Eclipse Migration Initial Commit

master
skymindops 2019-06-06 15:21:15 +03:00
commit b5f0ec072f
8119 changed files with 2203775 additions and 0 deletions

19
.github/ISSUE_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,19 @@
#### Issue Description
Please describe our issue, along with:
- expected behavior
- encountered behavior
#### Version Information
Please indicate relevant versions, including, if relevant:
* Deeplearning4j version
* platform information (OS, etc)
* CUDA version, if used
* NVIDIA driver version, if in use
#### Contributing
If you'd like to help us fix the issue by contributing some code, but would
like guidance or help in doing so, please mention it!

16
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,16 @@
## What changes were proposed in this pull request?
(Please fill in changes proposed in this fix)
## How was this patch tested?
(Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests)
## Quick checklist
The following checklist helps ensure your PR is complete:
- [ ] Reviewed the [Contributing Guidelines](https://github.com/deeplearning4j/deeplearning4j/blob/master/CONTRIBUTING.md) and followed the steps within.
- [ ] Created tests for any significant new code additions.
- [ ] Relevant tests for your changes are passing.
- [ ] Ran mvn formatter:format (see [formatter instructions](http://code.revelc.net/formatter-maven-plugin/examples.html#Setting_Source_Files) for targeting your specific files).

34
.github/lock.yml vendored Normal file
View File

@ -0,0 +1,34 @@
# Configuration for lock-threads - https://github.com/dessant/lock-threads
# Number of days of inactivity before a closed issue or pull request is locked
daysUntilLock: 30
# Issues and pull requests with these labels will not be locked. Set to `[]` to disable
exemptLabels: []
# Label to add before locking, such as `outdated`. Set to `false` to disable
lockLabel: false
# Comment to post before locking. Set to `false` to disable
lockComment: >
This thread has been automatically locked since there has not been
any recent activity after it was closed. Please open a new issue for
related bugs.
# Assign `resolved` as the reason for locking. Set to `false` to disable
setLockReason: false
# Limit to only `issues` or `pulls`
only: issues
# Optionally, specify configuration settings just for `issues` or `pulls`
# issues:
# exemptLabels:
# - help-wanted
# lockLabel: outdated
# pulls:
# daysUntilLock: 30
# Repository to extend settings from
# _extends: repo

64
.gitignore vendored Normal file
View File

@ -0,0 +1,64 @@
.DS_Store
pom.xml.releaseBackup
target/
dependency-reduced-pom.xml
*.ser
application.home_IS_UNDEFINEiD
README.md~
*.bin
*.releaseBackup
*.out
*~
.pydevproject
release.properties
.idea/
*.iml
*.prefs
*.settings/*
*.log
.project
.classpath
metastore_db
*.ipynb*
!/dl4j-examples/tutorials/*.ipynb
*-git.properties
*.class
*.jar
*.war
*.ear
*.zip
*.tar.gz
*.rar
hs_err_pid*
pom.xml.tag
pom.xml.releaseBackup
pom.xml.versionsBackup
pom.xml.next
release.properties
*dependency-reduced-pom.xml
# Specific for Nd4j
*.md5
*.pom
*.sha1
*.ser
*.so
*.jpg
*.png
*.iml
*.prefs
*.dylib
lib/
.vs/
.vscode/
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/resources/bin
nd4j/nd4j-backends/nd4j-backend-impls/nd4j-native/src/test/resources/writeNumpy.csv
nd4j/nd4j-backends/nd4j-tests/src/test/resources/tf_graphs/examples/**/data-all*
nd4j/nd4j-backends/nd4j-tests/src/test/resources/tf_graphs/examples/**/checkpoint
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/onnx/
nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/java/org/tensorflow/
doc_sources/
doc_sources_*
*.pyc

46
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,46 @@
# Contributing to Deeplearning4j
Thanks for your interest in DL4J. Our goal is to bring fast, open-source deep learning to all JVM-based communities.
## Getting Started
Deeplearning4j's [open issues are here](https://github.com/deeplearning4j/deeplearning4j/issues). In time, we'll tag issues that would make a good first pull request for new contributors. An easy way to get started helping the project is to *file an issue*. You can do that on the Deeplearning4j issues page by clicking on the green button at the right. Issues can include bugs to fix, features to add, or documentation that looks outdated.
Note that you will need to [build dl4j from source](https://deeplearning4j.org/docs/latest/deeplearning4j-build-from-source)
For some tips on contributing to open source, this [post is helpful](http://blog.smartbear.com/programming/14-ways-to-contribute-to-open-source-without-being-a-programming-genius-or-a-rock-star/).
## Contributions
Deeplearning4j welcomes contributions from everyone.
Contributions to Deeplearning4j should be made in the form of GitHub pull requests. Each pull request will
be reviewed by a core contributor (someone with permission to land patches) and either landed in the
main tree or given feedback for changes that would be required.
## Pull Request Checklist
- Branch from the master branch and, if needed, rebase to the current master
branch before submitting your pull request. If it doesn't merge cleanly with
master you may be asked to rebase your changes.
- Commits should be as small as possible, while ensuring that each commit is
correct independently (i.e., each commit should compile and pass tests).
- Don't put submodule updates in your pull request unless they are to landed
commits.
- If your patch is not getting reviewed or you need a specific person to review
it, you can @-reply a reviewer asking for a review in the pull request or a
comment.
- Work-in-progress pull requests are welcome. Please prefix them with `[WIP]` to tell the continuous integration (CI) backend not to run tests/checks on them (until that tag is removed and another commit is pushed up).
- Add tests relevant to the fixed bug or new feature.
## Conduct & License
We follow the [Rust Code of Conduct](http://www.rust-lang.org/conduct.html).
All code in this repository is released under the Apache Software Foundation License, 2.0, and by contributing to this repository, you agree to release that contribution under that same license.

26
Jenkinsfile vendored Normal file
View File

@ -0,0 +1,26 @@
#!groovy
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
/*
To redefine some job/run parameters,
please provide arguments to jenkinsBuilder step.
Example: jenkinsBuilder platforms: []
*/
jenkinsBuilder()

384
LICENSE Normal file
View File

@ -0,0 +1,384 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
##########################
Keras code
Auto-generated documentation: https://github.com/deeplearning4j/deeplearning4j/blob/master/docs/doc_generator.py
COPYRIGHT
All contributions by François Chollet:
Copyright (c) 2015 - 2018, François Chollet.
All rights reserved.
All contributions by Google:
Copyright (c) 2015 - 2018, Google, Inc.
All rights reserved.
All contributions by Microsoft:
Copyright (c) 2017 - 2018, Microsoft, Inc.
All rights reserved.
All other contributions:
Copyright (c) 2015 - 2018, the respective contributors.
All rights reserved.
Each contributor holds copyright over their respective contributions.
The project versioning (Git) records all such contribution source information.
The MIT License (MIT)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
##########################
OpenCSV Code
CSVParser: https://github.com/deeplearning4j/deeplearning4j/blob/master/datavec/datavec-api/src/main/java/org/datavec/api/records/reader/impl/csv/SerializableCSVParser.java
Apache 2.0 License
All contributions by Bytecode Pty Ltd.
Copyright 2005 Bytecode Pty Ltd.
All rights reserved.
##########################
Aeron Code
Modifed Code: nd4j/nd4j-serde/nd4j-aeron/src/main/java/org/nd4j/aeron/ipc/AeronUtil.java
Copyright 2014 - 2016 Real Logic Ltd. All rights reserved.
Apache License, Version 2.0
##########################
cnpy Code
Forked Code: libnd4j/include/cnpy/
The MIT License
Copyright (c) Carl Rogers, 2011
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
##########################
Protocol Buffers Code
Codebase: nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/protobuf/tf/google/protobuf/
Protocol Buffers - Google's data interchange format
Copyright 2008 Google Inc. All rights reserved.
https://developers.google.com/protocol-buffers/
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
##########################
ONNX Code
Protocol Buffers: nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/protobuf/onnx/
Copyright (c) Facebook Inc. and Microsoft Corporation. All rights reserved.
Licensed under the MIT license.
##########################
TensorFlow Code
Protocol Buffers: nd4j/nd4j-backends/nd4j-api-parent/nd4j-api/src/main/protobuf/tf/tensorflow/core/
Operations: libnd4j/include/ops/declarable/generic/parity_ops/
Copyright 2015-2017 The TensorFlow Authors. All rights reserved.
Apache License, Version 2.0
##########################
Ansj Code
Codebase: deeplearning4j/deeplearning4j-nlp-parent/deeplearning4j-nlp-chinese/src/main/java/org/ansj/
Resources: deeplearning4j/deeplearning4j-nlp-parent/deeplearning4j-nlp-chinese/src/main/resources/
Copyright 2011-2016 ansj_seg. All rights reserved.
Apache License, Version 2.0
##########################
Kuromoji Code
Codebase: deeplearning4j/deeplearning4j-nlp-parent/deeplearning4j-nlp-japanese/src/main/java/com/atilika/kuromoji/
Copyright (c) 2010-2015 Atilika Inc. and contributors. All rights reserved.
Apache License, Version 2.0

35
README.md Normal file
View File

@ -0,0 +1,35 @@
# Monorepo of Deeplearning4j
Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to [deeplearning4j](deeplearning4j):
* https://github.com/deeplearning4j/libnd4j
* https://github.com/deeplearning4j/nd4j
* https://github.com/deeplearning4j/datavec
* https://github.com/deeplearning4j/arbiter
* https://github.com/deeplearning4j/nd4s
* https://github.com/deeplearning4j/gym-java-client
* https://github.com/deeplearning4j/rl4j
* https://github.com/deeplearning4j/scalnet
* https://github.com/deeplearning4j/pydl4j
* https://github.com/deeplearning4j/jumpy
* https://github.com/deeplearning4j/pydatavec
To build everything, we can use commands like
```
./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx
```
or
```
mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true
```
An example of GPU "CC" or compute capability is 61 for Titan X Pascal.
# Want some examples?
We have separate repository with various examples available: https://github.com/deeplearning4j/dl4j-examples
In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/deeplearning4j/dl4j-examples/tree/master/tutorials

15
arbiter/.github/CONTRIBUTING.md vendored Normal file
View File

@ -0,0 +1,15 @@
## Contribute
1. Check for open issues, or open a new issue to start a discussion around a feature idea or a bug.
2. If you feel uncomfortable or uncertain about an issue or your changes, feel free to contact us on Gitter using the link above.
3. Fork [the repository](https://github.com/deeplearning4j/Arbiter.git) on GitHub to start making your changes to the **master** branch (or branch off of it).
4. Write a test, which shows that the bug was fixed or that the feature works as expected.
5. Note the repository follows
the [Google Java style](https://google.github.io/styleguide/javaguide.html)
with two modifications: 120-char column wrap and 4-spaces indentation. You
can format your code to this format by typing `mvn formatter:format` in the
subproject you work on, by using the `contrib/formatter.xml` at the root of
the repository to configure the Eclipse formatter, or by [using the INtellij
plugin](https://github.com/HPI-Information-Systems/Metanome/wiki/Installing-the-google-styleguide-settings-in-intellij-and-eclipse).
6. Send a pull request, and bug us on Gitter until it gets merged and published.

19
arbiter/.github/ISSUE_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,19 @@
#### Issue Description
Please describe your issue, along with:
- expected behavior
- encountered behavior
#### Version Information
Please indicate relevant versions, including, if relevant:
* Deeplearning4j version
* platform information (OS, etc)
* CUDA version, if used
* NVIDIA driver version, if in use
#### Contributing
If you'd like to help us fix the issue by contributing some code, but would
like guidance or help in doing so, please mention it!

View File

@ -0,0 +1,10 @@
## What changes were proposed in this pull request?
(Please fill in changes proposed in this fix)
## How was this patch tested?
(Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests)
Please review
https://github.com/deeplearning4j/deeplearning4j/blob/master/CONTRIBUTING.md before opening a pull request.

24
arbiter/.travis.yml Normal file
View File

@ -0,0 +1,24 @@
branches:
only:
- master
notifications:
email: false
dist: trusty
sudo: false
cache:
directories:
- $HOME/.m2
language: java
jdk:
- openjdk8
matrix:
include:
- os: linux
env: OS=linux-x86_64 SCALA=2.10
install: true
script: bash ./ci/build-linux-x86_64.sh
- os: linux
env: OS=linux-x86_64 SCALA=2.11
install: true
script: bash ./ci/build-linux-x86_64.sh

45
arbiter/README.md Normal file
View File

@ -0,0 +1,45 @@
# Arbiter
A tool dedicated to tuning (hyperparameter optimization) of machine learning models. Part of the DL4J Suite of Machine Learning / Deep Learning tools for the enterprise.
## Modules
Arbiter contains the following modules:
- arbiter-core: Defines the API and core functionality, and also contains functionality for the Arbiter UI
- arbiter-deeplearning4j: For hyperparameter optimization of DL4J models (MultiLayerNetwork and ComputationGraph networks)
## Hyperparameter Optimization Functionality
The open-source version of Arbiter currently defines two methods of hyperparameter optimization:
- Grid search
- Random search
For optimization of complex models such as neural networks (those with more than a few hyperparameters), random search is superior to grid search, though Bayesian hyperparameter optimization schemes
For a comparison of random and grid search methods, see [Random Search for Hyper-parameter Optimization (Bergstra and Bengio, 2012)](http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf).
### Core Concepts and Classes in Arbiter for Hyperparameter Optimization
In order to conduct hyperparameter optimization in Arbiter, it is necessary for the user to understand and define the following:
- **Parameter Space**: A ```ParameterSpace<P>``` specifies the type and allowable values of hyperparameters for a model configuration of type ```P```. For example, ```P``` could be a MultiLayerConfiguration for DL4J
- **Candidate Generator**: A ```CandidateGenerator<C>``` is used to generate candidate models configurations of some type ```C```. The following implementations are defined in arbiter-core:
- ```RandomSearchCandidateGenerator```
- ```GridSearchCandidateGenerator```
- **Score Function**: A ```ScoreFunction<M,D>``` is used to score a model of type ```M``` given data of type ```D```. For example, in DL4J a score function might be used to calculate the classification accuracy from a DataSetIterator
- A key concept here is that they score is a single numerical (double precision) value that we either want to minimize or maximize - this is the goal of hyperparameter optimization
- **Termination Conditions**: One or more ```TerminationCondition``` instances must be provided to the ```OptimizationConfiguration```. ```TerminationCondition``` instances are used to control when hyperparameter optimization should be stopped. Some built-in termination conditions:
- ```MaxCandidatesCondition```: Terminate if more than the specified number of candidate hyperparameter configurations have been executed
- ```MaxTimeCondition```: Terminate after a specified amount of time has elapsed since starting the optimization
- **Result Saver**: The ```ResultSaver<C,M,A>``` interface is used to specify how the results of each hyperparameter optimization run should be saved. For example, whether saving should be done to local disk, to a database, to HDFS, or simply stored in memory.
- Note that ```ResultSaver.saveModel``` method returns a ```ResultReference``` object, which provides a mechanism for re-loading both the model and score from wherever it may be saved.
- **Optimization Configuration**: An ```OptimizationConfiguration<C,M,D,A>``` ties together the above configuration options in a fluent (builder) pattern.
- **Candidate Executor**: The ```CandidateExecutor<C,M,D,A>``` interface provides a layer of abstraction between the configuration and execution of each instance of learning. Currently, the only option is the ```LocalCandidateExecutor```, which is used to execute learning on a single machine (in the current JVM). In principle, other execution methods (for example, on Spark or cloud computing machines) could be implemented.
- **Optimization Runner**: The ```OptimizationRunner``` uses an ```OptimizationConfiguration``` and a ```CandidateExecutor``` to actually run the optimization, and save the results.
### Optimization of DeepLearning4J Models
(This section: forthcoming)

