc(), engine) : dLdw_user_mem;
argsDw[DNNL_ARG_DIFF_WEIGHTS] = dLdw_mkl_mem;
// dLdx // dLdx
auto dLdx_user_mem = dnnl::memory(dLdx_user_md, engine, dLdx->buffer()); auto dLdx_user_mem = mkldnnUtils::loadDataToMklStream(*dLdx, engine, stream, dLdx_user_md, op_bpdx_prim_desc.diff_src_desc(), argsDx[DNNL_ARG_DIFF_SRC]);
const bool dLdxReorder = op_bpdx_prim_desc.diff_src_desc() != dLdx_user_mem.get_desc();
auto dLdx_mkl_mem = dLdxReorder ? dnnl::memory(op_bpdx_prim_desc.diff_src_desc(), engine) : dLdx_user_mem;
argsDx[DNNL_ARG_DIFF_SRC] = dLdx_mkl_mem;
// dLdb // dLdb
auto dLdb_user_mem = dnnl::memory(dLdb_user_md, engine, dLdb->buffer()); auto dLdb_user_mem = mkldnnUtils::loadDataToMklStream(*dLdb, engine, stream, dLdb_user_md, op_bpdw_prim_desc.diff_bias_desc(), argsDw[DNNL_ARG_DIFF_BIAS]);
const bool dLdbReorder = op_bpdw_prim_desc.diff_bias_desc() != dLdb_user_mem.get_desc();
auto dLdb_mkl_mem = dLdbReorder ? dnnl::memory(op_bpdw_prim_desc.diff_bias_desc(), engine) : dLdb_user_mem;
argsDw[DNNL_ARG_DIFF_BIAS] = dLdb_mkl_mem;
// run calculations dw // run calculations dw
dnnl::inner_product_backward_weights(op_bpdw_prim_desc).execute(stream, argsDw); dnnl::inner_product_backward_weights(op_bpdw_prim_desc).execute(stream, argsDw);
@ -289,14 +249,14 @@ namespace sd {
dnnl::inner_product_backward_data(op_bpdx_prim_desc).execute(stream, argsDx); dnnl::inner_product_backward_data(op_bpdx_prim_desc).execute(stream, argsDx);
// reorder outputs if necessary // reorder outputs if necessary
if (dLdxReorder) if (op_bpdx_prim_desc.diff_src_desc() != dLdx_user_mem.get_desc())
dnnl::reorder(dLdx_mkl_mem, dLdx_user_mem).execute(stream, dLdx_mkl_mem, dLdx_user_mem); dnnl::reorder(argsDx[DNNL_ARG_DIFF_SRC], dLdx_user_mem).execute(stream, argsDx[DNNL_ARG_DIFF_SRC], dLdx_user_mem);
if (dLdwReorder) if (op_bpdw_prim_desc.diff_weights_desc() != dLdw_user_mem.get_desc())
dnnl::reorder(dLdw_mkl_mem, dLdw_user_mem).execute(stream, dLdw_mkl_mem, dLdw_user_mem); dnnl::reorder(argsDw[DNNL_ARG_DIFF_WEIGHTS], dLdw_user_mem).execute(stream, argsDw[DNNL_ARG_DIFF_WEIGHTS], dLdw_user_mem);
if (dLdbReorder) if (op_bpdw_prim_desc.diff_bias_desc() != dLdb_user_mem.get_desc())
dnnl::reorder(dLdb_mkl_mem, dLdb_user_mem).execute(stream, dLdb_mkl_mem, dLdb_user_mem); dnnl::reorder(argsDw[DNNL_ARG_DIFF_BIAS], dLdb_user_mem).execute(stream, argsDw[DNNL_ARG_DIFF_BIAS], dLdb_user_mem);
stream.wait(); stream.wait();
} }

View File

@ -107,6 +107,25 @@ namespace sd {
// samediff::Threads::parallel_tad(func, 0, numOfArrs); // samediff::Threads::parallel_tad(func, 0, numOfArrs);
// } // }
// static Nd4jLong strideOverContigAxis(const int axis, const Nd4jLong* inShapeInfo) {
// Nd4jLong result = 9223372036854775807LL;
// for(uint i = 0; i < shape::rank(inShapeInfo); ++i) {
// const auto currentStride = shape::stride(inShapeInfo)[i];
// if(i == axis || shape::shapeOf(inShapeInfo)[i] == 1)
// continue;
// if(result > currentStride)
// result = currentStride;
// }
// return result == 9223372036854775807LL ? 1 : result;
// }
template <typename T> template <typename T>
void SpecialMethods<T>::concatCpuGeneric(const std::vector<const NDArray*>& inArrs, NDArray& output, const int axis) { void SpecialMethods<T>::concatCpuGeneric(const std::vector<const NDArray*>& inArrs, NDArray& output, const int axis) {
@ -150,7 +169,7 @@ void SpecialMethods<T>::concatCpuGeneric(const std::vector<const NDArray*>& inAr
// if(!areInputsContin || !allSameOrder) // if(!areInputsContin || !allSameOrder)
// break; // break;
// strideOfContigStride[i] = shape::strideOverContigAxis(axis, inArrs[i]->shapeInfo()); // strideOfContigStride[i] = strideOverContigAxis(axis, inArrs[i]->getShapeInfo());
// } // }
// } // }
@ -158,7 +177,7 @@ void SpecialMethods<T>::concatCpuGeneric(const std::vector<const NDArray*>& inAr
// if(luckCase2) { // for example {2,1,3} + {2,5,3} + {2,10,3} = {2,16,3}, here axis 1 shoud have stride = 1 for all inputs arrays and output array // if(luckCase2) { // for example {2,1,3} + {2,5,3} + {2,10,3} = {2,16,3}, here axis 1 shoud have stride = 1 for all inputs arrays and output array
// const auto zStep = shape::strideOverContigAxis(axis, output.shapeInfo()); // const auto zStep = strideOverContigAxis(axis, output.getShapeInfo());
// for (uint i = 0; i < output.lengthOf() / output.sizeAt(axis); ++i) { // for (uint i = 0; i < output.lengthOf() / output.sizeAt(axis); ++i) {

View File

@ -130,7 +130,7 @@ if (SD_CPU)
endif() endif()
add_executable(runtests ${TEST_SOURCES}) add_executable(runtests ${TEST_SOURCES})
target_link_libraries(runtests ${SD_LIBRARY_NAME}static ${MKLDNN_LIBRARIES} ${OPENBLAS_LIBRARIES} ${MKLDNN} ${BLAS_LIBRARIES} ${CPU_FEATURES} gtest gtest_main) target_link_libraries(runtests samediff_obj ${MKLDNN_LIBRARIES} ${OPENBLAS_LIBRARIES} ${MKLDNN} ${BLAS_LIBRARIES} ${CPU_FEATURES} gtest gtest_main)
elseif(SD_CUDA) elseif(SD_CUDA)
add_executable(runtests ${TEST_SOURCES}) add_executable(runtests ${TEST_SOURCES})
@ -148,5 +148,5 @@ elseif(SD_CUDA)
message("CUDNN library: ${CUDNN}") message("CUDNN library: ${CUDNN}")
endif() endif()
target_link_libraries(runtests ${SD_LIBRARY_NAME}static ${CUDA_LIBRARIES} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_cusolver_LIBRARY} ${CUDNN} ${MKLDNN} gtest gtest_main) target_link_libraries(runtests samediff_obj ${CUDA_LIBRARIES} ${CUDA_CUBLAS_LIBRARIES} ${CUDA_cusolver_LIBRARY} ${CUDNN} ${MKLDNN} gtest gtest_main)
endif() endif()