View File

@ -0,0 +1,83 @@
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ Copyright (c) 2015-2018 Skymind, Inc.
~
~ This program and the accompanying materials are made available under the
~ terms of the Apache License, Version 2.0 which is available at
~ https://www.apache.org/licenses/LICENSE-2.0.
~
~ Unless required by applicable law or agreed to in writing, software
~ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
~ WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
~ License for the specific language governing permissions and limitations
~ under the License.
~
~ SPDX-License-Identifier: Apache-2.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-->
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
<artifactId>arbiter</artifactId>
<groupId>org.deeplearning4j</groupId>
<version>1.0.0-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>arbiter-core</artifactId>
<packaging>jar</packaging>
<name>arbiter-core</name>
<dependencies>
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-api</artifactId>
<version>${nd4j.version}</version>
<exclusions>
<exclusion>
<groupId>com.google.code.findbugs</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>${commons.lang.version}</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-math3</artifactId>
<version>${commons.math.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit.version}</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j.version}</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>${logback.version}</version>
<scope>test</scope>
</dependency>
<!-- ND4J Shaded Jackson Dependency -->
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>jackson</artifactId>
<version>${nd4j.version}</version>
</dependency>
</dependencies>
</project>

View File

@ -0,0 +1,91 @@
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ Copyright (c) 2015-2018 Skymind, Inc.
~
~ This program and the accompanying materials are made available under the
~ terms of the Apache License, Version 2.0 which is available at
~ https://www.apache.org/licenses/LICENSE-2.0.
~
~ Unless required by applicable law or agreed to in writing, software
~ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
~ WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
~ License for the specific language governing permissions and limitations
~ under the License.
~
~ SPDX-License-Identifier: Apache-2.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-->
<assembly>
<id>bin</id>
<!-- START SNIPPET: formats -->
<formats>
<format>tar.gz</format>
<!--
<format>tar.bz2</format>
<format>zip</format>
-->
</formats>
<!-- END SNIPPET: formats -->
<dependencySets>
<dependencySet>
<outputDirectory>lib</outputDirectory>
<includes>
<include>*:jar:*</include>
</includes>
<excludes>
<exclude>*:sources</exclude>
</excludes>
</dependencySet>
</dependencySets>
<!-- START SNIPPET: fileSets -->
<fileSets>
<fileSet>
<includes>
<include>readme.txt</include>
</includes>
</fileSet>
<fileSet>
<directory>src/main/resources/bin/</directory>
<outputDirectory>bin</outputDirectory>
<includes>
<include>arbiter</include>
</includes>
<lineEnding>unix</lineEnding>
<fileMode>0755</fileMode>
</fileSet>
<fileSet>
<directory>examples</directory>
<outputDirectory>examples</outputDirectory>
<!--
<lineEnding>unix</lineEnding>
http://stackoverflow.com/questions/2958282/stranges-files-in-my-assembly-since-switching-to-lineendingunix-lineending
-->
</fileSet>
<!--
<fileSet>
<directory>src/bin</directory>
<outputDirectory>bin</outputDirectory>
<includes>
<include>hello</include>
</includes>
<lineEnding>unix</lineEnding>
<fileMode>0755</fileMode>
</fileSet>
-->
<fileSet>
<directory>target</directory>
<outputDirectory>./</outputDirectory>
<includes>
<include>*.jar</include>
</includes>
</fileSet>
</fileSets>
<!-- END SNIPPET: fileSets -->
</assembly>

View File

@ -0,0 +1,74 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api;
import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
/**
* Created by Alex on 23/07/2017.
*/
public abstract class AbstractParameterSpace<T> implements ParameterSpace<T> {
@Override
public Map<String, ParameterSpace> getNestedSpaces() {
Map<String, ParameterSpace> m = new LinkedHashMap<>();
//Need to manually build and walk the class heirarchy...
Class<?> currClass = this.getClass();
List<Class<?>> classHeirarchy = new ArrayList<>();
while (currClass != Object.class) {
classHeirarchy.add(currClass);
currClass = currClass.getSuperclass();
}
for (int i = classHeirarchy.size() - 1; i >= 0; i--) {
//Use reflection here to avoid a mass of boilerplate code...
Field[] allFields = classHeirarchy.get(i).getDeclaredFields();
for (Field f : allFields) {
String name = f.getName();
Class<?> fieldClass = f.getType();
boolean isParamSpacefield = ParameterSpace.class.isAssignableFrom(fieldClass);
if (!isParamSpacefield) {
continue;
}
f.setAccessible(true);
ParameterSpace<?> p;
try {
p = (ParameterSpace<?>) f.get(this);
} catch (IllegalAccessException e) {
throw new RuntimeException(e);
}
if (p != null) {
m.put(name, p);
}
}
}
return m;
}
}

View File

@ -0,0 +1,57 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api;
import lombok.AllArgsConstructor;
import lombok.Data;
import org.deeplearning4j.arbiter.optimize.generator.util.SerializedSupplier;
import org.nd4j.linalg.function.Supplier;
import java.io.Serializable;
import java.util.Map;
/**
* Candidate: a proposed hyperparameter configuration.
* Also includes a map for data parameters, to configure things like data preprocessing, etc.
*/
@Data
@AllArgsConstructor
public class Candidate<C> implements Serializable {
private Supplier<C> supplier;
private int index;
private double[] flatParameters;
private Map<String, Object> dataParameters;
private Exception exception;
public Candidate(C value, int index, double[] flatParameters, Map<String,Object> dataParameters, Exception e) {
this(new SerializedSupplier<C>(value), index, flatParameters, dataParameters, e);
}
public Candidate(C value, int index, double[] flatParameters) {
this(new SerializedSupplier<C>(value), index, flatParameters);
}
public Candidate(Supplier<C> value, int index, double[] flatParameters) {
this(value, index, flatParameters, null, null);
}
public C getValue(){
return supplier.get();
}
}

View File

@ -0,0 +1,68 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api;
import org.deeplearning4j.arbiter.optimize.generator.GridSearchCandidateGenerator;
import org.deeplearning4j.arbiter.optimize.generator.RandomSearchGenerator;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonSubTypes;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
/**
* A CandidateGenerator proposes candidates (i.e., hyperparameter configurations) for evaluation.
* This abstraction allows for different ways of generating the next configuration to test; for example,
* random search, grid search, Bayesian optimization methods, etc.
*
* @author Alex Black
*/
@JsonInclude(JsonInclude.Include.NON_NULL)
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public interface CandidateGenerator {
/**
* Is this candidate generator able to generate more candidates? This will always return true in some
* cases, but some search strategies have a limit (grid search, for example)
*/
boolean hasMoreCandidates();
/**
* Generate a candidate hyperparameter configuration
*/
Candidate getCandidate();
/**
* Report results for the candidate generator.
*
* @param result The results to report
*/
void reportResults(OptimizationResult result);
/**
* @return Get the parameter space for this candidate generator
*/
ParameterSpace<?> getParameterSpace();
/**
* @param rngSeed Set the random number generator seed for the candidate generator
*/
void setRngSeed(long rngSeed);
/**
* @return The type (class) of the generated candidates
*/
Class<?> getCandidateType();
}

View File

@ -0,0 +1,60 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api;
import lombok.Data;
import org.deeplearning4j.arbiter.optimize.api.saving.ResultReference;
import org.deeplearning4j.arbiter.optimize.runner.CandidateInfo;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.io.Serializable;
/**
* An optimization result represents the results of an optimization run, including the canditate configuration, the
* trained model, the score for that model, and index of the model
*
* @author Alex Black
*/
@Data
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
@JsonIgnoreProperties({"resultReference"})
public class OptimizationResult implements Serializable {
@JsonProperty
private Candidate candidate;
@JsonProperty
private Double score;
@JsonProperty
private int index;
@JsonProperty
private Object modelSpecificResults;
@JsonProperty
private CandidateInfo candidateInfo;
private ResultReference resultReference;
public OptimizationResult(Candidate candidate, Double score, int index, Object modelSpecificResults,
CandidateInfo candidateInfo, ResultReference resultReference) {
this.candidate = candidate;
this.score = score;
this.index = index;
this.modelSpecificResults = modelSpecificResults;
this.candidateInfo = candidateInfo;
this.resultReference = resultReference;
}
}

View File

@ -0,0 +1,81 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api;
import org.nd4j.shade.jackson.annotation.JsonIgnore;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.util.List;
import java.util.Map;
/**
* ParameterSpace: defines the acceptable ranges of values a given parameter may take.
* Note that parameter spaces can be simple (like {@code ParameterSpace<Double>}) or complicated, including
* multiple nested ParameterSpaces
*
* @author Alex Black
*/
@JsonInclude(JsonInclude.Include.NON_NULL)
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public interface ParameterSpace<P> {
/**
* Generate a candidate given a set of values. These values are then mapped to a specific candidate, using some
* mapping function (such as the prior probability distribution)
*
* @param parameterValues A set of values, each in the range [0,1], of length {@link #numParameters()}
*/
P getValue(double[] parameterValues);
/**
* Get the total number of parameters (hyperparameters) to be optimized. This includes optional parameters from
* different parameter subpaces. (Thus, not every parameter may be used in every candidate)
*
* @return Number of hyperparameters to be optimized
*/
int numParameters();
/**
* Collect a list of parameters, recursively. Note that leaf parameters are parameters that do not have any
* nested parameter spaces
*/
List<ParameterSpace> collectLeaves();
/**
* Get a list of nested parameter spaces by name. Note that the returned parameter spaces may in turn have further
* nested parameter spaces. The map should be empty for leaf parameter spaces
*
* @return A map of nested parameter spaces
*/
Map<String, ParameterSpace> getNestedSpaces();
/**
* Is this ParameterSpace a leaf? (i.e., does it contain other ParameterSpaces internally?)
*/
@JsonIgnore
boolean isLeaf();
/**
* For leaf ParameterSpaces: set the indices of the leaf ParameterSpace.
* Expects input of length {@link #numParameters()}. Throws exception if {@link #isLeaf()} is false.
*
* @param indices Indices to set. Length should equal {@link #numParameters()}
*/
void setIndices(int... indices);
}

View File

@ -0,0 +1,62 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api;
import org.deeplearning4j.arbiter.optimize.api.data.DataProvider;
import org.deeplearning4j.arbiter.optimize.api.data.DataSource;
import org.deeplearning4j.arbiter.optimize.api.score.ScoreFunction;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
import org.deeplearning4j.arbiter.optimize.runner.listener.StatusListener;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.Callable;
/**
* The TaskCreator is used to take a candidate configuration, data provider and score function, and create something
* that can be executed as a Callable
*
* @author Alex Black
*/
public interface TaskCreator {
/**
* Generate a callable that can be executed to conduct the training of this model (given the model configuration)
*
* @param candidate Candidate (model) configuration to be trained
* @param dataProvider DataProvider, for the data
* @param scoreFunction Score function to be used to evaluate the model
* @param statusListeners Status listeners, that can be used for callbacks (to UI, for example)
* @return A callable that returns an OptimizationResult, once optimization is complete
*/
@Deprecated
Callable<OptimizationResult> create(Candidate candidate, DataProvider dataProvider, ScoreFunction scoreFunction,
List<StatusListener> statusListeners, IOptimizationRunner runner);
/**
* Generate a callable that can be executed to conduct the training of this model (given the model configuration)
*
* @param candidate Candidate (model) configuration to be trained
* @param dataSource Data source
* @param dataSourceProperties Properties (may be null) for the data source
* @param scoreFunction Score function to be used to evaluate the model
* @param statusListeners Status listeners, that can be used for callbacks (to UI, for example)
* @return A callable that returns an OptimizationResult, once optimization is complete
*/
Callable<OptimizationResult> create(Candidate candidate, Class<? extends DataSource> dataSource, Properties dataSourceProperties,
ScoreFunction scoreFunction, List<StatusListener> statusListeners, IOptimizationRunner runner);
}

View File

@ -0,0 +1,43 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api;
import java.util.HashMap;
import java.util.Map;
public class TaskCreatorProvider {
private static Map<Class<? extends ParameterSpace>, Class<? extends TaskCreator>> map = new HashMap<>();
public synchronized static TaskCreator defaultTaskCreatorFor(Class<? extends ParameterSpace> paramSpaceClass){
Class<? extends TaskCreator> c = map.get(paramSpaceClass);
try {
if(c == null){
return null;
}
return c.newInstance();
} catch (Exception e){
throw new RuntimeException("Could not create new instance of task creator class: " + c, e);
}
}
public synchronized static void registerDefaultTaskCreatorClass(Class<? extends ParameterSpace> spaceClass,
Class<? extends TaskCreator> creatorClass){
map.put(spaceClass, creatorClass);
}
}

View File

@ -0,0 +1,75 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.adapter;
import lombok.AllArgsConstructor;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import java.util.List;
import java.util.Map;
/**
* An abstract class used for adapting one type into another. Subclasses of this need to merely implement 2 simple methods
*
* @param <F> Type to convert from
* @param <T> Type to convert to
* @author Alex Black
*/
@AllArgsConstructor
public abstract class ParameterSpaceAdapter<F, T> implements ParameterSpace<T> {
protected abstract T convertValue(F from);
protected abstract ParameterSpace<F> underlying();
@Override
public T getValue(double[] parameterValues) {
return convertValue(underlying().getValue(parameterValues));
}
@Override
public int numParameters() {
return underlying().numParameters();
}
@Override
public List<ParameterSpace> collectLeaves() {
return underlying().collectLeaves();
}
@Override
public Map<String, ParameterSpace> getNestedSpaces() {
return underlying().getNestedSpaces();
}
@Override
public boolean isLeaf() {
return underlying().isLeaf();
}
@Override
public void setIndices(int... indices) {
underlying().setIndices(indices);
}
@Override
public String toString() {
return underlying().toString();
}
}