View File

@ -184,7 +184,7 @@ TEST_F(DeclarableOpsTests16, test_range_2) {
double tArgs[] = { -1.0, 1.0, 0.01 }; double tArgs[] = { -1.0, 1.0, 0.01 };
auto shapes = ::calculateOutputShapes2(nullptr, op.getOpHash(), nullptr, nullptr, 0, tArgs, 3, nullptr, 0, nullptr, 0, nullptr, 0); auto shapes = ::calculateOutputShapes2(nullptr, op.getOpHash(), nullptr, nullptr, 0, tArgs, 3, nullptr, 0, nullptr, 0, nullptr, 0);
shape::printShapeInfoLinear("Result", shapes->at(0)); // shape::printShapeInfoLinear("Result", shapes->at(0));
ASSERT_TRUE(shape::shapeEquals(z.shapeInfo(), shapes->at(0))); ASSERT_TRUE(shape::shapeEquals(z.shapeInfo(), shapes->at(0)));
delete shapes; delete shapes;
@ -1074,3 +1074,422 @@ TEST_F(DeclarableOpsTests16, test_yiq_to_rgb_6) {
ASSERT_EQ(ND4J_STATUS_OK, status); ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_TRUE(expected.equalsTo(actual)); ASSERT_TRUE(expected.equalsTo(actual));
} }
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_1) {
auto x= NDArrayFactory::create<double>('c', {2, 3}, {-3.0, 0.0, 0.0, 4.0, 0.0, 0.0});
auto exp= NDArrayFactory::create<double>('c', {2, 3}, {-2.4, 0.0, 0.0, 3.2, 0.0, 0.0});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {4.0}, {});
auto z = result.at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
TEST_F(DeclarableOpsTests16, clipbynorm_2) {
auto x= NDArrayFactory::create<double>('c', {2, 3}, {-3.0f, 0.0f, 0.0f, 4.0f, 0.0f, 0.0f});
auto exp= NDArrayFactory::create<double>('c', {2, 3}, {-3.0f, 0.0f, 0.0f, 4.0f, 0.0f, 0.0f});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {6.0}, {});
auto z = result.at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_3) {
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto unities = NDArrayFactory::create<double>('c', {3, 1}, {1., 1., 1.});
auto scale = NDArrayFactory::create<double>('c', {3, 1}, {1.1, 1., 0.9});
x.linspace(100.);
auto xNorm1 = x.reduceAlongDimension(reduce::Norm2, {1}, true);
x /= xNorm1;
xNorm1 = x.reduceAlongDimension(reduce::Norm2,{1}, true);
ASSERT_TRUE(unities.isSameShape(xNorm1));
ASSERT_TRUE(unities.equalsTo(xNorm1));
x *= scale;
xNorm1 = x.reduceAlongDimension(reduce::Norm2, {1}, true);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {1.0}, {1});
auto z = result.at(0);
auto zNorm1 = z->reduceAlongDimension(reduce::Norm2, {1}, true);
auto exp = NDArrayFactory::create<double>('c', {3, 1}, {1., 1., xNorm1.e<double>(2)});
ASSERT_TRUE(exp.isSameShape(&zNorm1));
ASSERT_TRUE(exp.equalsTo(&zNorm1));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_4) {
auto x = NDArrayFactory::create<double>('c', {3, 5}, {0.7044955, 0.55606544, 0.15833677, 0.001874401, 0.61595726, 0.3924779, 0.7414847, 0.4127324, 0.24026828, 0.26093036, 0.46741188, 0.01863421, 0.08528871, 0.529365, 0.5510694});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {0.405392, 0.319980, 0.091113, 0.001079, 0.354444, 0.225846, 0.426676, 0.237501, 0.138259, 0.150149, 0.268965, 0.010723, 0.049078, 0.304615, 0.317105});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {1.f}, {});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_5) {
// auto x = NDArrayFactory::create<double>('c', {3, 5}, {1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5});
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {1., 2., 2.89271, 3.50524, 4.00892, 6., 7., 7.71389, 7.88678, 8.01784, 11., 12., 12.53507, 12.26833, 12.02676});
// auto exp = NDArrayFactory::create<double>('c', {3, 5}, {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {15.f}, {0});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_6) {
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {1., 2., 3., 4., 5., 4.95434, 5.78006, 6.60578, 7.43151, 8.25723, 5.64288, 6.15587, 6.66886, 7.18185, 7.69484});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {15.f}, {1});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_7) {
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {0.42597, 0.85194, 1.27791, 1.70389, 2.12986, 2.55583, 2.9818 , 3.40777, 3.83374, 4.25971, 4.68569, 5.11166, 5.53763, 5.9636 , 6.38957});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {15.f}, {0,1});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_8) {
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {0.42597, 0.85194, 1.27791, 1.70389, 2.12986, 2.55583, 2.9818 , 3.40777, 3.83374, 4.25971, 4.68569, 5.11166, 5.53763, 5.9636 , 6.38957});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {15.}, {});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_9) {
auto x = NDArrayFactory::create<double>('c', {2}, {3., 4.});
auto exp = NDArrayFactory::create<double>('c', {2}, {2.4, 3.2});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {4.}, {});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_10) {
auto x = NDArrayFactory::create<double>(6.);
auto exp = NDArrayFactory::create<double>(5.);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {5.}, {});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_11) {
auto x = NDArrayFactory::create<double>('c', {2, 3, 4});
auto exp = NDArrayFactory::create<double>('c', {2, 3, 4}, {1., 2., 3., 4., 4.44787, 5.33745, 6.22702, 7.1166 , 6.33046, 7.03384, 7.73723, 8.44061,
13., 14., 15., 16., 15.12277, 16.01235, 16.90192, 17.7915 ,14.77107, 15.47446, 16.17784, 16.88123});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {35.}, {0, 2});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_12) {
auto x = NDArrayFactory::create<double>('c', {3, 3}, {1, 2, 3, 4, 5,6, 7, 8, 9});
auto e = NDArrayFactory::create<double>('c', {3, 3}, {0.03198684, 0.06397368, 0.09596053, 0.12794736, 0.15993419, 0.19192106, 0.22390789, 0.25589472, 0.28788155});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {0.54}, {});
ASSERT_EQ(e, *result.at(0));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_13) {
const int bS = 5;
const int nOut = 4;
const int axis = 0;
const double clip = 2.;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.897 ,0.173 ,0.931 ,0.736 ,0.540 ,0.953 ,0.278 ,0.573 ,0.787 ,0.320 ,0.776 ,0.338 ,0.311 ,0.835 ,0.909 ,0.890 ,0.290}); // uniform random in range [0,1]
auto colVect = NDArrayFactory::create<double>('c', {bS, 1}, {0.9, 0.95, 1.00, 1.05, 1.1});
auto expect = NDArrayFactory::create<double>('c', {bS, nOut});
auto norm2 = x.reduceAlongDimension(reduce::Norm2, {axis}, true); // norm2 has shape [1, nOut]
auto y = ( (x / norm2) * clip) * colVect ;
auto temp = (x / norm2) * clip;
for (int j = 0; j < nOut; ++j) {
auto yCol = y({0,0, j,j+1});
const double norm2Col = yCol.reduceNumber(reduce::Norm2).e<double>(0);
if (norm2Col <= clip)
expect({0,0, j,j+1}).assign(yCol);
else
expect({0,0, j,j+1}).assign ( yCol * (clip / norm2Col) );
}
sd::ops::clipbynorm op;
auto result = op.evaluate({&y}, {clip}, {axis});
auto outFF = result.at(0);
ASSERT_TRUE(expect.isSameShape(outFF));
ASSERT_TRUE(expect.equalsTo(outFF));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_bp_1) {
const int bS = 2;
const int nOut = 3;
const double clip = 0.7;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.173 ,0.736 ,0.540 }); // uniform random in range [0,1]
auto gradO = NDArrayFactory::create<double>('c', {bS, nOut});
const OpArgsHolder argsHolderFF({&x}, {clip}, {});
const OpArgsHolder argsHolderBP({&x, &gradO}, {clip}, {});
sd::ops::clipbynorm opFF;
sd::ops::clipbynorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_bp_2) {
const int bS = 2;
const int nOut = 3;
const int axis = 0;
const double clip = 0.7;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.173 ,0.736 ,0.540 }); // uniform random in range [0,1]
auto gradO = NDArrayFactory::create<double>('c', {bS, nOut});
const OpArgsHolder argsHolderFF({&x}, {clip}, {axis});
const OpArgsHolder argsHolderBP({&x, &gradO}, {clip}, {axis});
sd::ops::clipbynorm opFF;
sd::ops::clipbynorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbynorm_bp_3) {
const int bS = 2;
const int nOut = 3;
const int axis = 1;
const double clip = 1.;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.173 ,0.736 ,0.540 }); // uniform random in range [0,1]
auto gradO = NDArrayFactory::create<double>('c', {bS, nOut});
const OpArgsHolder argsHolderFF({&x}, {clip}, {axis});
const OpArgsHolder argsHolderBP({&x, &gradO}, {clip}, {axis});
sd::ops::clipbynorm opFF;
sd::ops::clipbynorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbyavgnorm_1) {
auto x = NDArrayFactory::create<double>('c', {2, 3}, {-3.0, 0.0, 0.0, 4.0, 0.0, 0.0});
auto exp = NDArrayFactory::create<double>('c', {2, 3}, {-2.88, 0.0, 0.0, 3.84, 0.0, 0.0});
sd::ops::clipbyavgnorm op;
auto result = op.evaluate({&x}, {0.8}, {});
auto z = result.at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbyavgnorm_2) {
auto x= NDArrayFactory::create<float>('c', {2, 3}, {-3.0f, 0.0f, 0.0f, 4.0f, 0.0f, 0.0f});
auto exp= NDArrayFactory::create<float>('c', {2, 3}, {-3.f, 0.0f, 0.0f, 4.f, 0.0f, 0.0f});
sd::ops::clipbyavgnorm op;
auto result = op.evaluate({&x}, {0.9}, {});
auto z = result.at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbyavgnorm_bp_1) {
const int bS = 2;
const int nOut = 3;
const double clip = 0.7;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.173 ,0.736 ,0.540 }); // uniform random in range [0,1]
auto gradO = NDArrayFactory::create<double>('c', {bS, nOut});
const OpArgsHolder argsHolderFF({&x}, {clip}, {});
const OpArgsHolder argsHolderBP({&x, &gradO}, {clip}, {});
sd::ops::clipbyavgnorm opFF;
sd::ops::clipbyavgnorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbyavgnorm_bp_2) {
const int bS = 2;
const int nOut = 3;
const int axis = 1;
const double clip = 1.;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.173 ,0.736 ,0.540 }); // uniform random in range [0,1]
auto gradO = NDArrayFactory::create<double>('c', {bS, nOut});
const OpArgsHolder argsHolderFF({&x}, {clip}, {axis});
const OpArgsHolder argsHolderBP({&x, &gradO}, {clip}, {axis});
sd::ops::clipbyavgnorm opFF;
sd::ops::clipbyavgnorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests16, clipbyavgnorm_bp_3) {
NDArray x('c', {2, 3, 4}, {-0.14 ,0.96 ,0.47 ,-0.98 ,0.03 ,0.95 ,0.33 ,-0.97 ,0.59 ,-0.92 ,-0.12 ,-0.33 ,0.82 ,-0.76 ,-0.69 ,-0.95 ,-0.77 ,0.25 ,-0.35 ,0.94 ,0.50 ,0.04 ,0.61 ,0.99}, sd::DataType::DOUBLE);
NDArray gradO('c', {2, 3, 4}, sd::DataType::DOUBLE);
const OpArgsHolder argsHolderFF({&x}, {0.7}, {0,2});
const OpArgsHolder argsHolderBP({&x, &gradO}, {0.7}, {0,2});
sd::ops::clipbyavgnorm opFF;
sd::ops::clipbyavgnorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}