View File

@ -0,0 +1,54 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.data;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.io.Serializable;
import java.util.Map;
/**
* DataProvider interface abstracts out the providing of data
* @deprecated Use {@link DataSource}
*/
@JsonInclude(JsonInclude.Include.NON_NULL)
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
@Deprecated
public interface DataProvider extends Serializable {
/**
* Get training data given some parameters for the data.
* Data parameters map is used to specify things like batch
* size data preprocessing
*
* @param dataParameters Parameters for data. May be null or empty for default data
* @return training data
*/
Object trainData(Map<String, Object> dataParameters);
/**
* Get training data given some parameters for the data. Data parameters map is used to specify things like batch
* size data preprocessing
*
* @param dataParameters Parameters for data. May be null or empty for default data
* @return training data
*/
Object testData(Map<String, Object> dataParameters);
Class<?> getDataType();
}

View File

@ -0,0 +1,89 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.data;
import lombok.Data;
import org.nd4j.linalg.dataset.api.iterator.DataSetIteratorFactory;
import java.util.Map;
/**
* This is a {@link DataProvider} for
* an {@link DataSetIteratorFactory} which
* based on a key of {@link DataSetIteratorFactoryProvider#FACTORY_KEY}
* will create {@link org.nd4j.linalg.dataset.api.iterator.DataSetIterator}
* for use with arbiter.
*
* This {@link DataProvider} is mainly meant for use for command line driven
* applications.
*
* @author Adam Gibson
*/
@Data
public class DataSetIteratorFactoryProvider implements DataProvider {
public final static String FACTORY_KEY = "org.deeplearning4j.arbiter.data.data.factory";
/**
* Get training data given some parameters for the data.
* Data parameters map is used to specify things like batch
* size data preprocessing
*
* @param dataParameters Parameters for data. May be null or empty for default data
* @return training data
*/
@Override
public DataSetIteratorFactory trainData(Map<String, Object> dataParameters) {
return create(dataParameters);
}
/**
* Get training data given some parameters for the data. Data parameters map
* is used to specify things like batch
* size data preprocessing
*
* @param dataParameters Parameters for data. May be null or empty for default data
* @return training data
*/
@Override
public DataSetIteratorFactory testData(Map<String, Object> dataParameters) {
return create(dataParameters);
}
@Override
public Class<?> getDataType() {
return DataSetIteratorFactory.class;
}
private DataSetIteratorFactory create(Map<String, Object> dataParameters) {
if (dataParameters == null)
throw new IllegalArgumentException(
"Data parameters is null. Please specify a class name to create a dataset iterator.");
if (!dataParameters.containsKey(FACTORY_KEY))
throw new IllegalArgumentException(
"No data set iterator factory class found. Please specify a class name with key "
+ FACTORY_KEY);
String value = dataParameters.get(FACTORY_KEY).toString();
try {
Class<? extends DataSetIteratorFactory> clazz =
(Class<? extends DataSetIteratorFactory>) Class.forName(value);
return clazz.newInstance();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}

View File

@ -0,0 +1,57 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.data;
import java.io.Serializable;
import java.util.Properties;
/**
* DataSource: defines where the data should come from for training and testing.
* Note that implementations must have a no-argument contsructor
*
* @author Alex Black
*/
public interface DataSource extends Serializable {
/**
* Configure the current data source with the specified properties
* Note: These properties are fixed for the training instance, and are optionally provided by the user
* at the configuration stage.
* The properties could be anything - and are usually specific to each DataSource implementation.
* For example, values such as batch size could be set using these properties
* @param properties Properties to apply to the data source instance
*/
void configure(Properties properties);
/**
* Get test data to be used for the optimization. Usually a DataSetIterator or MultiDataSetIterator
*/
Object trainData();
/**
* Get test data to be used for the optimization. Usually a DataSetIterator or MultiDataSetIterator
*/
Object testData();
/**
* The type of data returned by {@link #trainData()} and {@link #testData()}.
* Usually DataSetIterator or MultiDataSetIterator
* @return Class of the objects returned by trainData and testData
*/
Class<?> getDataType();
}

View File

@ -0,0 +1,40 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.evaluation;
import org.deeplearning4j.arbiter.optimize.api.data.DataProvider;
import java.io.Serializable;
import java.util.List;
/**
* ModelEvaluator: Used to conduct additional evaluation.
* For example, this may be classification performance on a test set or similar
*/
public interface ModelEvaluator extends Serializable {
Object evaluateModel(Object model, DataProvider dataProvider);
/**
* @return The model types supported by this class
*/
List<Class<?>> getSupportedModelTypes();
/**
* @return The datatypes supported by this class
*/
List<Class<?>> getSupportedDataTypes();
}

View File

@ -0,0 +1,63 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.saving;
import lombok.AllArgsConstructor;
import lombok.NoArgsConstructor;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
/**
* A simple class to store optimization results in-memory.
* Not recommended for large (or a large number of) models.
*/
@NoArgsConstructor
public class InMemoryResultSaver implements ResultSaver {
@Override
public ResultReference saveModel(OptimizationResult result, Object modelResult) throws IOException {
return new InMemoryResult(result, modelResult);
}
@Override
public List<Class<?>> getSupportedCandidateTypes() {
return Collections.<Class<?>>singletonList(Object.class);
}
@Override
public List<Class<?>> getSupportedModelTypes() {
return Collections.<Class<?>>singletonList(Object.class);
}
@AllArgsConstructor
private static class InMemoryResult implements ResultReference {
private OptimizationResult result;
private Object modelResult;
@Override
public OptimizationResult getResult() throws IOException {
return result;
}
@Override
public Object getResultModel() throws IOException {
return modelResult;
}
}
}

View File

@ -0,0 +1,37 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.saving;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.io.IOException;
/**
* Idea: We can't store all results in memory in general (might have thousands of candidates with millions of
* parameters each)
* So instead: return a reference to the saved result. Idea is that the result may be saved to disk or a database,
* and we can easily load it back into memory (if/when required) using the getResult() method
*/
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public interface ResultReference {
OptimizationResult getResult() throws IOException;
Object getResultModel() throws IOException;
}

View File

@ -0,0 +1,57 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.saving;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.io.IOException;
import java.util.List;
/**
* The ResultSaver interface provides a means of saving models in such a way that they can be loaded back into memory later,
* regardless of where/how they are saved.
*
* @author Alex Black
*/
@JsonInclude(JsonInclude.Include.NON_NULL)
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public interface ResultSaver {
/**
* Save the model (including configuration and any additional evaluation/results)
*
* @param result Optimization result for the model to save
* @param modelResult Model result to save
* @return ResultReference, such that the result can be loaded back into memory
* @throws IOException If IO error occurs during model saving
*/
ResultReference saveModel(OptimizationResult result, Object modelResult) throws IOException;
/**
* @return The candidate types supported by this class
*/
List<Class<?>> getSupportedCandidateTypes();
/**
* @return The model types supported by this class
*/
List<Class<?>> getSupportedModelTypes();
}

View File

@ -0,0 +1,75 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.score;
import org.deeplearning4j.arbiter.optimize.api.data.DataProvider;
import org.deeplearning4j.arbiter.optimize.api.data.DataSource;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.io.Serializable;
import java.util.List;
import java.util.Map;
import java.util.Properties;
/**
* ScoreFunction defines the objective of hyperparameter optimization.
* Specifically, it is used to calculate a score for a given model, relative to the data set provided
* in the configuration.
*
*/
@JsonInclude(JsonInclude.Include.NON_NULL)
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public interface ScoreFunction extends Serializable {
/**
* Calculate and return the score, for the given model and data provider
*
* @param model Model to score
* @param dataProvider Data provider - data to use
* @param dataParameters Parameters for data
* @return Calculated score
*/
double score(Object model, DataProvider dataProvider, Map<String, Object> dataParameters);
/**
* Calculate and return the score, for the given model and data provider
*
* @param model Model to score
* @param dataSource Data source
* @param dataSourceProperties data source properties
* @return Calculated score
*/
double score(Object model, Class<? extends DataSource> dataSource, Properties dataSourceProperties);
/**
* Should this score function be minimized or maximized?
*
* @return true if score should be minimized, false if score should be maximized
*/
boolean minimize();
/**
* @return The model types supported by this class
*/
List<Class<?>> getSupportedModelTypes();
/**
* @return The data types supported by this class
*/
List<Class<?>> getSupportedDataTypes();
}

View File

@ -0,0 +1,50 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.termination;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
import org.nd4j.shade.jackson.annotation.JsonProperty;
/**
* Terminate hyperparameter search when the number of candidates exceeds a specified value.
* Note that this is counted as number of completed candidates, plus number of failed candidates.
*/
@AllArgsConstructor
@NoArgsConstructor
@Data
public class MaxCandidatesCondition implements TerminationCondition {
@JsonProperty
private int maxCandidates;
@Override
public void initialize(IOptimizationRunner optimizationRunner) {
//No op
}
@Override
public boolean terminate(IOptimizationRunner optimizationRunner) {
return optimizationRunner.numCandidatesCompleted() + optimizationRunner.numCandidatesFailed() >= maxCandidates;
}
@Override
public String toString() {
return "MaxCandidatesCondition(" + maxCandidates + ")";
}
}

View File

@ -0,0 +1,81 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.termination;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import java.util.concurrent.TimeUnit;
/**
* Terminate hyperparameter optimization after
* a fixed amount of time has passed
* @author Alex Black
*/
@NoArgsConstructor
@Data
public class MaxTimeCondition implements TerminationCondition {
private static final DateTimeFormatter formatter = DateTimeFormat.forPattern("dd-MMM HH:mm ZZ");
private long duration;
private TimeUnit timeUnit;
private long startTime;
private long endTime;
private MaxTimeCondition(@JsonProperty("duration") long duration, @JsonProperty("timeUnit") TimeUnit timeUnit,
@JsonProperty("startTime") long startTime, @JsonProperty("endTime") long endTime) {
this.duration = duration;
this.timeUnit = timeUnit;
this.startTime = startTime;
this.endTime = endTime;
}
/**
* @param duration Duration of time
* @param timeUnit Unit that the duration is specified in
*/
public MaxTimeCondition(long duration, TimeUnit timeUnit) {
this.duration = duration;
this.timeUnit = timeUnit;
}
@Override
public void initialize(IOptimizationRunner optimizationRunner) {
startTime = System.currentTimeMillis();
this.endTime = startTime + timeUnit.toMillis(duration);
}
@Override
public boolean terminate(IOptimizationRunner optimizationRunner) {
return System.currentTimeMillis() >= endTime;
}
@Override
public String toString() {
if (startTime > 0) {
return "MaxTimeCondition(" + duration + "," + timeUnit + ",start=\"" + formatter.print(startTime)
+ "\",end=\"" + formatter.print(endTime) + "\")";
} else {
return "MaxTimeCondition(" + duration + "," + timeUnit + "\")";
}
}
}

View File

@ -0,0 +1,45 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.api.termination;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
import org.nd4j.shade.jackson.annotation.JsonInclude;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
/**
* Global termination condition for conducting hyperparameter optimization.
* Termination conditions are used to determine if/when the optimization should stop.
*/
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
@JsonInclude(JsonInclude.Include.NON_NULL)
public interface TerminationCondition {
/**
* Initialize the termination condition (such as starting timers, etc).
*/
void initialize(IOptimizationRunner optimizationRunner);
/**
* Determine whether optimization should be terminated
*
* @param optimizationRunner Optimization runner
* @return true if learning should be terminated, false otherwise
*/
boolean terminate(IOptimizationRunner optimizationRunner);
}

View File

@ -0,0 +1,222 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.config;
import lombok.*;
import org.deeplearning4j.arbiter.optimize.api.CandidateGenerator;
import org.deeplearning4j.arbiter.optimize.api.data.DataProvider;
import org.deeplearning4j.arbiter.optimize.api.data.DataSource;
import org.deeplearning4j.arbiter.optimize.api.saving.ResultSaver;
import org.deeplearning4j.arbiter.optimize.api.score.ScoreFunction;
import org.deeplearning4j.arbiter.optimize.api.termination.TerminationCondition;
import org.deeplearning4j.arbiter.optimize.serde.jackson.JsonMapper;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import org.nd4j.shade.jackson.core.JsonProcessingException;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;
import java.io.IOException;
import java.lang.reflect.Constructor;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
/**
* OptimizationConfiguration ties together all of the various
* components (such as data, score functions, result saving etc)
* required to execute hyperparameter optimization.
*
* @author Alex Black
*/
@Data
@NoArgsConstructor
@EqualsAndHashCode(exclude = {"dataProvider", "terminationConditions", "candidateGenerator", "resultSaver"})
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public class OptimizationConfiguration {
@JsonSerialize
private DataProvider dataProvider;
@JsonSerialize
private Class<? extends DataSource> dataSource;
@JsonSerialize
private Properties dataSourceProperties;
@JsonSerialize
private CandidateGenerator candidateGenerator;
@JsonSerialize
private ResultSaver resultSaver;
@JsonSerialize
private ScoreFunction scoreFunction;
@JsonSerialize
private List<TerminationCondition> terminationConditions;
@JsonSerialize
private Long rngSeed;
@Getter
@Setter
private long executionStartTime;
private OptimizationConfiguration(Builder builder) {
this.dataProvider = builder.dataProvider;
this.dataSource = builder.dataSource;
this.dataSourceProperties = builder.dataSourceProperties;
this.candidateGenerator = builder.candidateGenerator;
this.resultSaver = builder.resultSaver;
this.scoreFunction = builder.scoreFunction;
this.terminationConditions = builder.terminationConditions;
this.rngSeed = builder.rngSeed;
if (rngSeed != null)
candidateGenerator.setRngSeed(rngSeed);
//Validate the configuration: data types, score types, etc
//TODO
//Validate that the dataSource has a no-arg constructor
if(dataSource != null){
try{
dataSource.getConstructor();
} catch (NoSuchMethodException e){
throw new IllegalStateException("Data source class " + dataSource.getName() + " does not have a public no-argument constructor");
}
}
}
public static class Builder {
private DataProvider dataProvider;
private Class<? extends DataSource> dataSource;
private Properties dataSourceProperties;
private CandidateGenerator candidateGenerator;
private ResultSaver resultSaver;
private ScoreFunction scoreFunction;
private List<TerminationCondition> terminationConditions;
private Long rngSeed;
/**
* @deprecated Use {@link #dataSource(Class, Properties)}
*/
@Deprecated
public Builder dataProvider(DataProvider dataProvider) {
this.dataProvider = dataProvider;
return this;
}
/**
* DataSource: defines where the data should come from for training and testing.
* Note that implementations must have a no-argument contsructor
* @param dataSource Class for the data source
* @param dataSourceProperties May be null. Properties for configuring the data source
*/
public Builder dataSource(Class<? extends DataSource> dataSource, Properties dataSourceProperties){
this.dataSource = dataSource;
this.dataSourceProperties = dataSourceProperties;
return this;
}
public Builder candidateGenerator(CandidateGenerator candidateGenerator) {
this.candidateGenerator = candidateGenerator;
return this;
}
public Builder modelSaver(ResultSaver resultSaver) {
this.resultSaver = resultSaver;
return this;
}
public Builder scoreFunction(ScoreFunction scoreFunction) {
this.scoreFunction = scoreFunction;
return this;
}
/**
* Termination conditions to use
* @param conditions
* @return
*/
public Builder terminationConditions(TerminationCondition... conditions) {
terminationConditions = Arrays.asList(conditions);
return this;
}
public Builder terminationConditions(List<TerminationCondition> terminationConditions) {
this.terminationConditions = terminationConditions;
return this;
}
public Builder rngSeed(long rngSeed) {
this.rngSeed = rngSeed;
return this;
}
public OptimizationConfiguration build() {
return new OptimizationConfiguration(this);
}
}
/**
* Create an optimization configuration from the json
* @param json the json to create the config from
* For type definitions
* @see OptimizationConfiguration
*/
public static OptimizationConfiguration fromYaml(String json) {
try {
return JsonMapper.getYamlMapper().readValue(json, OptimizationConfiguration.class);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
/**
* Create an optimization configuration from the json
* @param json the json to create the config from
* @see OptimizationConfiguration
*/
public static OptimizationConfiguration fromJson(String json) {
try {
return JsonMapper.getMapper().readValue(json, OptimizationConfiguration.class);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
/**
* Return a json configuration of this optimization configuration
*
* @return
*/
public String toJson() {
try {
return JsonMapper.getMapper().writeValueAsString(this);
} catch (JsonProcessingException e) {
throw new RuntimeException(e);
}
}
/**
* Return a yaml configuration of this optimization configuration
*
* @return
*/
public String toYaml() {
try {
return JsonMapper.getYamlMapper().writeValueAsString(this);
} catch (JsonProcessingException e) {
throw new RuntimeException(e);
}
}
}