View File

@ -244,94 +244,6 @@ TEST_F(DeclarableOpsTests3, Test_Norm_2) {
} }
TEST_F(DeclarableOpsTests3, Test_ClipByAvgNorm_1) {
auto x = NDArrayFactory::create<double>('c', {2, 3}, {-3.0, 0.0, 0.0, 4.0, 0.0, 0.0});
auto exp = NDArrayFactory::create<double>('c', {2, 3}, {-2.88, 0.0, 0.0, 3.84, 0.0, 0.0});
sd::ops::clipbyavgnorm op;
auto result = op.evaluate({&x}, {0.8}, {});
auto z = result.at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
TEST_F(DeclarableOpsTests3, Test_ClipByAvgNorm_2) {
auto x= NDArrayFactory::create<float>('c', {2, 3}, {-3.0f, 0.0f, 0.0f, 4.0f, 0.0f, 0.0f});
auto exp= NDArrayFactory::create<float>('c', {2, 3}, {-3.f, 0.0f, 0.0f, 4.f, 0.0f, 0.0f});
sd::ops::clipbyavgnorm op;
auto result = op.evaluate({&x}, {0.9}, {});
auto z = result.at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
TEST_F(DeclarableOpsTests3, Test_ClipByNorm_1) {
auto x= NDArrayFactory::create<double>('c', {2, 3}, {-3.0, 0.0, 0.0, 4.0, 0.0, 0.0});
auto exp= NDArrayFactory::create<double>('c', {2, 3}, {-2.4, 0.0, 0.0, 3.2, 0.0, 0.0});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {4.0}, {});
auto z = result.at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
TEST_F(DeclarableOpsTests3, Test_ClipByNorm_2) {
auto x= NDArrayFactory::create<double>('c', {2, 3}, {-3.0f, 0.0f, 0.0f, 4.0f, 0.0f, 0.0f});
auto exp= NDArrayFactory::create<double>('c', {2, 3}, {-3.0f, 0.0f, 0.0f, 4.0f, 0.0f, 0.0f});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {6.0}, {});
auto z = result.at(0);
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests3, Test_ClipByNorm_3) {
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto unities = NDArrayFactory::create<double>('c', {3, 1}, {1., 1., 1.});
auto scale = NDArrayFactory::create<double>('c', {3, 1}, {1.1, 1., 0.9});
x.linspace(100.);
auto xNorm1 = x.reduceAlongDimension(reduce::Norm2, {1}, true);
x /= xNorm1;
xNorm1 = x.reduceAlongDimension(reduce::Norm2,{1}, true);
ASSERT_TRUE(unities.isSameShape(xNorm1));
ASSERT_TRUE(unities.equalsTo(xNorm1));
x *= scale;
xNorm1 = x.reduceAlongDimension(reduce::Norm2, {1}, true);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {1.0}, {1});
auto z = result.at(0);
auto zNorm1 = z->reduceAlongDimension(reduce::Norm2, {1}, true);
auto exp = NDArrayFactory::create<double>('c', {3, 1}, {1., 1., xNorm1.e<double>(2)});
ASSERT_TRUE(exp.isSameShape(&zNorm1));
ASSERT_TRUE(exp.equalsTo(&zNorm1));
}
TEST_F(DeclarableOpsTests3, Test_ListDiff_1) { TEST_F(DeclarableOpsTests3, Test_ListDiff_1) {
auto x= NDArrayFactory::create<float>('c', {6}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f}); auto x= NDArrayFactory::create<float>('c', {6}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f});
auto y= NDArrayFactory::create<float>('c', {3}, {1.f, 3.f, 5.f}); auto y= NDArrayFactory::create<float>('c', {3}, {1.f, 3.f, 5.f});