View File

@ -0,0 +1,96 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.distribution;
import org.apache.commons.math3.distribution.IntegerDistribution;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
/**
* Degenerate distribution: i.e., integer "distribution" that is just a fixed value
*/
public class DegenerateIntegerDistribution implements IntegerDistribution {
private int value;
public DegenerateIntegerDistribution(int value) {
this.value = value;
}
@Override
public double probability(int x) {
return (x == value ? 1.0 : 0.0);
}
@Override
public double cumulativeProbability(int x) {
return (x >= value ? 1.0 : 0.0);
}
@Override
public double cumulativeProbability(int x0, int x1) throws NumberIsTooLargeException {
return (value >= x0 && value <= x1 ? 1.0 : 0.0);
}
@Override
public int inverseCumulativeProbability(double p) throws OutOfRangeException {
throw new UnsupportedOperationException();
}
@Override
public double getNumericalMean() {
return value;
}
@Override
public double getNumericalVariance() {
return 0;
}
@Override
public int getSupportLowerBound() {
return value;
}
@Override
public int getSupportUpperBound() {
return value;
}
@Override
public boolean isSupportConnected() {
return true;
}
@Override
public void reseedRandomGenerator(long seed) {
//no op
}
@Override
public int sample() {
return value;
}
@Override
public int[] sample(int sampleSize) {
int[] out = new int[sampleSize];
for (int i = 0; i < out.length; i++)
out[i] = value;
return out;
}
}

View File

@ -0,0 +1,149 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.distribution;
import org.apache.commons.math3.distribution.*;
/**
* Distribution utils for Apache Commons math distributions - which don't provide equals, hashcode, toString methods,
* don't implement serializable etc.
* Which makes unit testing etc quite difficult.
*
* @author Alex Black
*/
public class DistributionUtils {
private DistributionUtils() {}
public static boolean distributionsEqual(RealDistribution a, RealDistribution b) {
if (a.getClass() != b.getClass())
return false;
Class<?> c = a.getClass();
if (c == BetaDistribution.class) {
BetaDistribution ba = (BetaDistribution) a;
BetaDistribution bb = (BetaDistribution) b;
return ba.getAlpha() == bb.getAlpha() && ba.getBeta() == bb.getBeta();
} else if (c == CauchyDistribution.class) {
CauchyDistribution ca = (CauchyDistribution) a;
CauchyDistribution cb = (CauchyDistribution) b;
return ca.getMedian() == cb.getMedian() && ca.getScale() == cb.getScale();
} else if (c == ChiSquaredDistribution.class) {
ChiSquaredDistribution ca = (ChiSquaredDistribution) a;
ChiSquaredDistribution cb = (ChiSquaredDistribution) b;
return ca.getDegreesOfFreedom() == cb.getDegreesOfFreedom();
} else if (c == ExponentialDistribution.class) {
ExponentialDistribution ea = (ExponentialDistribution) a;
ExponentialDistribution eb = (ExponentialDistribution) b;
return ea.getMean() == eb.getMean();
} else if (c == FDistribution.class) {
FDistribution fa = (FDistribution) a;
FDistribution fb = (FDistribution) b;
return fa.getNumeratorDegreesOfFreedom() == fb.getNumeratorDegreesOfFreedom()
&& fa.getDenominatorDegreesOfFreedom() == fb.getDenominatorDegreesOfFreedom();
} else if (c == GammaDistribution.class) {
GammaDistribution ga = (GammaDistribution) a;
GammaDistribution gb = (GammaDistribution) b;
return ga.getShape() == gb.getShape() && ga.getScale() == gb.getScale();
} else if (c == LevyDistribution.class) {
LevyDistribution la = (LevyDistribution) a;
LevyDistribution lb = (LevyDistribution) b;
return la.getLocation() == lb.getLocation() && la.getScale() == lb.getScale();
} else if (c == LogNormalDistribution.class) {
LogNormalDistribution la = (LogNormalDistribution) a;
LogNormalDistribution lb = (LogNormalDistribution) b;
return la.getScale() == lb.getScale() && la.getShape() == lb.getShape();
} else if (c == NormalDistribution.class) {
NormalDistribution na = (NormalDistribution) a;
NormalDistribution nb = (NormalDistribution) b;
return na.getMean() == nb.getMean() && na.getStandardDeviation() == nb.getStandardDeviation();
} else if (c == ParetoDistribution.class) {
ParetoDistribution pa = (ParetoDistribution) a;
ParetoDistribution pb = (ParetoDistribution) b;
return pa.getScale() == pb.getScale() && pa.getShape() == pb.getShape();
} else if (c == TDistribution.class) {
TDistribution ta = (TDistribution) a;
TDistribution tb = (TDistribution) b;
return ta.getDegreesOfFreedom() == tb.getDegreesOfFreedom();
} else if (c == TriangularDistribution.class) {
TriangularDistribution ta = (TriangularDistribution) a;
TriangularDistribution tb = (TriangularDistribution) b;
return ta.getSupportLowerBound() == tb.getSupportLowerBound()
&& ta.getSupportUpperBound() == tb.getSupportUpperBound() && ta.getMode() == tb.getMode();
} else if (c == UniformRealDistribution.class) {
UniformRealDistribution ua = (UniformRealDistribution) a;
UniformRealDistribution ub = (UniformRealDistribution) b;
return ua.getSupportLowerBound() == ub.getSupportLowerBound()
&& ua.getSupportUpperBound() == ub.getSupportUpperBound();
} else if (c == WeibullDistribution.class) {
WeibullDistribution wa = (WeibullDistribution) a;
WeibullDistribution wb = (WeibullDistribution) b;
return wa.getShape() == wb.getShape() && wa.getScale() == wb.getScale();
} else if (c == LogUniformDistribution.class ){
LogUniformDistribution lu_a = (LogUniformDistribution)a;
LogUniformDistribution lu_b = (LogUniformDistribution)b;
return lu_a.getMin() == lu_b.getMin() && lu_a.getMax() == lu_b.getMax();
} else {
throw new UnsupportedOperationException("Unknown or not supported RealDistribution: " + c);
}
}
public static boolean distributionEquals(IntegerDistribution a, IntegerDistribution b) {
if (a.getClass() != b.getClass())
return false;
Class<?> c = a.getClass();
if (c == BinomialDistribution.class) {
BinomialDistribution ba = (BinomialDistribution) a;
BinomialDistribution bb = (BinomialDistribution) b;
return ba.getNumberOfTrials() == bb.getNumberOfTrials()
&& ba.getProbabilityOfSuccess() == bb.getProbabilityOfSuccess();
} else if (c == GeometricDistribution.class) {
GeometricDistribution ga = (GeometricDistribution) a;
GeometricDistribution gb = (GeometricDistribution) b;
return ga.getProbabilityOfSuccess() == gb.getProbabilityOfSuccess();
} else if (c == HypergeometricDistribution.class) {
HypergeometricDistribution ha = (HypergeometricDistribution) a;
HypergeometricDistribution hb = (HypergeometricDistribution) b;
return ha.getPopulationSize() == hb.getPopulationSize()
&& ha.getNumberOfSuccesses() == hb.getNumberOfSuccesses()
&& ha.getSampleSize() == hb.getSampleSize();
} else if (c == PascalDistribution.class) {
PascalDistribution pa = (PascalDistribution) a;
PascalDistribution pb = (PascalDistribution) b;
return pa.getNumberOfSuccesses() == pb.getNumberOfSuccesses()
&& pa.getProbabilityOfSuccess() == pb.getProbabilityOfSuccess();
} else if (c == PoissonDistribution.class) {
PoissonDistribution pa = (PoissonDistribution) a;
PoissonDistribution pb = (PoissonDistribution) b;
return pa.getMean() == pb.getMean();
} else if (c == UniformIntegerDistribution.class) {
UniformIntegerDistribution ua = (UniformIntegerDistribution) a;
UniformIntegerDistribution ub = (UniformIntegerDistribution) b;
return ua.getSupportUpperBound() == ub.getSupportUpperBound()
&& ua.getSupportUpperBound() == ub.getSupportUpperBound();
} else if (c == ZipfDistribution.class) {
ZipfDistribution za = (ZipfDistribution) a;
ZipfDistribution zb = (ZipfDistribution) b;
return za.getNumberOfElements() == zb.getNumberOfElements() && za.getExponent() == zb.getNumberOfElements();
} else {
throw new UnsupportedOperationException("Unknown or not supported IntegerDistribution: " + c);
}
}
}

View File

@ -0,0 +1,155 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.distribution;
import com.google.common.base.Preconditions;
import lombok.Getter;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import java.util.Random;
/**
* Log uniform distribution, with support in range [min, max] for min > 0
*
* Reference: <a href="https://www.vosesoftware.com/riskwiki/LogUniformdistribution.php">https://www.vosesoftware.com/riskwiki/LogUniformdistribution.php</a>
*
* @author Alex Black
*/
public class LogUniformDistribution implements RealDistribution {
@Getter private final double min;
@Getter private final double max;
private final double logMin;
private final double logMax;
private transient Random rng = new Random();
/**
*
* @param min Minimum value
* @param max Maximum value
*/
public LogUniformDistribution(double min, double max) {
Preconditions.checkArgument(min > 0, "Minimum must be > 0. Got: " + min);
Preconditions.checkArgument(max > min, "Maximum must be > min. Got: (min, max)=("
+ min + "," + max + ")");
this.min = min;
this.max = max;
this.logMin = Math.log(min);
this.logMax = Math.log(max);
}
@Override
public double probability(double x) {
if(x < min || x > max){
return 0;
}
return 1.0 / (x * (logMax - logMin));
}
@Override
public double density(double x) {
return probability(x);
}
@Override
public double cumulativeProbability(double x) {
if(x <= min){
return 0.0;
} else if(x >= max){
return 1.0;
}
return (Math.log(x)-logMin)/(logMax-logMin);
}
@Override
public double cumulativeProbability(double x0, double x1) throws NumberIsTooLargeException {
return cumulativeProbability(x1) - cumulativeProbability(x0);
}
@Override
public double inverseCumulativeProbability(double p) throws OutOfRangeException {
Preconditions.checkArgument(p >= 0 && p <= 1, "Invalid input: " + p);
return Math.exp(p * (logMax-logMin) + logMin);
}
@Override
public double getNumericalMean() {
return (max-min)/(logMax-logMin);
}
@Override
public double getNumericalVariance() {
double d1 = (logMax-logMin)*(max*max - min*min) - 2*(max-min)*(max-min);
return d1 / (2*Math.pow(logMax-logMin, 2.0));
}
@Override
public double getSupportLowerBound() {
return min;
}
@Override
public double getSupportUpperBound() {
return max;
}
@Override
public boolean isSupportLowerBoundInclusive() {
return true;
}
@Override
public boolean isSupportUpperBoundInclusive() {
return true;
}
@Override
public boolean isSupportConnected() {
return true;
}
@Override
public void reseedRandomGenerator(long seed) {
rng.setSeed(seed);
}
@Override
public double sample() {
return inverseCumulativeProbability(rng.nextDouble());
}
@Override
public double[] sample(int sampleSize) {
double[] d = new double[sampleSize];
for( int i=0; i<sampleSize; i++ ){
d[i] = sample();
}
return d;
}
@Override
public String toString(){
return "LogUniformDistribution(min=" + min + ",max=" + max + ")";
}
}

View File

@ -0,0 +1,91 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator;
import lombok.Data;
import lombok.EqualsAndHashCode;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.deeplearning4j.arbiter.optimize.api.CandidateGenerator;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.util.LeafUtils;
import java.util.List;
import java.util.Map;
import java.util.concurrent.atomic.AtomicInteger;
/**
* BaseCandidateGenerator: abstract class upon which {@link RandomSearchGenerator},
* {@link GridSearchCandidateGenerator} and {@link GeneticSearchCandidateGenerator}
* are built.
*
* @param <T> Type of candidates to generate
*/
@Data
@EqualsAndHashCode(exclude = {"rng", "candidateCounter"})
public abstract class BaseCandidateGenerator<T> implements CandidateGenerator {
protected ParameterSpace<T> parameterSpace;
protected AtomicInteger candidateCounter = new AtomicInteger(0);
protected SynchronizedRandomGenerator rng = new SynchronizedRandomGenerator(new JDKRandomGenerator());
protected Map<String, Object> dataParameters;
protected boolean initDone = false;
public BaseCandidateGenerator(ParameterSpace<T> parameterSpace, Map<String, Object> dataParameters,
boolean initDone) {
this.parameterSpace = parameterSpace;
this.dataParameters = dataParameters;
this.initDone = initDone;
}
protected void initialize() {
if(!initDone) {
//First: collect leaf parameter spaces objects and remove duplicates
List<ParameterSpace> noDuplicatesList = LeafUtils.getUniqueObjects(parameterSpace.collectLeaves());
//Second: assign each a number
int i = 0;
for (ParameterSpace ps : noDuplicatesList) {
int np = ps.numParameters();
if (np == 1) {
ps.setIndices(i++);
} else {
int[] values = new int[np];
for (int j = 0; j < np; j++)
values[j] = i++;
ps.setIndices(values);
}
}
initDone = true;
}
}
@Override
public ParameterSpace<T> getParameterSpace() {
return parameterSpace;
}
@Override
public void reportResults(OptimizationResult result) {
//No op
}
@Override
public void setRngSeed(long rngSeed) {
rng.setSeed(rngSeed);
}
}

View File

@ -0,0 +1,187 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator;
import lombok.Getter;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.arbiter.optimize.api.Candidate;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.api.score.ScoreFunction;
import org.deeplearning4j.arbiter.optimize.generator.genetic.Chromosome;
import org.deeplearning4j.arbiter.optimize.generator.genetic.ChromosomeFactory;
import org.deeplearning4j.arbiter.optimize.generator.genetic.exceptions.GeneticGenerationException;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.EmptyPopulationInitializer;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.PopulationInitializer;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.PopulationModel;
import org.deeplearning4j.arbiter.optimize.generator.genetic.selection.GeneticSelectionOperator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.selection.SelectionOperator;
import java.util.Map;
/**
* Uses a genetic algorithm to generate candidates.
*
* @author Alexandre Boulanger
*/
@Slf4j
public class GeneticSearchCandidateGenerator extends BaseCandidateGenerator {
@Getter
protected final PopulationModel populationModel;
protected final ChromosomeFactory chromosomeFactory;
protected final SelectionOperator selectionOperator;
protected boolean hasMoreCandidates = true;
public static class Builder {
protected final ParameterSpace<?> parameterSpace;
protected Map<String, Object> dataParameters;
protected boolean initDone;
protected boolean minimizeScore;
protected PopulationModel populationModel;
protected ChromosomeFactory chromosomeFactory;
protected SelectionOperator selectionOperator;
/**
* @param parameterSpace ParameterSpace from which to generate candidates
* @param scoreFunction The score function that will be used in the OptimizationConfiguration
*/
public Builder(ParameterSpace<?> parameterSpace, ScoreFunction scoreFunction) {
this.parameterSpace = parameterSpace;
this.minimizeScore = scoreFunction.minimize();
}
/**
* @param populationModel The PopulationModel instance to use.
*/
public Builder populationModel(PopulationModel populationModel) {
this.populationModel = populationModel;
return this;
}
/**
* @param selectionOperator The SelectionOperator to use. Default is GeneticSelectionOperator
*/
public Builder selectionOperator(SelectionOperator selectionOperator) {
this.selectionOperator = selectionOperator;
return this;
}
public Builder dataParameters(Map<String, Object> dataParameters) {
this.dataParameters = dataParameters;
return this;
}
public GeneticSearchCandidateGenerator.Builder initDone(boolean initDone) {
this.initDone = initDone;
return this;
}
/**
* @param chromosomeFactory The ChromosomeFactory to use
*/
public Builder chromosomeFactory(ChromosomeFactory chromosomeFactory) {
this.chromosomeFactory = chromosomeFactory;
return this;
}
public GeneticSearchCandidateGenerator build() {
if (populationModel == null) {
PopulationInitializer defaultPopulationInitializer = new EmptyPopulationInitializer();
populationModel = new PopulationModel.Builder().populationInitializer(defaultPopulationInitializer)
.build();
}
if (chromosomeFactory == null) {
chromosomeFactory = new ChromosomeFactory();
}
if (selectionOperator == null) {
selectionOperator = new GeneticSelectionOperator.Builder().build();
}
return new GeneticSearchCandidateGenerator(this);
}
}
private GeneticSearchCandidateGenerator(Builder builder) {
super(builder.parameterSpace, builder.dataParameters, builder.initDone);
initialize();
chromosomeFactory = builder.chromosomeFactory;
populationModel = builder.populationModel;
selectionOperator = builder.selectionOperator;
chromosomeFactory.initializeInstance(builder.parameterSpace.numParameters());
populationModel.initializeInstance(builder.minimizeScore);
selectionOperator.initializeInstance(populationModel, chromosomeFactory);
}
@Override
public boolean hasMoreCandidates() {
return hasMoreCandidates;
}
@Override
public Candidate getCandidate() {
double[] values = null;
Object value = null;
Exception e = null;
try {
values = selectionOperator.buildNextGenes();
value = parameterSpace.getValue(values);
} catch (GeneticGenerationException e2) {
log.warn("Error generating candidate", e2);
e = e2;
hasMoreCandidates = false;
} catch (Exception e2) {
log.warn("Error getting configuration for candidate", e2);
e = e2;
}
return new Candidate(value, candidateCounter.getAndIncrement(), values, dataParameters, e);
}
@Override
public Class<?> getCandidateType() {
return null;
}
@Override
public String toString() {
return "GeneticSearchCandidateGenerator";
}
@Override
public void reportResults(OptimizationResult result) {
if (result.getScore() == null) {
return;
}
Chromosome newChromosome = chromosomeFactory.createChromosome(result.getCandidate().getFlatParameters(),
result.getScore());
populationModel.add(newChromosome);
}
}

View File

@ -0,0 +1,223 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator;
import lombok.EqualsAndHashCode;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.math3.random.RandomAdaptor;
import org.deeplearning4j.arbiter.optimize.api.Candidate;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.parameter.discrete.DiscreteParameterSpace;
import org.deeplearning4j.arbiter.optimize.parameter.integer.IntegerParameterSpace;
import org.deeplearning4j.arbiter.util.LeafUtils;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import java.util.*;
import java.util.concurrent.ConcurrentLinkedQueue;
/**
* GridSearchCandidateGenerator: generates candidates in an exhaustive grid search manner.<br>
* Note that:<br>
* - For discrete parameters: the grid size (# values to check per hyperparameter) is equal to the number of values for
* that hyperparameter<br>
* - For integer parameters: the grid size is equal to {@code min(discretizationCount,max-min+1)}. Some integer ranges can
* be large, and we don't necessarily want to exhaustively search them. {@code discretizationCount} is a constructor argument<br>
* - For continuous parameters: the grid size is equal to {@code discretizationCount}.<br>
* In all cases, the minimum, maximum and gridSize-2 values between the min/max will be generated.<br>
* Also note that: if a probability distribution is provided for continuous hyperparameters, this will be taken into account
* when generating candidates. This allows the grid for a hyperparameter to be non-linear: i.e., for example, linear in log space
*
* @author Alex Black
*/
@Slf4j
@EqualsAndHashCode(exclude = {"order"}, callSuper = true)
@JsonIgnoreProperties({"numValuesPerParam", "totalNumCandidates", "order", "candidateCounter", "rng", "candidate"})
public class GridSearchCandidateGenerator extends BaseCandidateGenerator {
/**
* In what order should candidates be generated?<br>
* <b>Sequential</b>: generate candidates in order. The first hyperparameter will be changed most rapidly, and the last
* will be changed least rapidly.<br>
* <b>RandomOrder</b>: generate candidates in a random order<br>
* In both cases, the same candidates will be generated; only the order of generation is different
*/
public enum Mode {
Sequential, RandomOrder
}
private final int discretizationCount;
private final Mode mode;
private int[] numValuesPerParam;
private int totalNumCandidates;
private Queue<Integer> order;
/**
* @param parameterSpace ParameterSpace from which to generate candidates
* @param discretizationCount For continuous parameters: into how many values should we discretize them into?
* For example, suppose continuous parameter is in range [0,1] with 3 bins:
* do [0.0, 0.5, 1.0]. Note that if all values
* @param mode {@link GridSearchCandidateGenerator.Mode} specifies the order
* in which candidates should be generated.
*/
public GridSearchCandidateGenerator(@JsonProperty("parameterSpace") ParameterSpace<?> parameterSpace,
@JsonProperty("discretizationCount") int discretizationCount, @JsonProperty("mode") Mode mode,
@JsonProperty("dataParameters") Map<String, Object> dataParameters,
@JsonProperty("initDone") boolean initDone) {
super(parameterSpace, dataParameters, initDone);
this.discretizationCount = discretizationCount;
this.mode = mode;
initialize();
}
/**
* @param parameterSpace ParameterSpace from which to generate candidates
* @param discretizationCount For continuous parameters: into how many values should we discretize them into?
* For example, suppose continuous parameter is in range [0,1] with 3 bins:
* do [0.0, 0.5, 1.0]. Note that if all values
* @param mode {@link GridSearchCandidateGenerator.Mode} specifies the order
* in which candidates should be generated.
*/
public GridSearchCandidateGenerator(ParameterSpace<?> parameterSpace, int discretizationCount, Mode mode,
Map<String, Object> dataParameters){
this(parameterSpace, discretizationCount, mode, dataParameters, false);
}
@Override
protected void initialize() {
super.initialize();
List<ParameterSpace> leaves = LeafUtils.getUniqueObjects(parameterSpace.collectLeaves());
int nParams = leaves.size();
//Work out for each parameter: is it continuous or discrete?
// for grid search: discrete values are grid-searchable as-is
// continuous values: discretize using 'discretizationCount' bins
// integer values: use min(max-min+1, discretizationCount) values. i.e., discretize if necessary
numValuesPerParam = new int[nParams];
long searchSize = 1;
for (int i = 0; i < nParams; i++) {
ParameterSpace ps = leaves.get(i);
if (ps instanceof DiscreteParameterSpace) {
DiscreteParameterSpace dps = (DiscreteParameterSpace) ps;
numValuesPerParam[i] = dps.numValues();
} else if (ps instanceof IntegerParameterSpace) {
IntegerParameterSpace ips = (IntegerParameterSpace) ps;
int min = ips.getMin();
int max = ips.getMax();
//Discretize, as some integer ranges are much too large to search (i.e., num. neural network units, between 100 and 1000)
numValuesPerParam[i] = Math.min(max - min + 1, discretizationCount);
} else {
numValuesPerParam[i] = discretizationCount;
}
searchSize *= numValuesPerParam[i];
}
if (searchSize >= Integer.MAX_VALUE)
throw new IllegalStateException("Invalid search: cannot process search with " + searchSize
+ " candidates > Integer.MAX_VALUE"); //TODO find a more reasonable upper bound?
order = new ConcurrentLinkedQueue<>();
totalNumCandidates = (int) searchSize;
switch (mode) {
case Sequential:
for (int i = 0; i < totalNumCandidates; i++) {
order.add(i);
}
break;
case RandomOrder:
List<Integer> tempList = new ArrayList<>(totalNumCandidates);
for (int i = 0; i < totalNumCandidates; i++) {
tempList.add(i);
}
Collections.shuffle(tempList, new RandomAdaptor(rng));
order.addAll(tempList);
break;
default:
throw new RuntimeException();
}
}
@Override
public boolean hasMoreCandidates() {
return !order.isEmpty();
}
@Override
public Candidate getCandidate() {
int next = order.remove();
//Next: max integer (candidate number) to values
double[] values = indexToValues(numValuesPerParam, next, totalNumCandidates);
Object value = null;
Exception e = null;
try {
value = parameterSpace.getValue(values);
} catch (Exception e2) {
log.warn("Error getting configuration for candidate", e2);
e = e2;
}
return new Candidate(value, candidateCounter.getAndIncrement(), values, dataParameters, e);
}
@Override
public Class<?> getCandidateType() {
return null;
}
public static double[] indexToValues(int[] numValuesPerParam, int candidateIdx, int product) {
//How? first map to index of num possible values. Then: to double values in range 0 to 1
// 0-> [0,0,0], 1-> [1,0,0], 2-> [2,0,0], 3-> [0,1,0] etc
//Based on: Nd4j Shape.ind2sub
int denom = product;
int num = candidateIdx;
int[] index = new int[numValuesPerParam.length];
for (int i = index.length - 1; i >= 0; i--) {
denom /= numValuesPerParam[i];
index[i] = num / denom;
num %= denom;
}
//Now: convert indexes to values in range [0,1]
//min value -> 0
//max value -> 1
double[] out = new double[numValuesPerParam.length];
for (int i = 0; i < out.length; i++) {
if (numValuesPerParam[i] <= 1)
out[i] = 0.0;
else {
out[i] = index[i] / ((double) (numValuesPerParam[i] - 1));
}
}
return out;
}
@Override
public String toString() {
return "GridSearchCandidateGenerator(mode=" + mode + ")";
}
}

View File

@ -0,0 +1,93 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator;
import lombok.EqualsAndHashCode;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.arbiter.optimize.api.Candidate;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.nd4j.shade.jackson.annotation.JsonCreator;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import java.util.Map;
/**
* RandomSearchGenerator: generates candidates at random.<br>
* Note: if a probability distribution is provided for continuous hyperparameters,
* this will be taken into account
* when generating candidates. This allows the search to be weighted more towards
* certain values according to a probability
* density. For example: generate samples for learning rate according to log uniform distribution
*
* @author Alex Black
*/
@Slf4j
@EqualsAndHashCode(callSuper = true)
@JsonIgnoreProperties({"numValuesPerParam", "totalNumCandidates", "order", "candidateCounter", "rng", "candidate"})
public class RandomSearchGenerator extends BaseCandidateGenerator {
@JsonCreator
public RandomSearchGenerator(@JsonProperty("parameterSpace") ParameterSpace<?> parameterSpace,
@JsonProperty("dataParameters") Map<String, Object> dataParameters,
@JsonProperty("initDone") boolean initDone) {
super(parameterSpace, dataParameters, initDone);
initialize();
}
public RandomSearchGenerator(ParameterSpace<?> parameterSpace, Map<String,Object> dataParameters){
this(parameterSpace, dataParameters, false);
}
public RandomSearchGenerator(ParameterSpace<?> parameterSpace){
this(parameterSpace, null, false);
}
@Override
public boolean hasMoreCandidates() {
return true;
}
@Override
public Candidate getCandidate() {
double[] randomValues = new double[parameterSpace.numParameters()];
for (int i = 0; i < randomValues.length; i++)
randomValues[i] = rng.nextDouble();
Object value = null;
Exception e = null;
try {
value = parameterSpace.getValue(randomValues);
} catch (Exception e2) {
log.warn("Error getting configuration for candidate", e2);
e = e2;
}
return new Candidate(value, candidateCounter.getAndIncrement(), randomValues, dataParameters, e);
}
@Override
public Class<?> getCandidateType() {
return null;
}
@Override
public String toString() {
return "RandomSearchGenerator";
}
}

View File

@ -0,0 +1,42 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic;
import lombok.Data;
/**
* Candidates are stored as Chromosome in the population model
*
* @author Alexandre Boulanger
*/
@Data
public class Chromosome {
/**
* The fitness score of the genes.
*/
protected final double fitness;
/**
* The genes.
*/
protected final double[] genes;
public Chromosome(double[] genes, double fitness) {
this.genes = genes;
this.fitness = fitness;
}
}