View File

@ -2432,6 +2432,7 @@ TEST_F(DeclarableOpsTests5, ZeroFraction_3) {
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests5, XWPlusB_1) { TEST_F(DeclarableOpsTests5, XWPlusB_1) {
@ -2451,6 +2452,7 @@ TEST_F(DeclarableOpsTests5, XWPlusB_1) {
ASSERT_TRUE(exp.isSameShape(output)); ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output)); ASSERT_TRUE(exp.equalsTo(output));
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests5, XWPlusB_2) { TEST_F(DeclarableOpsTests5, XWPlusB_2) {

View File

@ -779,9 +779,6 @@ TEST_F(DeclarableOpsTests6, TestMergeMaxIndex_1) {
auto res = op.evaluate({&x, &y, &z}, {}, {}, {}); auto res = op.evaluate({&x, &y, &z}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, res.status()); ASSERT_EQ(ND4J_STATUS_OK, res.status());
// res.at(0)->printIndexedBuffer("MergeMaxIndex Result is ");
// res.at(0)->printShapeInfo("Shape info for MergeMaxIdex");
// x.printIndexedBuffer("Input is");
ASSERT_TRUE(res.at(0)->equalsTo(exp)); ASSERT_TRUE(res.at(0)->equalsTo(exp));
} }
@ -789,22 +786,35 @@ TEST_F(DeclarableOpsTests6, TestMergeMaxIndex_1) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests6, TestMergeMaxIndex_2) { TEST_F(DeclarableOpsTests6, TestMergeMaxIndex_2) {
auto x = NDArrayFactory::create<double>('c', {2, 2, 2}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f}); auto x = NDArrayFactory::create<double>('c', {2, 2, 2}, {1.f, 2.f, 3.f, 4.f, 5.f, 60.f, 7.f, 8.f});
auto y = NDArrayFactory::create<double>('c', {2, 2, 2}, {10.f, 2.f, 30.f, 4.f, 50.f, 6.f, 70.f, 8.f}); auto y = NDArrayFactory::create<double>('c', {2, 2, 2}, {10.f, 2.f, 30.f, 4.f, 50.f, 6.f, 70.f, 8.f});
auto z = NDArrayFactory::create<double>('c', {2, 2, 2}, {1.f, 20.f, 3.f, 40.f, 5.f, 60.f, 7.f, 80.f}); auto z = NDArrayFactory::create<double>('c', {2, 2, 2}, {1.f, 20.f, 3.f, 40.f, 5.f, 6.f, 7.f, 80.f});
auto exp = NDArrayFactory::create<Nd4jLong>('c', {2, 2, 2}, {1, 2, 1, 2, 1, 2, 1, 2}); auto exp = NDArrayFactory::create<Nd4jLong>('c', {2, 2, 2}, {1, 2, 1, 2, 1, 0, 1, 2});
sd::ops::mergemaxindex op; sd::ops::mergemaxindex op;
auto ress = op.evaluate({&x, &y, &z}, {}, {sd::DataType::INT64}); auto ress = op.evaluate({&x, &y, &z}, {}, {sd::DataType::INT64});
ASSERT_EQ(ND4J_STATUS_OK, ress.status()); ASSERT_EQ(ND4J_STATUS_OK, ress.status());
// res.at(0)->printIndexedBuffer("MergeMaxIndex2 Result is ");
// res.at(0)->printShapeInfo("Shape info for MergeMaxIdex2");
// x.printIndexedBuffer("Input is");
ASSERT_TRUE(ress.at(0)->equalsTo(exp)); ASSERT_TRUE(ress.at(0)->equalsTo(exp));
} }
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests6, TestMergeMaxIndex_3) {
auto x1 = NDArrayFactory::create<double>('c', {3}, {1.f, 0.f, 0.f});
auto x2 = NDArrayFactory::create<double>('c', {3}, {0.f, 1.f, 0.f});
auto x3 = NDArrayFactory::create<double>('c', {3}, {0.f, 0.f, 1.f});
NDArray z('c', {3}, sd::DataType::INT32);
NDArray expZ('c', {3}, {0, 1, 2}, sd::DataType::INT32);
sd::ops::mergemaxindex op;
auto result = op.execute({&x1, &x2, &x3}, {&z}, {}, {}, {});
ASSERT_EQ(Status::OK(), result);
ASSERT_TRUE(z.equalsTo(expZ));
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests6, TestDropout_1) { TEST_F(DeclarableOpsTests6, TestDropout_1) {

View File

@ -2675,160 +2675,6 @@ TEST_F(DeclarableOpsTests8, softmax_cross_entropy_loss_with_logits_test10) {
ASSERT_TRUE(expected.equalsTo(output)); ASSERT_TRUE(expected.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests8, clipbynorm_test4) {
auto x = NDArrayFactory::create<double>('c', {3, 5}, {0.7044955, 0.55606544, 0.15833677, 0.001874401, 0.61595726, 0.3924779, 0.7414847, 0.4127324, 0.24026828, 0.26093036, 0.46741188, 0.01863421, 0.08528871, 0.529365, 0.5510694});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {0.405392, 0.319980, 0.091113, 0.001079, 0.354444, 0.225846, 0.426676, 0.237501, 0.138259, 0.150149, 0.268965, 0.010723, 0.049078, 0.304615, 0.317105});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {1.f}, {});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests8, clipbynorm_test5) {
// auto x = NDArrayFactory::create<double>('c', {3, 5}, {1,2,3,4,5, 1,2,3,4,5, 1,2,3,4,5});
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {1., 2., 2.89271, 3.50524, 4.00892, 6., 7., 7.71389, 7.88678, 8.01784, 11., 12., 12.53507, 12.26833, 12.02676});
// auto exp = NDArrayFactory::create<double>('c', {3, 5}, {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {15.f}, {0});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests8, clipbynorm_test6) {
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {1., 2., 3., 4., 5., 4.95434, 5.78006, 6.60578, 7.43151, 8.25723, 5.64288, 6.15587, 6.66886, 7.18185, 7.69484});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {15.f}, {1});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests8, clipbynorm_test7) {
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {0.42597, 0.85194, 1.27791, 1.70389, 2.12986, 2.55583, 2.9818 , 3.40777, 3.83374, 4.25971, 4.68569, 5.11166, 5.53763, 5.9636 , 6.38957});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {15.f}, {0,1});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests8, clipbynorm_test8) {
auto x = NDArrayFactory::create<double>('c', {3, 5});
auto exp = NDArrayFactory::create<double>('c', {3, 5}, {0.42597, 0.85194, 1.27791, 1.70389, 2.12986, 2.55583, 2.9818 , 3.40777, 3.83374, 4.25971, 4.68569, 5.11166, 5.53763, 5.9636 , 6.38957});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {15.}, {});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests8, clipbynorm_test9) {
auto x = NDArrayFactory::create<double>('c', {2}, {3., 4.});
auto exp = NDArrayFactory::create<double>('c', {2}, {2.4, 3.2});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {4.}, {});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests8, clipbynorm_test10) {
auto x = NDArrayFactory::create<double>(6.);
auto exp = NDArrayFactory::create<double>(5.);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {5.}, {});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests8, clipbynorm_test11) {
auto x = NDArrayFactory::create<double>('c', {2, 3, 4});
auto exp = NDArrayFactory::create<double>('c', {2, 3, 4}, {1., 2., 3., 4., 4.44787, 5.33745, 6.22702, 7.1166 , 6.33046, 7.03384, 7.73723, 8.44061,
13., 14., 15., 16., 15.12277, 16.01235, 16.90192, 17.7915 ,14.77107, 15.47446, 16.17784, 16.88123});
x.linspace(1);
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {35.}, {0, 2});
auto output = result.at(0);
ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output));
}
TEST_F(DeclarableOpsTests8, clipbynorm_test_tf_119_1) {
auto x = NDArrayFactory::create<double>('c', {3, 3}, {1, 2, 3, 4, 5,6, 7, 8, 9});
auto e = NDArrayFactory::create<double>('c', {3, 3}, {0.03198684, 0.06397368, 0.09596053, 0.12794736, 0.15993419, 0.19192106, 0.22390789, 0.25589472, 0.28788155});
sd::ops::clipbynorm op;
auto result = op.evaluate({&x}, {0.54}, {});
ASSERT_EQ(e, *result.at(0));
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////