View File

@ -0,0 +1,51 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic;
/**
* A factory that builds new chromosomes. Used by the GeneticSearchCandidateGenerator.
*
* @author Alexandre Boulanger
*/
public class ChromosomeFactory {
private int chromosomeLength;
/**
* Called by the GeneticSearchCandidateGenerator.
*/
public void initializeInstance(int chromosomeLength) {
this.chromosomeLength = chromosomeLength;
}
/**
* Create a new instance of a Chromosome
*
* @param genes The genes
* @param fitness The fitness score
* @return A new instance of Chromosome
*/
public Chromosome createChromosome(double[] genes, double fitness) {
return new Chromosome(genes, fitness);
}
/**
* @return The number of genes in a chromosome
*/
public int getChromosomeLength() {
return chromosomeLength;
}
}

View File

@ -0,0 +1,120 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.RandomTwoParentSelection;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.TwoParentSelection;
import org.nd4j.base.Preconditions;
/**
* A crossover operator that linearly combines the genes of two parents. <br>
* When a crossover is generated (with a of probability <i>crossover rate</i>), each genes is a linear combination of the corresponding genes of the parents.
* <p>
* <i>t*parentA + (1-t)*parentB, where t is [0, 1] and different for each gene.</i>
*
* @author Alexandre Boulanger
*/
public class ArithmeticCrossover extends TwoParentsCrossoverOperator {
private static final double DEFAULT_CROSSOVER_RATE = 0.85;
private final double crossoverRate;
private final RandomGenerator rng;
public static class Builder {
private double crossoverRate = DEFAULT_CROSSOVER_RATE;
private RandomGenerator rng;
private TwoParentSelection parentSelection;
/**
* The probability that the operator generates a crossover (default 0.85).
*
* @param rate A value between 0.0 and 1.0
*/
public Builder crossoverRate(double rate) {
Preconditions.checkState(rate >= 0.0 && rate <= 1.0, "Rate must be between 0.0 and 1.0, got %s", rate);
this.crossoverRate = rate;
return this;
}
/**
* Use a supplied RandomGenerator
*
* @param rng An instance of RandomGenerator
*/
public Builder randomGenerator(RandomGenerator rng) {
this.rng = rng;
return this;
}
/**
* The parent selection behavior. Default is random parent selection.
*
* @param parentSelection An instance of TwoParentSelection
*/
public Builder parentSelection(TwoParentSelection parentSelection) {
this.parentSelection = parentSelection;
return this;
}
public ArithmeticCrossover build() {
if (rng == null) {
rng = new SynchronizedRandomGenerator(new JDKRandomGenerator());
}
if (parentSelection == null) {
parentSelection = new RandomTwoParentSelection();
}
return new ArithmeticCrossover(this);
}
}
private ArithmeticCrossover(ArithmeticCrossover.Builder builder) {
super(builder.parentSelection);
this.crossoverRate = builder.crossoverRate;
this.rng = builder.rng;
}
/**
* Has a probability <i>crossoverRate</i> of performing the crossover where each gene is a linear combination of:<br>
* <i>t*parentA + (1-t)*parentB, where t is [0, 1] and different for each gene.</i><br>
* Otherwise, returns the genes of a random parent.
*
* @return The crossover result. See {@link CrossoverResult}.
*/
@Override
public CrossoverResult crossover() {
double[][] parents = parentSelection.selectParents();
double[] offspringValues = new double[parents[0].length];
if (rng.nextDouble() < crossoverRate) {
for (int i = 0; i < offspringValues.length; ++i) {
double t = rng.nextDouble();
offspringValues[i] = t * parents[0][i] + (1.0 - t) * parents[1][i];
}
return new CrossoverResult(true, offspringValues);
}
return new CrossoverResult(false, parents[0]);
}
}

View File

@ -0,0 +1,45 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.PopulationModel;
/**
* Abstract class for all crossover operators
*
* @author Alexandre Boulanger
*/
public abstract class CrossoverOperator {
protected PopulationModel populationModel;
/**
* Will be called by the selection operator once the population model is instantiated.
*/
public void initializeInstance(PopulationModel populationModel) {
this.populationModel = populationModel;
}
/**
* Performs the crossover
*
* @return The crossover result. See {@link CrossoverResult}.
*/
public abstract CrossoverResult crossover();
}

View File

@ -0,0 +1,43 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover;
import lombok.Data;
/**
* Returned by a crossover operator
*
* @author Alexandre Boulanger
*/
@Data
public class CrossoverResult {
/**
* If false, there was no crossover and the operator simply returned the genes of a random parent.
* If true, the genes are the result of a crossover.
*/
private final boolean isModified;
/**
* The genes returned by the operator.
*/
private final double[] genes;
public CrossoverResult(boolean isModified, double[] genes) {
this.isModified = isModified;
this.genes = genes;
}
}

View File

@ -0,0 +1,178 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.RandomTwoParentSelection;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.TwoParentSelection;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.utils.CrossoverPointsGenerator;
import org.nd4j.base.Preconditions;
import java.util.Deque;
/**
* The K-Point crossover will select at random multiple crossover points.<br>
* Each gene comes from one of the two parents. Each time a crossover point is reached, the parent is switched.
*/
public class KPointCrossover extends TwoParentsCrossoverOperator {
private static final double DEFAULT_CROSSOVER_RATE = 0.85;
private static final int DEFAULT_MIN_CROSSOVER = 1;
private static final int DEFAULT_MAX_CROSSOVER = 4;
private final double crossoverRate;
private final int minCrossovers;
private final int maxCrossovers;
private final RandomGenerator rng;
public static class Builder {
private double crossoverRate = DEFAULT_CROSSOVER_RATE;
private int minCrossovers = DEFAULT_MIN_CROSSOVER;
private int maxCrossovers = DEFAULT_MAX_CROSSOVER;
private RandomGenerator rng;
private TwoParentSelection parentSelection;
/**
* The probability that the operator generates a crossover (default 0.85).
*
* @param rate A value between 0.0 and 1.0
*/
public Builder crossoverRate(double rate) {
Preconditions.checkState(rate >= 0.0 && rate <= 1.0, "Rate must be between 0.0 and 1.0, got %s", rate);
this.crossoverRate = rate;
return this;
}
/**
* The number of crossovers points (default is min 1, max 4)
*
* @param min The minimum number
* @param max The maximum number
*/
public Builder numCrossovers(int min, int max) {
Preconditions.checkState(max >= 0 && min >= 0, "Min and max must be positive");
Preconditions.checkState(max >= min, "Max must be greater or equal to min");
this.minCrossovers = min;
this.maxCrossovers = max;
return this;
}
/**
* Use a fixed number of crossover points
*
* @param num The number of crossovers
*/
public Builder numCrossovers(int num) {
Preconditions.checkState(num >= 0, "Num must be positive");
this.minCrossovers = num;
this.maxCrossovers = num;
return this;
}
/**
* Use a supplied RandomGenerator
*
* @param rng An instance of RandomGenerator
*/
public Builder randomGenerator(RandomGenerator rng) {
this.rng = rng;
return this;
}
/**
* The parent selection behavior. Default is random parent selection.
*
* @param parentSelection An instance of TwoParentSelection
*/
public Builder parentSelection(TwoParentSelection parentSelection) {
this.parentSelection = parentSelection;
return this;
}
public KPointCrossover build() {
if (rng == null) {
rng = new SynchronizedRandomGenerator(new JDKRandomGenerator());
}
if (parentSelection == null) {
parentSelection = new RandomTwoParentSelection();
}
return new KPointCrossover(this);
}
}
private CrossoverPointsGenerator crossoverPointsGenerator;
private KPointCrossover(KPointCrossover.Builder builder) {
super(builder.parentSelection);
this.crossoverRate = builder.crossoverRate;
this.maxCrossovers = builder.maxCrossovers;
this.minCrossovers = builder.minCrossovers;
this.rng = builder.rng;
}
private CrossoverPointsGenerator getCrossoverPointsGenerator(int chromosomeLength) {
if (crossoverPointsGenerator == null) {
crossoverPointsGenerator =
new CrossoverPointsGenerator(chromosomeLength, minCrossovers, maxCrossovers, rng);
}
return crossoverPointsGenerator;
}
/**
* Has a probability <i>crossoverRate</i> of performing the crossover where the operator will select at random multiple crossover points.<br>
* Each gene comes from one of the two parents. Each time a crossover point is reached, the parent is switched. <br>
* Otherwise, returns the genes of a random parent.
*
* @return The crossover result. See {@link CrossoverResult}.
*/
@Override
public CrossoverResult crossover() {
double[][] parents = parentSelection.selectParents();
boolean isModified = false;
double[] resultGenes = parents[0];
if (rng.nextDouble() < crossoverRate) {
// Select crossover points
Deque<Integer> crossoverPoints = getCrossoverPointsGenerator(parents[0].length).getCrossoverPoints();
// Crossover
resultGenes = new double[parents[0].length];
int currentParent = 0;
int nextCrossover = crossoverPoints.pop();
for (int i = 0; i < resultGenes.length; ++i) {
if (i == nextCrossover) {
currentParent = currentParent == 0 ? 1 : 0;
nextCrossover = crossoverPoints.pop();
}
resultGenes[i] = parents[currentParent][i];
}
isModified = true;
}
return new CrossoverResult(isModified, resultGenes);
}
}

View File

@ -0,0 +1,123 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.RandomTwoParentSelection;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.TwoParentSelection;
import org.nd4j.base.Preconditions;
/**
* The single point crossover will select a random point where every genes before that point comes from one parent
* and after which every genes comes from the other parent.
*
* @author Alexandre Boulanger
*/
public class SinglePointCrossover extends TwoParentsCrossoverOperator {
private static final double DEFAULT_CROSSOVER_RATE = 0.85;
private final RandomGenerator rng;
private final double crossoverRate;
public static class Builder {
private double crossoverRate = DEFAULT_CROSSOVER_RATE;
private RandomGenerator rng;
private TwoParentSelection parentSelection;
/**
* The probability that the operator generates a crossover (default 0.85).
*
* @param rate A value between 0.0 and 1.0
*/
public Builder crossoverRate(double rate) {
Preconditions.checkState(rate >= 0.0 && rate <= 1.0, "Rate must be between 0.0 and 1.0, got %s", rate);
this.crossoverRate = rate;
return this;
}
/**
* Use a supplied RandomGenerator
*
* @param rng An instance of RandomGenerator
*/
public Builder randomGenerator(RandomGenerator rng) {
this.rng = rng;
return this;
}
/**
* The parent selection behavior. Default is random parent selection.
*
* @param parentSelection An instance of TwoParentSelection
*/
public Builder parentSelection(TwoParentSelection parentSelection) {
this.parentSelection = parentSelection;
return this;
}
public SinglePointCrossover build() {
if (rng == null) {
rng = new SynchronizedRandomGenerator(new JDKRandomGenerator());
}
if (parentSelection == null) {
parentSelection = new RandomTwoParentSelection();
}
return new SinglePointCrossover(this);
}
}
private SinglePointCrossover(SinglePointCrossover.Builder builder) {
super(builder.parentSelection);
this.crossoverRate = builder.crossoverRate;
this.rng = builder.rng;
}
/**
* Has a probability <i>crossoverRate</i> of performing the crossover where the operator will select a random crossover point.<br>
* Each gene before this point comes from one of the two parents and each gene at or after this point comes from the other parent.
* Otherwise, returns the genes of a random parent.
*
* @return The crossover result. See {@link CrossoverResult}.
*/
public CrossoverResult crossover() {
double[][] parents = parentSelection.selectParents();
boolean isModified = false;
double[] resultGenes = parents[0];
if (rng.nextDouble() < crossoverRate) {
int chromosomeLength = parents[0].length;
// Crossover
resultGenes = new double[chromosomeLength];
int crossoverPoint = rng.nextInt(chromosomeLength);
for (int i = 0; i < resultGenes.length; ++i) {
resultGenes[i] = ((i < crossoverPoint) ? parents[0] : parents[1])[i];
}
isModified = true;
}
return new CrossoverResult(isModified, resultGenes);
}
}

View File

@ -0,0 +1,46 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.TwoParentSelection;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.PopulationModel;
/**
* Abstract class for all crossover operators that applies to two parents.
*
* @author Alexandre Boulanger
*/
public abstract class TwoParentsCrossoverOperator extends CrossoverOperator {
protected final TwoParentSelection parentSelection;
/**
* @param parentSelection A parent selection that selects two parents.
*/
protected TwoParentsCrossoverOperator(TwoParentSelection parentSelection) {
this.parentSelection = parentSelection;
}
/**
* Will be called by the selection operator once the population model is instantiated.
*/
@Override
public void initializeInstance(PopulationModel populationModel) {
super.initializeInstance(populationModel);
parentSelection.initializeInstance(populationModel.getPopulation());
}
}

View File

@ -0,0 +1,136 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.RandomTwoParentSelection;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection.TwoParentSelection;
import org.nd4j.base.Preconditions;
/**
* The uniform crossover will, for each gene, randomly select the parent that donates the gene.
*
* @author Alexandre Boulanger
*/
public class UniformCrossover extends TwoParentsCrossoverOperator {
private static final double DEFAULT_CROSSOVER_RATE = 0.85;
private static final double DEFAULT_PARENT_BIAS_FACTOR = 0.5;
private final double crossoverRate;
private final double parentBiasFactor;
private final RandomGenerator rng;
public static class Builder {
private double crossoverRate = DEFAULT_CROSSOVER_RATE;
private double parentBiasFactor = DEFAULT_PARENT_BIAS_FACTOR;
private RandomGenerator rng;
private TwoParentSelection parentSelection;
/**
* The probability that the operator generates a crossover (default 0.85).
*
* @param rate A value between 0.0 and 1.0
*/
public Builder crossoverRate(double rate) {
Preconditions.checkState(rate >= 0.0 && rate <= 1.0, "Rate must be between 0.0 and 1.0, got %s", rate);
this.crossoverRate = rate;
return this;
}
/**
* A factor that will introduce a bias in the parent selection.<br>
*
* @param factor In the range [0, 1]. 0 will only select the first parent while 1 only select the second one. The default is 0.5; no bias.
*/
public Builder parentBiasFactor(double factor) {
Preconditions.checkState(factor >= 0.0 && factor <= 1.0, "Factor must be between 0.0 and 1.0, got %s",
factor);
this.parentBiasFactor = factor;
return this;
}
/**
* Use a supplied RandomGenerator
*
* @param rng An instance of RandomGenerator
*/
public Builder randomGenerator(RandomGenerator rng) {
this.rng = rng;
return this;
}
/**
* The parent selection behavior. Default is random parent selection.
*
* @param parentSelection An instance of TwoParentSelection
*/
public Builder parentSelection(TwoParentSelection parentSelection) {
this.parentSelection = parentSelection;
return this;
}
public UniformCrossover build() {
if (rng == null) {
rng = new SynchronizedRandomGenerator(new JDKRandomGenerator());
}
if (parentSelection == null) {
parentSelection = new RandomTwoParentSelection();
}
return new UniformCrossover(this);
}
}
private UniformCrossover(UniformCrossover.Builder builder) {
super(builder.parentSelection);
this.crossoverRate = builder.crossoverRate;
this.parentBiasFactor = builder.parentBiasFactor;
this.rng = builder.rng;
}
/**
* Has a probability <i>crossoverRate</i> of performing the crossover where the operator will select randomly which parent donates the gene.<br>
* One of the parent may be favored if the bias is different than 0.5
* Otherwise, returns the genes of a random parent.
*
* @return The crossover result. See {@link CrossoverResult}.
*/
@Override
public CrossoverResult crossover() {
// select the parents
double[][] parents = parentSelection.selectParents();
double[] resultGenes = parents[0];
boolean isModified = false;
if (rng.nextDouble() < crossoverRate) {
// Crossover
resultGenes = new double[parents[0].length];
for (int i = 0; i < resultGenes.length; ++i) {
resultGenes[i] = ((rng.nextDouble() < parentBiasFactor) ? parents[0] : parents[1])[i];
}
isModified = true;
}
return new CrossoverResult(isModified, resultGenes);
}
}

View File

@ -0,0 +1,44 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection;
import org.deeplearning4j.arbiter.optimize.generator.genetic.Chromosome;
import java.util.List;
/**
* Abstract class for all parent selection behaviors
*
* @author Alexandre Boulanger
*/
public abstract class ParentSelection {
protected List<Chromosome> population;
/**
* Will be called by the crossover operator once the population model is instantiated.
*/
public void initializeInstance(List<Chromosome> population) {
this.population = population;
}
/**
* Performs the parent selection
*
* @return An array of parents genes. The outer array are the parents, and the inner array are the genes.
*/
public abstract double[][] selectParents();
}

View File

@ -0,0 +1,65 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
/**
* A parent selection behavior that returns two random parents.
*
* @author Alexandre Boulanger
*/
public class RandomTwoParentSelection extends TwoParentSelection {
private final RandomGenerator rng;
public RandomTwoParentSelection() {
this(new SynchronizedRandomGenerator(new JDKRandomGenerator()));
}
/**
* Use a supplied RandomGenerator
*
* @param rng An instance of RandomGenerator
*/
public RandomTwoParentSelection(RandomGenerator rng) {
this.rng = rng;
}
/**
* Selects two random parents
*
* @return An array of parents genes. The outer array are the parents, and the inner array are the genes.
*/
@Override
public double[][] selectParents() {
double[][] parents = new double[2][];
int parent1Idx = rng.nextInt(population.size());
int parent2Idx;
do {
parent2Idx = rng.nextInt(population.size());
} while (parent1Idx == parent2Idx);
parents[0] = population.get(parent1Idx).getGenes();
parents[1] = population.get(parent2Idx).getGenes();
return parents;
}
}

View File

@ -0,0 +1,25 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.parentselection;
/**
* Abstract class for all parent selection behaviors that selects two parents.
*
* @author Alexandre Boulanger
*/
public abstract class TwoParentSelection extends ParentSelection {
}

View File

@ -0,0 +1,68 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.utils;
import org.apache.commons.math3.random.RandomGenerator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.KPointCrossover;
import java.util.*;
/**
* A helper class used by {@link KPointCrossover} to generate the crossover points
*
* @author Alexandre Boulanger
*/
public class CrossoverPointsGenerator {
private final int minCrossovers;
private final int maxCrossovers;
private final RandomGenerator rng;
private List<Integer> parameterIndexes;
/**
* Constructor
*
* @param chromosomeLength The number of genes
* @param minCrossovers The minimum number of crossover points to generate
* @param maxCrossovers The maximum number of crossover points to generate
* @param rng A RandomGenerator instance
*/
public CrossoverPointsGenerator(int chromosomeLength, int minCrossovers, int maxCrossovers, RandomGenerator rng) {
this.minCrossovers = minCrossovers;
this.maxCrossovers = maxCrossovers;
this.rng = rng;
parameterIndexes = new ArrayList<Integer>();
for (int i = 0; i < chromosomeLength; ++i) {
parameterIndexes.add(i);
}
}
/**
* Generate a list of crossover points.
*
* @return An ordered list of crossover point indexes and with Integer.MAX_VALUE as the last element
*/
public Deque<Integer> getCrossoverPoints() {
Collections.shuffle(parameterIndexes);
List<Integer> crossoverPointLists =
parameterIndexes.subList(0, rng.nextInt(maxCrossovers - minCrossovers) + minCrossovers);
Collections.sort(crossoverPointLists);
Deque<Integer> crossoverPoints = new ArrayDeque<Integer>(crossoverPointLists);
crossoverPoints.add(Integer.MAX_VALUE);
return crossoverPoints;
}
}

View File

@ -0,0 +1,41 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.culling;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.PopulationModel;
/**
* The cull operator will remove from the population the least desirables chromosomes.
*
* @author Alexandre Boulanger
*/
public interface CullOperator {
/**
* Will be called by the population model once created.
*/
void initializeInstance(PopulationModel populationModel);
/**
* Cull the population to the culled size.
*/
void cullPopulation();
/**
* @return The target population size after culling.
*/
int getCulledSize();
}

View File

@ -0,0 +1,50 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.culling;
/**
* An elitist cull operator that discards the chromosomes with the worst fitness while keeping the best ones.
*
* @author Alexandre Boulanger
*/
public class LeastFitCullOperator extends RatioCullOperator {
/**
* The default cull ratio is 1/3.
*/
public LeastFitCullOperator() {
super();
}
/**
* @param cullRatio The ratio of the maximum population size to be culled.<br>
* For example, a ratio of 1/3 on a population with a maximum size of 30 will cull back a given population to 20.
*/
public LeastFitCullOperator(double cullRatio) {
super(cullRatio);
}
/**
* Will discard the chromosomes with the worst fitness until the population size fall back at the culled size.
*/
@Override
public void cullPopulation() {
while (population.size() > culledSize) {
population.remove(population.size() - 1);
}
}
}

View File

@ -0,0 +1,70 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.culling;
import org.deeplearning4j.arbiter.optimize.generator.genetic.Chromosome;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.PopulationModel;
import org.nd4j.base.Preconditions;
import java.util.List;
/**
* An abstract base for cull operators that culls back the population to a ratio of its maximum size.
*
* @author Alexandre Boulanger
*/
public abstract class RatioCullOperator implements CullOperator {
private static final double DEFAULT_CULL_RATIO = 1.0 / 3.0;
protected int culledSize;
protected List<Chromosome> population;
protected final double cullRatio;
/**
* @param cullRatio The ratio of the maximum population size to be culled.<br>
* For example, a ratio of 1/3 on a population with a maximum size of 30 will cull back a given population to 20.
*/
public RatioCullOperator(double cullRatio) {
Preconditions.checkState(cullRatio >= 0.0 && cullRatio <= 1.0, "Cull ratio must be between 0.0 and 1.0, got %s",
cullRatio);
this.cullRatio = cullRatio;
}
/**
* The default cull ratio is 1/3
*/
public RatioCullOperator() {
this(DEFAULT_CULL_RATIO);
}
/**
* Will be called by the population model once created.
*/
public void initializeInstance(PopulationModel populationModel) {
this.population = populationModel.getPopulation();
culledSize = (int) (populationModel.getPopulationSize() * (1.0 - cullRatio) + 0.5);
}
/**
* @return The target population size after culling.
*/
@Override
public int getCulledSize() {
return culledSize;
}
}

View File

@ -0,0 +1,23 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.exceptions;
public class GeneticGenerationException extends RuntimeException {
public GeneticGenerationException(String message) {
super(message);
}
}

View File

@ -0,0 +1,33 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.mutation;
/**
* The mutation operator will apply a mutation to the given genes.
*
* @author Alexandre Boulanger
*/
public interface MutationOperator {
/**
* Performs a mutation.
*
* @param genes The genes to be mutated
* @return True if the genes were mutated, otherwise false.
*/
boolean mutate(double[] genes);
}

View File

@ -0,0 +1,93 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.mutation;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.nd4j.base.Preconditions;
/**
* A mutation operator where each gene has a chance of being mutated with a <i>mutation rate</i> probability.
*
* @author Alexandre Boulanger
*/
public class RandomMutationOperator implements MutationOperator {
private static final double DEFAULT_MUTATION_RATE = 0.005;
private final double mutationRate;
private final RandomGenerator rng;
public static class Builder {
private double mutationRate = DEFAULT_MUTATION_RATE;
private RandomGenerator rng;
/**
* Each gene will have this probability of being mutated.
*
* @param rate The mutation rate. (default 0.005)
*/
public Builder mutationRate(double rate) {
Preconditions.checkState(rate >= 0.0 && rate <= 1.0, "Rate must be between 0.0 and 1.0, got %s", rate);
this.mutationRate = rate;
return this;
}
/**
* Use a supplied RandomGenerator
*
* @param rng An instance of RandomGenerator
*/
public Builder randomGenerator(RandomGenerator rng) {
this.rng = rng;
return this;
}
public RandomMutationOperator build() {
if (rng == null) {
rng = new SynchronizedRandomGenerator(new JDKRandomGenerator());
}
return new RandomMutationOperator(this);
}
}
private RandomMutationOperator(RandomMutationOperator.Builder builder) {
this.mutationRate = builder.mutationRate;
this.rng = builder.rng;
}
/**
* Performs the mutation. Each gene has a <i>mutation rate</i> probability of being mutated.
*
* @param genes The genes to be mutated
* @return True if the genes were mutated, otherwise false.
*/
@Override
public boolean mutate(double[] genes) {
boolean hasMutation = false;
for (int i = 0; i < genes.length; ++i) {
if (rng.nextDouble() < mutationRate) {
genes[i] = rng.nextDouble();
hasMutation = true;
}
}
return hasMutation;
}
}

View File

@ -0,0 +1,41 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.population;
import org.deeplearning4j.arbiter.optimize.generator.genetic.Chromosome;
import java.util.ArrayList;
import java.util.List;
/**
* A population initializer that build an empty population.
*
* @author Alexandre Boulanger
*/
public class EmptyPopulationInitializer implements PopulationInitializer {
/**
* Initialize an empty population
*
* @param size The maximum size of the population.
* @return The initialized population.
*/
@Override
public List<Chromosome> getInitializedPopulation(int size) {
return new ArrayList<>(size);
}
}

View File

@ -0,0 +1,36 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.population;
import org.deeplearning4j.arbiter.optimize.generator.genetic.Chromosome;
import java.util.List;
/**
* An initializer that construct the population used by the population model.
*
* @author Alexandre Boulanger
*/
public interface PopulationInitializer {
/**
* Called by the population model to construct the population
*
* @param size The maximum size of the population
* @return An initialized population
*/
List<Chromosome> getInitializedPopulation(int size);
}

View File

@ -0,0 +1,35 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.population;
import org.deeplearning4j.arbiter.optimize.generator.genetic.Chromosome;
import java.util.List;
/**
* A listener that is called when the population changes.
*
* @author Alexandre Boulanger
*/
public interface PopulationListener {
/**
* Called after the population has changed.
*
* @param population The population after it has changed.
*/
void onChanged(List<Chromosome> population);
}

View File

@ -0,0 +1,182 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.population;
import lombok.Getter;
import org.deeplearning4j.arbiter.optimize.generator.genetic.Chromosome;
import org.deeplearning4j.arbiter.optimize.generator.genetic.culling.CullOperator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.culling.LeastFitCullOperator;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
/**
* The population model handles all aspects of the population (initialization, additions and culling)
*
* @author Alexandre Boulanger
*/
public class PopulationModel {
private static final int DEFAULT_POPULATION_SIZE = 30;
private final CullOperator cullOperator;
private final List<PopulationListener> populationListeners = new ArrayList<>();
private Comparator<Chromosome> chromosomeComparator;
/**
* The maximum population size
*/
@Getter
private final int populationSize;
/**
* The population
*/
@Getter
public final List<Chromosome> population;
/**
* A comparator used when higher fitness value is better
*/
public static class MaximizeScoreComparator implements Comparator<Chromosome> {
@Override
public int compare(Chromosome lhs, Chromosome rhs) {
return -Double.compare(lhs.getFitness(), rhs.getFitness());
}
}
/**
* A comparator used when lower fitness value is better
*/
public static class MinimizeScoreComparator implements Comparator<Chromosome> {
@Override
public int compare(Chromosome lhs, Chromosome rhs) {
return Double.compare(lhs.getFitness(), rhs.getFitness());
}
}
public static class Builder {
private int populationSize = DEFAULT_POPULATION_SIZE;
private PopulationInitializer populationInitializer;
private CullOperator cullOperator;
/**
* Use an alternate population initialization behavior. Default is empty population.
*
* @param populationInitializer An instance of PopulationInitializer
*/
public Builder populationInitializer(PopulationInitializer populationInitializer) {
this.populationInitializer = populationInitializer;
return this;
}
/**
* The maximum population size. <br>
* If using a ratio based culling, using a population with culled size of around 1.5 to 2 times the number of genes generally gives good results.
* (e.g. For a chromosome having 10 genes, the culled size should be between 15 and 20. And with a cull ratio of 1/3 we should set the population size to 23 to 30. (15 / (1 - 1/3)), rounded up)
*
* @param size The maximum size of the population
*/
public Builder populationSize(int size) {
populationSize = size;
return this;
}
/**
* Use an alternate cull operator behavior. Default is least fit culling.
*
* @param cullOperator An instance of a CullOperator
*/
public Builder cullOperator(CullOperator cullOperator) {
this.cullOperator = cullOperator;
return this;
}
public PopulationModel build() {
if (cullOperator == null) {
cullOperator = new LeastFitCullOperator();
}
if (populationInitializer == null) {
populationInitializer = new EmptyPopulationInitializer();
}
return new PopulationModel(this);
}
}
public PopulationModel(PopulationModel.Builder builder) {
populationSize = builder.populationSize;
population = new ArrayList<>(builder.populationSize);
PopulationInitializer populationInitializer = builder.populationInitializer;
List<Chromosome> initializedPopulation = populationInitializer.getInitializedPopulation(populationSize);
population.clear();
population.addAll(initializedPopulation);
cullOperator = builder.cullOperator;
cullOperator.initializeInstance(this);
}
/**
* Called by the GeneticSearchCandidateGenerator
*/
public void initializeInstance(boolean minimizeScore) {
chromosomeComparator = minimizeScore ? new MinimizeScoreComparator() : new MaximizeScoreComparator();
}
/**
* Add a PopulationListener to the list of change listeners
* @param listener A PopulationListener instance
*/
public void addListener(PopulationListener listener) {
populationListeners.add(listener);
}
/**
* Add a Chromosome to the population and call the PopulationListeners. Culling may be triggered.
*
* @param element The chromosome to be added
*/
public void add(Chromosome element) {
if (population.size() == populationSize) {
cullOperator.cullPopulation();
}
population.add(element);
Collections.sort(population, chromosomeComparator);
triggerPopulationChangedListeners(population);
}
/**
* @return Return false when the population is below the culled size, otherwise true. <br>
* Used by the selection operator to know if the population is still too small and should generate random genes.
*/
public boolean isReadyToBreed() {
return population.size() >= cullOperator.getCulledSize();
}
private void triggerPopulationChangedListeners(List<Chromosome> population) {
for (PopulationListener listener : populationListeners) {
listener.onChanged(population);
}
}
}