View File

@ -236,10 +236,10 @@ TEST_F(DeclarableOpsTests9, ScalarOpTest_MixedOrders_1) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test1) { TEST_F(DeclarableOpsTests9, concat_test1) {
auto x0 = NDArrayFactory::create<double>('c', {2,3,4}); auto x0 = NDArrayFactory::create<float>('c', {2,3,4});
auto x1 = NDArrayFactory::create<double>('c', {2,2,4}); auto x1 = NDArrayFactory::create<float>('c', {2,2,4});
auto x2 = NDArrayFactory::create<double>('c', {2,1,4}); auto x2 = NDArrayFactory::create<float>('c', {2,1,4});
auto exp = NDArrayFactory::create<double>('c', {2,6,4}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 1.f, 2.f, 3.f, 4.f, auto exp = NDArrayFactory::create<float>('c', {2,6,4}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 1.f, 2.f, 3.f, 4.f,
13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f,21.f, 22.f, 23.f, 24.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f, 5.f, 6.f, 7.f, 8.}); 13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f,21.f, 22.f, 23.f, 24.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f, 5.f, 6.f, 7.f, 8.});
x0.linspace(1); x0.linspace(1);
@ -261,10 +261,10 @@ TEST_F(DeclarableOpsTests9, concat_test1) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test2) { TEST_F(DeclarableOpsTests9, concat_test2) {
auto x0 = NDArrayFactory::create<double>('c', {1,3,1}); auto x0 = NDArrayFactory::create<float>('c', {1,3,1});
auto x1 = NDArrayFactory::create<double>('c', {1,2,1}); auto x1 = NDArrayFactory::create<float>('c', {1,2,1});
auto x2 = NDArrayFactory::create<double>('c', {1,1,1}); auto x2 = NDArrayFactory::create<float>('c', {1,1,1});
auto exp = NDArrayFactory::create<double>('c', {1,6,1}, {1.f, 2.f, 3.f, 1.f, 2.f, 1.f}); auto exp = NDArrayFactory::create<float>('c', {1,6,1}, {1.f, 2.f, 3.f, 1.f, 2.f, 1.f});
x0.linspace(1); x0.linspace(1);
x1.linspace(1); x1.linspace(1);
@ -285,10 +285,10 @@ TEST_F(DeclarableOpsTests9, concat_test2) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test3) { TEST_F(DeclarableOpsTests9, concat_test3) {
auto x0 = NDArrayFactory::create<double>('c', {3}); auto x0 = NDArrayFactory::create<float>('c', {3});
auto x1 = NDArrayFactory::create<double>('c', {2}); auto x1 = NDArrayFactory::create<float>('c', {2});
auto x2 = NDArrayFactory::create<double>('c', {1}); auto x2 = NDArrayFactory::create<float>('c', {1});
auto exp = NDArrayFactory::create<double>('c', {6}, {1.f, 2.f, 3.f, 1.f, 2.f, 1.f}); auto exp = NDArrayFactory::create<float>('c', {6}, {1.f, 2.f, 3.f, 1.f, 2.f, 1.f});
x0.linspace(1); x0.linspace(1);
x1.linspace(1); x1.linspace(1);
@ -300,21 +300,17 @@ TEST_F(DeclarableOpsTests9, concat_test3) {
ASSERT_EQ(ND4J_STATUS_OK, result.status()); ASSERT_EQ(ND4J_STATUS_OK, result.status());
auto output = result.at(0); auto output = result.at(0);
output->printBuffer();
ASSERT_TRUE(exp.isSameShape(output)); ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output)); ASSERT_TRUE(exp.equalsTo(output));
} }
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test4) { TEST_F(DeclarableOpsTests9, concat_test4) {
auto x0 = NDArrayFactory::create<double>('c', {1,1,1}, {1.f}); auto x0 = NDArrayFactory::create<float>('c', {1,1,1}, {1.f});
auto x1 = NDArrayFactory::create<double>('c', {1,1,1}, {2.f}); auto x1 = NDArrayFactory::create<float>('c', {1,1,1}, {2.f});
auto x2 = NDArrayFactory::create<double>('c', {1,1,1}, {3.f}); auto x2 = NDArrayFactory::create<float>('c', {1,1,1}, {3.f});
auto exp = NDArrayFactory::create<double>('c', {1,3,1}, {1.f, 2.f, 3.f}); auto exp = NDArrayFactory::create<float>('c', {1,3,1}, {1.f, 2.f, 3.f});
sd::ops::concat op; sd::ops::concat op;
@ -331,10 +327,10 @@ TEST_F(DeclarableOpsTests9, concat_test4) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test5) { TEST_F(DeclarableOpsTests9, concat_test5) {
auto x0 = NDArrayFactory::create<double>(1.f); auto x0 = NDArrayFactory::create<float>(1.f);
auto x1 = NDArrayFactory::create<double>('c', {1}, {2.f}); auto x1 = NDArrayFactory::create<float>('c', {1}, {2.f});
auto x2 = NDArrayFactory::create<double>(3.f); auto x2 = NDArrayFactory::create<float>(3.f);
auto exp = NDArrayFactory::create<double>('c', {3}, {1.f, 2.f, 3.f}); auto exp = NDArrayFactory::create<float>('c', {3}, {1.f, 2.f, 3.f});
sd::ops::concat op; sd::ops::concat op;
@ -351,10 +347,10 @@ TEST_F(DeclarableOpsTests9, concat_test5) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test6) { TEST_F(DeclarableOpsTests9, concat_test6) {
auto x0 = NDArrayFactory::create<double>(1.f); auto x0 = NDArrayFactory::create<float>(1.f);
auto x1 = NDArrayFactory::create<double>('c', {2}, {2.f, 20.f}); auto x1 = NDArrayFactory::create<float>('c', {2}, {2.f, 20.f});
auto x2 = NDArrayFactory::create<double>(3.f); auto x2 = NDArrayFactory::create<float>(3.f);
auto exp = NDArrayFactory::create<double>('c', {4}, {1.f, 2.f, 20.f, 3.f}); auto exp = NDArrayFactory::create<float>('c', {4}, {1.f, 2.f, 20.f, 3.f});
sd::ops::concat op; sd::ops::concat op;
@ -371,10 +367,10 @@ TEST_F(DeclarableOpsTests9, concat_test6) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test7) { TEST_F(DeclarableOpsTests9, concat_test7) {
auto x0 = NDArrayFactory::create<double>(1.f); auto x0 = NDArrayFactory::create<float>(1.f);
auto x1 = NDArrayFactory::create<double>(2.f); auto x1 = NDArrayFactory::create<float>(2.f);
auto x2 = NDArrayFactory::create<double>(3.f); auto x2 = NDArrayFactory::create<float>(3.f);
auto exp = NDArrayFactory::create<double>('c', {3}, {1.f, 2.f, 3.f}); auto exp = NDArrayFactory::create<float>('c', {3}, {1.f, 2.f, 3.f});
sd::ops::concat op; sd::ops::concat op;
@ -391,8 +387,8 @@ TEST_F(DeclarableOpsTests9, concat_test7) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test8) { TEST_F(DeclarableOpsTests9, concat_test8) {
auto x0 = NDArrayFactory::create<double>(1.f); auto x0 = NDArrayFactory::create<float>(1.f);
auto exp = NDArrayFactory::create<double>('c', {1}, {1.f}); auto exp = NDArrayFactory::create<float>('c', {1}, {1.f});
sd::ops::concat op; sd::ops::concat op;
@ -409,8 +405,8 @@ TEST_F(DeclarableOpsTests9, concat_test8) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test9) { TEST_F(DeclarableOpsTests9, concat_test9) {
auto x0 = NDArrayFactory::create<double>('c', {1}, {1.f}); auto x0 = NDArrayFactory::create<float>('c', {1}, {1.f});
auto exp = NDArrayFactory::create<double>('c', {1}, {1.f}); auto exp = NDArrayFactory::create<float>('c', {1}, {1.f});
sd::ops::concat op; sd::ops::concat op;
@ -427,10 +423,10 @@ TEST_F(DeclarableOpsTests9, concat_test9) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test10) { TEST_F(DeclarableOpsTests9, concat_test10) {
auto x0 = NDArrayFactory::create<double>('c', {2,3,4}); auto x0 = NDArrayFactory::create<float>('c', {2,3,4});
auto x1 = NDArrayFactory::create<double>('f', {2,2,4}); auto x1 = NDArrayFactory::create<float>('f', {2,2,4});
auto x2 = NDArrayFactory::create<double>('c', {2,1,4}); auto x2 = NDArrayFactory::create<float>('c', {2,1,4});
auto exp = NDArrayFactory::create<double>('c', {2,6,4}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 1.f, 2.f, 3.f, 4.f, auto exp = NDArrayFactory::create<float>('c', {2,6,4}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 1.f, 2.f, 3.f, 4.f,
13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f,21.f, 22.f, 23.f, 24.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f, 5.f, 6.f, 7.f, 8.f}); 13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f,21.f, 22.f, 23.f, 24.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f, 5.f, 6.f, 7.f, 8.f});
x0.linspace(1); x0.linspace(1);
@ -452,10 +448,10 @@ TEST_F(DeclarableOpsTests9, concat_test10) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test11) { TEST_F(DeclarableOpsTests9, concat_test11) {
auto x0 = NDArrayFactory::create<double>('c', {2,3,4}); auto x0 = NDArrayFactory::create<float>('c', {2,3,4});
auto x1 = NDArrayFactory::create<double>('f', {2,2,4}); auto x1 = NDArrayFactory::create<float>('f', {2,2,4});
auto x2 = NDArrayFactory::create<double>('f', {2,1,4}); auto x2 = NDArrayFactory::create<float>('f', {2,1,4});
auto exp = NDArrayFactory::create<double>('c', {2,6,4}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 1.f, 2.f, 3.f, 4.f, auto exp = NDArrayFactory::create<float>('c', {2,6,4}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 1.f, 2.f, 3.f, 4.f,
13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f,21.f, 22.f, 23.f, 24.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f, 5.f, 6.f, 7.f, 8.f}); 13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f,21.f, 22.f, 23.f, 24.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f, 5.f, 6.f, 7.f, 8.f});
x0.linspace(1); x0.linspace(1);
@ -477,10 +473,10 @@ TEST_F(DeclarableOpsTests9, concat_test11) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test12) { TEST_F(DeclarableOpsTests9, concat_test12) {
auto x0 = NDArrayFactory::create<double>('c', {2,3,4}); auto x0 = NDArrayFactory::create<float>('c', {2,3,4});
auto x1 = NDArrayFactory::create<double>('f', {2,2,4}); auto x1 = NDArrayFactory::create<float>('f', {2,2,4});
auto x2 = NDArrayFactory::create<double>('f', {2,1,4}); auto x2 = NDArrayFactory::create<float>('f', {2,1,4});
auto exp = NDArrayFactory::create<double>('c', {2,6,4}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 1.f, 2.f, 3.f, 4.f, auto exp = NDArrayFactory::create<float>('c', {2,6,4}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 1.f, 2.f, 3.f, 4.f,
13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f,21.f, 22.f, 23.f, 24.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f, 5.f, 6.f, 7.f, 8.f}); 13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f,21.f, 22.f, 23.f, 24.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f, 5.f, 6.f, 7.f, 8.f});
x0.linspace(1); x0.linspace(1);
@ -502,10 +498,10 @@ TEST_F(DeclarableOpsTests9, concat_test12) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test13) { TEST_F(DeclarableOpsTests9, concat_test13) {
auto x0 = NDArrayFactory::create<double>('f', {2,3,4}); auto x0 = NDArrayFactory::create<float>('f', {2,3,4});
auto x1 = NDArrayFactory::create<double>('f', {2,2,4}); auto x1 = NDArrayFactory::create<float>('f', {2,2,4});
auto x2 = NDArrayFactory::create<double>('f', {2,1,4}); auto x2 = NDArrayFactory::create<float>('f', {2,1,4});
auto exp = NDArrayFactory::create<double>('f', {2,6,4}, { 1.f, 13.f, 5.f, 17.f, 9.f, 21.f, 1.f, 9.f, 5.f, 13.f, 1.f, 5.f, 2.f, 14.f, 6.f, 18.f,10.f, 22.f, 2.f, 10.f, 6.f, 14.f, 2.f, 6.f, auto exp = NDArrayFactory::create<float>('f', {2,6,4}, { 1.f, 13.f, 5.f, 17.f, 9.f, 21.f, 1.f, 9.f, 5.f, 13.f, 1.f, 5.f, 2.f, 14.f, 6.f, 18.f,10.f, 22.f, 2.f, 10.f, 6.f, 14.f, 2.f, 6.f,
3.f, 15.f, 7.f, 19.f,11.f, 23.f, 3.f, 11.f, 7.f, 15.f, 3.f, 7.f, 4.f, 16.f, 8.f, 20.f,12.f, 24.f, 4.f, 12.f, 8.f, 16.f, 4.f, 8.f}); 3.f, 15.f, 7.f, 19.f,11.f, 23.f, 3.f, 11.f, 7.f, 15.f, 3.f, 7.f, 4.f, 16.f, 8.f, 20.f,12.f, 24.f, 4.f, 12.f, 8.f, 16.f, 4.f, 8.f});
x0.linspace(1); x0.linspace(1);
@ -527,8 +523,8 @@ TEST_F(DeclarableOpsTests9, concat_test13) {
TEST_F(DeclarableOpsTests9, concat_test14) { TEST_F(DeclarableOpsTests9, concat_test14) {
NDArray x0('c', {1, 40, 60}, sd::DataType::DOUBLE); NDArray x0('c', {1, 40, 60}, sd::DataType::FLOAT32);
NDArray x1('c', {1, 40, 60}, sd::DataType::DOUBLE); NDArray x1('c', {1, 40, 60}, sd::DataType::FLOAT32);
x0 = 1.; x0 = 1.;
x1 = 2.; x1 = 2.;
@ -544,7 +540,7 @@ TEST_F(DeclarableOpsTests9, concat_test14) {
for (int e = 0; e < numOfTads; ++e) { for (int e = 0; e < numOfTads; ++e) {
NDArray tad = (*z)(e, {0}); NDArray tad = (*z)(e, {0});
auto mean = tad.meanNumber().e<double>(0); auto mean = tad.meanNumber().e<float>(0);
ASSERT_NEAR((e+1)*1., mean, 1e-5); ASSERT_NEAR((e+1)*1., mean, 1e-5);
} }
@ -552,9 +548,9 @@ TEST_F(DeclarableOpsTests9, concat_test14) {
} }
TEST_F(DeclarableOpsTests9, concat_test15) { TEST_F(DeclarableOpsTests9, concat_test15) {
auto x = NDArrayFactory::create<double>('c', {2}, {1, 0}); auto x = NDArrayFactory::create<float>('c', {2}, {1, 0});
auto y = NDArrayFactory::create<double> (3.0f); auto y = NDArrayFactory::create<float> (3.0f);
auto exp = NDArrayFactory::create<double>('c', {3}, {1, 0, 3}); auto exp = NDArrayFactory::create<float>('c', {3}, {1, 0, 3});
sd::ops::concat op; sd::ops::concat op;
auto result = op.evaluate({&x, &y}, {}, {0}); auto result = op.evaluate({&x, &y}, {}, {0});
@ -571,9 +567,9 @@ TEST_F(DeclarableOpsTests9, concat_test15) {
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test16) { TEST_F(DeclarableOpsTests9, concat_test16) {
auto x = NDArrayFactory::create<double>('c', {0,2,3}); auto x = NDArrayFactory::create<float>('c', {0,2,3});
auto y = NDArrayFactory::create<double>('c', {0,2,3}); auto y = NDArrayFactory::create<float>('c', {0,2,3});
auto exp = NDArrayFactory::create<double>('c', {0,2,3}); auto exp = NDArrayFactory::create<float>('c', {0,2,3});
sd::ops::concat op; sd::ops::concat op;
auto result = op.evaluate({&x, &y}, {}, {0}); auto result = op.evaluate({&x, &y}, {}, {0});
@ -587,8 +583,8 @@ TEST_F(DeclarableOpsTests9, concat_test16) {
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test17) { TEST_F(DeclarableOpsTests9, concat_test17) {
NDArray x0('c', {1, 55, 40}, sd::DataType::DOUBLE); NDArray x0('c', {1, 55, 40}, sd::DataType::FLOAT32);
NDArray x1('c', {1, 55, 40}, sd::DataType::DOUBLE); NDArray x1('c', {1, 55, 40}, sd::DataType::FLOAT32);
x0 = 1.; x0 = 1.;
x1 = 2.; x1 = 2.;
@ -606,7 +602,7 @@ TEST_F(DeclarableOpsTests9, concat_test17) {
for (int e = 0; e < numOfTads; ++e) { for (int e = 0; e < numOfTads; ++e) {
NDArray tad = (*z)(e, {0}); NDArray tad = (*z)(e, {0});
auto mean = tad.meanNumber().e<double>(0); auto mean = tad.meanNumber().e<float>(0);
ASSERT_NEAR((e+1)*1., mean, 1e-5); ASSERT_NEAR((e+1)*1., mean, 1e-5);
} }
} }
@ -664,10 +660,10 @@ TEST_F(DeclarableOpsTests9, concat_test19) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test20) { TEST_F(DeclarableOpsTests9, concat_test20) {
auto x0 = NDArrayFactory::create<double>('c', {1, 100, 150}); auto x0 = NDArrayFactory::create<float>('c', {1, 100, 150});
auto x1 = NDArrayFactory::create<double>('c', {1, 100, 150}); auto x1 = NDArrayFactory::create<float>('c', {1, 100, 150});
auto x2 = NDArrayFactory::create<double>('c', {1, 100, 150}); auto x2 = NDArrayFactory::create<float>('c', {1, 100, 150});
auto x3 = NDArrayFactory::create<double>('c', {1, 100, 150}); auto x3 = NDArrayFactory::create<float>('c', {1, 100, 150});
x0.assign(1.0); x0.assign(1.0);
x1.assign(2.0); x1.assign(2.0);
@ -685,8 +681,8 @@ TEST_F(DeclarableOpsTests9, concat_test20) {
for (int e = 0; e < numOfTads; e++) { for (int e = 0; e < numOfTads; e++) {
NDArray tad = (*z)(e, {0}); NDArray tad = (*z)(e, {0});
auto mean = tad.meanNumber().e<double>(0); auto mean = tad.meanNumber().e<float>(0);
ASSERT_NEAR((double) e+1, mean, 1e-5); ASSERT_NEAR((float) e+1, mean, 1e-5);
} }
@ -710,10 +706,10 @@ TEST_F(DeclarableOpsTests9, concat_test21) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test22) { TEST_F(DeclarableOpsTests9, concat_test22) {
NDArray x0('c', {1,6}, {1,2,3,4,5,6}); NDArray x0('c', {1,6}, {1,2,3,4,5,6}, sd::DataType::FLOAT32);
NDArray x1('c', {1,6}, {7,8,9,10,11,12}); NDArray x1('c', {1,6}, {7,8,9,10,11,12}, sd::DataType::FLOAT32);
NDArray output('f', {2,6}, sd::DataType::DOUBLE); NDArray output('f', {2,6}, sd::DataType::FLOAT32);
NDArray exp('c', {2,6}, {1,2,3,4,5,6,7,8,9,10,11,12}); NDArray exp('c', {2,6}, {1,2,3,4,5,6,7,8,9,10,11,12}, sd::DataType::FLOAT32);
sd::ops::concat op; sd::ops::concat op;
@ -726,10 +722,10 @@ TEST_F(DeclarableOpsTests9, concat_test22) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test23) { TEST_F(DeclarableOpsTests9, concat_test23) {
NDArray x0('c', {1,4}, {1,2,3,4}); NDArray x0('c', {1,4}, {1,2,3,4},sd::DataType::FLOAT32);
NDArray x1('c', {1,4}, {5,6,7,8}); NDArray x1('c', {1,4}, {5,6,7,8},sd::DataType::FLOAT32);
NDArray output('c', {2,4}, sd::DataType::DOUBLE); NDArray output('c', {2,4}, sd::DataType::FLOAT32);
NDArray exp('c', {2,4}, {1,2,3,4,5,6,7,8}); NDArray exp('c', {2,4}, {1,2,3,4,5,6,7,8}, sd::DataType::FLOAT32);
sd::ops::concat op; sd::ops::concat op;
@ -741,10 +737,10 @@ TEST_F(DeclarableOpsTests9, concat_test23) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test24) { TEST_F(DeclarableOpsTests9, concat_test24) {
auto x = NDArrayFactory::create<double>('c', {2, 1}, {1, 1}); auto x = NDArrayFactory::create<float>('c', {2, 1}, {1, 1});
auto y = NDArrayFactory::create<double>('c', {2, 1}, {0, 0}); auto y = NDArrayFactory::create<float>('c', {2, 1}, {0, 0});
auto e = NDArrayFactory::create<double>('c', {2, 2}, {1, 0, 1, 0}); auto e = NDArrayFactory::create<float>('c', {2, 2}, {1, 0, 1, 0});
auto z = NDArrayFactory::create<double>('c', {2, 2}); auto z = NDArrayFactory::create<float>('c', {2, 2});
sd::ops::concat op; sd::ops::concat op;
auto status = op.execute({&x, &y}, {&z}, {}, {1}, {}); auto status = op.execute({&x, &y}, {&z}, {}, {1}, {});
@ -756,10 +752,10 @@ TEST_F(DeclarableOpsTests9, concat_test24) {
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test25) { TEST_F(DeclarableOpsTests9, concat_test25) {
auto x0 = NDArrayFactory::create<double>('c', {1,4}, {1,2,3,4}); auto x0 = NDArrayFactory::create<float>('c', {1,4}, {1,2,3,4});
auto x1 = NDArrayFactory::create<double>('c', {1,4}, {5,6,7,8}); auto x1 = NDArrayFactory::create<float>('c', {1,4}, {5,6,7,8});
auto axis = NDArrayFactory::create<double>('c', {1}, {0.}); auto axis = NDArrayFactory::create<float>('c', {1}, {0.});
auto exp = NDArrayFactory::create<double>('c', {2,4}, {1,2,3,4,5,6,7,8}); auto exp = NDArrayFactory::create<float>('c', {2,4}, {1,2,3,4,5,6,7,8});
sd::ops::concat op; sd::ops::concat op;
@ -793,7 +789,7 @@ TEST_F(DeclarableOpsTests9, concat_test26) {
ASSERT_EQ(ND4J_STATUS_OK, result.status()); ASSERT_EQ(ND4J_STATUS_OK, result.status());
auto output = result.at(0); auto output = result.at(0);
output->printLinearBuffer(); // output->printLinearBuffer();
ASSERT_TRUE(exp.isSameShape(output)); ASSERT_TRUE(exp.isSameShape(output));
ASSERT_TRUE(exp.equalsTo(output)); ASSERT_TRUE(exp.equalsTo(output));
@ -802,10 +798,10 @@ TEST_F(DeclarableOpsTests9, concat_test26) {
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, concat_test27) { TEST_F(DeclarableOpsTests9, concat_test27) {
auto x1 = NDArrayFactory::create<double>('c', {0,1}); auto x1 = NDArrayFactory::create<float>('c', {0,1});
auto x2 = NDArrayFactory::create<double>('c', {0,1}); auto x2 = NDArrayFactory::create<float>('c', {0,1});
auto x3 = NDArrayFactory::create<double>('c', {0,1}); auto x3 = NDArrayFactory::create<float>('c', {0,1});
auto x4 = NDArrayFactory::create<double>('c', {0,1}); auto x4 = NDArrayFactory::create<float>('c', {0,1});
std::vector<Nd4jLong> expShape = {0, 4}; std::vector<Nd4jLong> expShape = {0, 4};
@ -1245,109 +1241,6 @@ TEST_F(DeclarableOpsTests9, test_unstack_SGO_1) {
} }
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, clipbynorm_test12) {
const int bS = 5;
const int nOut = 4;
const int axis = 0;
const double clip = 2.;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.897 ,0.173 ,0.931 ,0.736 ,0.540 ,0.953 ,0.278 ,0.573 ,0.787 ,0.320 ,0.776 ,0.338 ,0.311 ,0.835 ,0.909 ,0.890 ,0.290}); // uniform random in range [0,1]
auto colVect = NDArrayFactory::create<double>('c', {bS, 1}, {0.9, 0.95, 1.00, 1.05, 1.1});
auto expect = NDArrayFactory::create<double>('c', {bS, nOut});
auto norm2 = x.reduceAlongDimension(reduce::Norm2, {axis}, true); // norm2 has shape [1, nOut]
auto y = ( (x / norm2) * clip) * colVect ;
auto temp = (x / norm2) * clip;
for (int j = 0; j < nOut; ++j) {
auto yCol = y({0,0, j,j+1});
const double norm2Col = yCol.reduceNumber(reduce::Norm2).e<double>(0);
if (norm2Col <= clip)
expect({0,0, j,j+1}).assign(yCol);
else
expect({0,0, j,j+1}).assign ( yCol * (clip / norm2Col) );
}
sd::ops::clipbynorm op;
auto result = op.evaluate({&y}, {clip}, {axis});
auto outFF = result.at(0);
ASSERT_TRUE(expect.isSameShape(outFF));
ASSERT_TRUE(expect.equalsTo(outFF));
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, clipbynorm_bp_test1) {
const int bS = 2;
const int nOut = 3;
const double clip = 0.7;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.173 ,0.736 ,0.540 }); // uniform random in range [0,1]
auto gradO = NDArrayFactory::create<double>('c', {bS, nOut});
const OpArgsHolder argsHolderFF({&x}, {clip}, {});
const OpArgsHolder argsHolderBP({&x, &gradO}, {clip}, {});
sd::ops::clipbynorm opFF;
sd::ops::clipbynorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, clipbynorm_bp_test2) {
const int bS = 2;
const int nOut = 3;
const int axis = 0;
const double clip = 0.7;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.173 ,0.736 ,0.540 }); // uniform random in range [0,1]
auto gradO = NDArrayFactory::create<double>('c', {bS, nOut});
const OpArgsHolder argsHolderFF({&x}, {clip}, {axis});
const OpArgsHolder argsHolderBP({&x, &gradO}, {clip}, {axis});
sd::ops::clipbynorm opFF;
sd::ops::clipbynorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, clipbynorm_bp_test3) {
const int bS = 2;
const int nOut = 3;
const int axis = 1;
const double clip = 1.;
auto x = NDArrayFactory::create<double>('c', {bS, nOut}, {0.412 ,0.184 ,0.961 ,0.173 ,0.736 ,0.540 }); // uniform random in range [0,1]
auto gradO = NDArrayFactory::create<double>('c', {bS, nOut});
const OpArgsHolder argsHolderFF({&x}, {clip}, {axis});
const OpArgsHolder argsHolderBP({&x, &gradO}, {clip}, {axis});
sd::ops::clipbynorm opFF;
sd::ops::clipbynorm_bp opBP;
const bool isGradCorrect = GradCheck::checkGrad(opFF, opBP, argsHolderFF, argsHolderBP);
ASSERT_TRUE(isGradCorrect);
}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
TEST_F(DeclarableOpsTests9, cumprod_1) { TEST_F(DeclarableOpsTests9, cumprod_1) {

View File

@ -61,7 +61,7 @@ import java.util.*;
@Slf4j @Slf4j
public abstract class DefaultOpExecutioner implements OpExecutioner { public abstract class DefaultOpExecutioner implements OpExecutioner {
private static final String SCOPE_PANIC_MSG = "For more details, see the ND4J User Guide: deeplearning4j.org/docs/latest/nd4j-overview#workspaces-panic"; private static final String SCOPE_PANIC_MSG = "For more details, see the ND4J User Guide: https://deeplearning4j.konduit.ai/nd4j/overview#workspaces-scope-panic";
protected ProfilingMode profilingMode = ProfilingMode.SCOPE_PANIC; protected ProfilingMode profilingMode = ProfilingMode.SCOPE_PANIC;

View File

@ -31,7 +31,7 @@ import java.util.*;
/** /**
* An ND4j backend. * An ND4j backend.
* *
* A "backend" is also described here: http://nd4j.org/backend.html * A "backend" is also described here: https://deeplearning4j.konduit.ai/nd4j/backend
* *
* A backend also has 2 variables to be aware of. * A backend also has 2 variables to be aware of.
* 1 is the environment variable, ND4J_DYNAMIC_LOAD_CLASSPATH * 1 is the environment variable, ND4J_DYNAMIC_LOAD_CLASSPATH
@ -219,7 +219,7 @@ public abstract class Nd4jBackend {
else else
throw new NoAvailableBackendException( throw new NoAvailableBackendException(
"Please ensure that you have an nd4j backend on your classpath. Please see: http://nd4j.org/getstarted.html"); "Please ensure that you have an nd4j backend on your classpath. Please see: https://deeplearning4j.konduit.ai/nd4j/backend");
triedDynamicLoad = true; triedDynamicLoad = true;
//load all the discoverable uris and try to load the backend again //load all the discoverable uris and try to load the backend again

View File

@ -110,7 +110,7 @@ public class NativeOpsHolder {
} }
} catch (Exception | Error e) { } catch (Exception | Error e) {
throw new RuntimeException( throw new RuntimeException(
"ND4J is probably missing dependencies. For more information, please refer to: http://nd4j.org/getstarted.html", "ND4J is probably missing dependencies. For more information, please refer to: https://deeplearning4j.konduit.ai/nd4j/backend",
e); e);
} }
} }

View File

@ -69,6 +69,8 @@
<version>${project.version}</version> <version>${project.version}</version>
<classifier>${javacpp.platform.android-x86_64}</classifier> <classifier>${javacpp.platform.android-x86_64}</classifier>
</dependency> </dependency>
<!--
iOS support removed for 1.0.0-beta7 release, to be restored at a later date
<dependency> <dependency>
<groupId>${project.groupId}</groupId> <groupId>${project.groupId}</groupId>
<artifactId>${nd4j.backend}</artifactId> <artifactId>${nd4j.backend}</artifactId>
@ -81,6 +83,7 @@
<version>${project.version}</version> <version>${project.version}</version>
<classifier>${javacpp.platform.ios-x86_64}</classifier> <classifier>${javacpp.platform.ios-x86_64}</classifier>
</dependency> </dependency>
-->
<dependency> <dependency>
<groupId>${project.groupId}</groupId> <groupId>${project.groupId}</groupId>
<artifactId>${nd4j.backend}</artifactId> <artifactId>${nd4j.backend}</artifactId>