View File

@ -0,0 +1,197 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.selection;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.ChromosomeFactory;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.CrossoverOperator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.CrossoverResult;
import org.deeplearning4j.arbiter.optimize.generator.genetic.crossover.SinglePointCrossover;
import org.deeplearning4j.arbiter.optimize.generator.genetic.exceptions.GeneticGenerationException;
import org.deeplearning4j.arbiter.optimize.generator.genetic.mutation.MutationOperator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.mutation.RandomMutationOperator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.PopulationModel;
import java.util.Arrays;
/**
* A selection operator that will generate random genes initially. Once the population has reached the culled size,
* will start to generate offsprings of parents selected in the population.
*
* @author Alexandre Boulanger
*/
public class GeneticSelectionOperator extends SelectionOperator {
private final static int PREVIOUS_GENES_TO_KEEP = 100;
private final static int MAX_NUM_GENERATION_ATTEMPTS = 1024;
private final CrossoverOperator crossoverOperator;
private final MutationOperator mutationOperator;
private final RandomGenerator rng;
private double[][] previousGenes = new double[PREVIOUS_GENES_TO_KEEP][];
private int previousGenesIdx = 0;
public static class Builder {
private ChromosomeFactory chromosomeFactory;
private PopulationModel populationModel;
private CrossoverOperator crossoverOperator;
private MutationOperator mutationOperator;
private RandomGenerator rng;
/**
* Use an alternate crossover behavior. Default is SinglePointCrossover.
*
* @param crossoverOperator An instance of CrossoverOperator
*/
public Builder crossoverOperator(CrossoverOperator crossoverOperator) {
this.crossoverOperator = crossoverOperator;
return this;
}
/**
* Use an alternate mutation behavior. Default is RandomMutationOperator.
*
* @param mutationOperator An instance of MutationOperator
*/
public Builder mutationOperator(MutationOperator mutationOperator) {
this.mutationOperator = mutationOperator;
return this;
}
/**
* Use a supplied RandomGenerator
*
* @param rng An instance of RandomGenerator
*/
public Builder randomGenerator(RandomGenerator rng) {
this.rng = rng;
return this;
}
public GeneticSelectionOperator build() {
if (crossoverOperator == null) {
crossoverOperator = new SinglePointCrossover.Builder().build();
}
if (mutationOperator == null) {
mutationOperator = new RandomMutationOperator.Builder().build();
}
if (rng == null) {
rng = new SynchronizedRandomGenerator(new JDKRandomGenerator());
}
return new GeneticSelectionOperator(crossoverOperator, mutationOperator, rng);
}
}
private GeneticSelectionOperator(CrossoverOperator crossoverOperator, MutationOperator mutationOperator,
RandomGenerator rng) {
this.crossoverOperator = crossoverOperator;
this.mutationOperator = mutationOperator;
this.rng = rng;
}
/**
* Called by GeneticSearchCandidateGenerator
*/
@Override
public void initializeInstance(PopulationModel populationModel, ChromosomeFactory chromosomeFactory) {
super.initializeInstance(populationModel, chromosomeFactory);
crossoverOperator.initializeInstance(populationModel);
}
/**
* Build a new set of genes. Has two distinct modes of operation
* <ul>
* <li>Before the population has reached the culled size: will return a random set of genes.</li>
* <li>After: Parents will be selected among the population, a crossover will be applied followed by a mutation.</li>
* </ul>
* @return Returns the generated set of genes
* @throws GeneticGenerationException If buildNextGenes() can't generate a set that has not already been tried,
* or if the crossover and the mutation operators can't generate a set,
* this exception is thrown.
*/
@Override
public double[] buildNextGenes() {
double[] result;
boolean hasAlreadyBeenTried;
int attemptsRemaining = MAX_NUM_GENERATION_ATTEMPTS;
do {
if (populationModel.isReadyToBreed()) {
result = buildOffspring();
} else {
result = buildRandomGenes();
}
hasAlreadyBeenTried = hasAlreadyBeenTried(result);
if (hasAlreadyBeenTried && --attemptsRemaining == 0) {
throw new GeneticGenerationException("Failed to generate a set of genes not already tried.");
}
} while (hasAlreadyBeenTried);
previousGenes[previousGenesIdx] = result;
previousGenesIdx = ++previousGenesIdx % previousGenes.length;
return result;
}
private boolean hasAlreadyBeenTried(double[] genes) {
for (int i = 0; i < previousGenes.length; ++i) {
double[] current = previousGenes[i];
if (current != null && Arrays.equals(current, genes)) {
return true;
}
}
return false;
}
private double[] buildOffspring() {
double[] offspringValues;
boolean isModified;
int attemptsRemaining = MAX_NUM_GENERATION_ATTEMPTS;
do {
CrossoverResult crossoverResult = crossoverOperator.crossover();
offspringValues = crossoverResult.getGenes();
isModified = crossoverResult.isModified();
isModified |= mutationOperator.mutate(offspringValues);
if (!isModified && --attemptsRemaining == 0) {
throw new GeneticGenerationException(
String.format("Crossover and mutation operators failed to generate a new set of genes after %s attempts.",
MAX_NUM_GENERATION_ATTEMPTS));
}
} while (!isModified);
return offspringValues;
}
private double[] buildRandomGenes() {
double[] randomValues = new double[chromosomeFactory.getChromosomeLength()];
for (int i = 0; i < randomValues.length; ++i) {
randomValues[i] = rng.nextDouble();
}
return randomValues;
}
}

View File

@ -0,0 +1,44 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.genetic.selection;
import org.deeplearning4j.arbiter.optimize.generator.genetic.ChromosomeFactory;
import org.deeplearning4j.arbiter.optimize.generator.genetic.population.PopulationModel;
/**
* An abstract class for all selection operators. Used by the GeneticSearchCandidateGenerator to generate new candidates.
*
* @author Alexandre Boulanger
*/
public abstract class SelectionOperator {
protected PopulationModel populationModel;
protected ChromosomeFactory chromosomeFactory;
/**
* Called by GeneticSearchCandidateGenerator
*/
public void initializeInstance(PopulationModel populationModel, ChromosomeFactory chromosomeFactory) {
this.populationModel = populationModel;
this.chromosomeFactory = chromosomeFactory;
}
/**
* Generate a new set of genes.
*/
public abstract double[] buildNextGenes();
}

View File

@ -0,0 +1,46 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.generator.util;
import org.nd4j.linalg.function.Supplier;
import java.io.*;
public class SerializedSupplier<T> implements Serializable, Supplier<T> {
private byte[] asBytes;
public SerializedSupplier(T obj){
try(ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutputStream oos = new ObjectOutputStream(baos)){
oos.writeObject(obj);
oos.flush();
oos.close();
asBytes = baos.toByteArray();
} catch (Exception e){
throw new RuntimeException("Error serializing object - must be serializable",e);
}
}
@Override
public T get() {
try(ObjectInputStream ois = new ObjectInputStream(new ByteArrayInputStream(asBytes))){
return (T)ois.readObject();
} catch (Exception e){
throw new RuntimeException("Error deserializing object",e);
}
}
}

View File

@ -0,0 +1,76 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.parameter;
import lombok.EqualsAndHashCode;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import java.util.Collections;
import java.util.List;
import java.util.Map;
/**
* BooleanParameterSpace is a {@code ParameterSpace<Boolean>}; Defines {True, False} as a parameter space
* If argument to setValue is less than or equal to 0.5 it will return True else False
*
* @author susaneraly
*/
@EqualsAndHashCode
public class BooleanSpace implements ParameterSpace<Boolean> {
private int index = -1;
@Override
public Boolean getValue(double[] input) {
if (index == -1) {
throw new IllegalStateException("Cannot get value: ParameterSpace index has not been set");
}
if (input[index] <= 0.5) return Boolean.TRUE;
else return Boolean.FALSE;
}
@Override
public int numParameters() {
return 1;
}
@Override
public List<ParameterSpace> collectLeaves() {
return Collections.singletonList((ParameterSpace) this);
}
@Override
public Map<String, ParameterSpace> getNestedSpaces() {
return Collections.emptyMap();
}
@Override
public boolean isLeaf() {
return true;
}
@Override
public void setIndices(int... indices) {
if (indices == null || indices.length != 1)
throw new IllegalArgumentException("Invalid index");
this.index = indices[0];
}
@Override
public String toString() {
return "BooleanSpace()";
}
}

View File

@ -0,0 +1,87 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.parameter;
import lombok.EqualsAndHashCode;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.serde.jackson.GenericDeserializer;
import org.deeplearning4j.arbiter.optimize.serde.jackson.GenericSerializer;
import org.deeplearning4j.arbiter.util.ObjectUtils;
import org.nd4j.shade.jackson.annotation.JsonCreator;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;
import java.util.Collections;
import java.util.List;
import java.util.Map;
/**
* FixedValue is a ParameterSpace that defines only a single fixed value
*
* @param <T> Type of (fixed) value
*/
@EqualsAndHashCode
public class FixedValue<T> implements ParameterSpace<T> {
@JsonSerialize(using = GenericSerializer.class)
@JsonDeserialize(using = GenericDeserializer.class)
private Object value;
private int index;
@JsonCreator
public FixedValue(@JsonProperty("value") T value) {
this.value = value;
}
@Override
public String toString() {
return "FixedValue(" + ObjectUtils.valueToString(value) + ")";
}
@Override
public T getValue(double[] input) {
return (T) value;
}
@Override
public int numParameters() {
return 0;
}
@Override
public List<ParameterSpace> collectLeaves() {
return Collections.emptyList();
}
@Override
public Map<String, ParameterSpace> getNestedSpaces() {
return Collections.emptyMap();
}
@Override
public boolean isLeaf() {
return true;
}
@Override
public void setIndices(int... indices) {
if (indices != null && indices.length != 0)
throw new IllegalArgumentException(
"Invalid call: FixedValue ParameterSpace " + "should not be given an index (0 params)");
}
}

View File

@ -0,0 +1,137 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.parameter.continuous;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.distribution.UniformRealDistribution;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.distribution.DistributionUtils;
import org.deeplearning4j.arbiter.optimize.serde.jackson.RealDistributionDeserializer;
import org.deeplearning4j.arbiter.optimize.serde.jackson.RealDistributionSerializer;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;
import java.util.Collections;
import java.util.List;
import java.util.Map;
/**
* ContinuousParametSpace is a {@code ParameterSpace<Double>} that (optionally) takes an Apache Commons
* {@link RealDistribution} when used for random sampling (such as in a RandomSearchCandidateGenerator)
*
* @author Alex Black
*/
public class ContinuousParameterSpace implements ParameterSpace<Double> {
//Need to use custom serializers/deserializers for commons RealDistribution instances
@JsonSerialize(using = RealDistributionSerializer.class)
@JsonDeserialize(using = RealDistributionDeserializer.class)
private RealDistribution distribution;
private int index = -1;
/**
* ContinuousParameterSpace with uniform distribution between the minimum and maximum values
*
* @param min Minimum value that can be generated
* @param max Maximum value that can be generated
*/
public ContinuousParameterSpace(double min, double max) {
this(new UniformRealDistribution(min, max));
}
/**
* ConditiousParameterSpcae wiht a specified probability distribution. The provided distribution defines the min/max
* values, and (for random search, etc) will be used when generating random values
*
* @param distribution Distribution to sample from
*/
public ContinuousParameterSpace(@JsonProperty("distribution") RealDistribution distribution) {
this.distribution = distribution;
}
@Override
public Double getValue(double[] input) {
if (index == -1) {
throw new IllegalStateException("Cannot get value: ParameterSpace index has not been set");
}
return distribution.inverseCumulativeProbability(input[index]);
}
@Override
public int numParameters() {
return 1;
}
@Override
public List<ParameterSpace> collectLeaves() {
return Collections.singletonList((ParameterSpace) this);
}
@Override
public Map<String, ParameterSpace> getNestedSpaces() {
return Collections.emptyMap();
}
@Override
public boolean isLeaf() {
return true;
}
@Override
public void setIndices(int... indices) {
if (indices == null || indices.length != 1) {
throw new IllegalArgumentException("Invalid index");
}
this.index = indices[0];
}
@Override
public String toString() {
if (distribution instanceof UniformRealDistribution) {
return "ContinuousParameterSpace(min=" + distribution.getSupportLowerBound() + ",max="
+ distribution.getSupportUpperBound() + ")";
} else {
return "ContinuousParameterSpace(" + distribution + ")";
}
}
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof ContinuousParameterSpace))
return false;
final ContinuousParameterSpace other = (ContinuousParameterSpace) o;
if (distribution == null ? other.distribution != null
: !DistributionUtils.distributionsEqual(distribution, other.distribution))
return false;
if (this.index != other.index)
return false;
return true;
}
public int hashCode() {
final int PRIME = 59;
int result = 1;
result = result * PRIME + (distribution == null ? 43 : distribution.getClass().hashCode());
result = result * PRIME + this.index;
return result;
}
}

View File

@ -0,0 +1,113 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.parameter.discrete;
import lombok.EqualsAndHashCode;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.util.ObjectUtils;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;
import java.util.*;
/**
* A DiscreteParameterSpace is used for a set of un-ordered values
*
* @param <P> Parameter type
* @author Alex Black
*/
@EqualsAndHashCode
public class DiscreteParameterSpace<P> implements ParameterSpace<P> {
@JsonSerialize
private List<P> values;
private int index = -1;
public DiscreteParameterSpace(@JsonProperty("values") P... values) {
if (values != null)
this.values = Arrays.asList(values);
}
public DiscreteParameterSpace(Collection<P> values) {
this.values = new ArrayList<>(values);
}
public int numValues() {
return values.size();
}
@Override
public P getValue(double[] input) {
if (index == -1) {
throw new IllegalStateException("Cannot get value: ParameterSpace index has not been set");
}
if (values == null)
throw new IllegalStateException("Values are null.");
//Map a value in range [0,1] to one of the list of values
//First value: [0,width], second: (width,2*width], third: (3*width,4*width] etc
int size = values.size();
if (size == 1)
return values.get(0);
double width = 1.0 / size;
int val = (int) (input[index] / width);
return values.get(Math.min(val, size - 1));
}
@Override
public int numParameters() {
return 1;
}
@Override
public List<ParameterSpace> collectLeaves() {
return Collections.singletonList((ParameterSpace) this);
}
@Override
public Map<String, ParameterSpace> getNestedSpaces() {
return Collections.emptyMap();
}
@Override
public boolean isLeaf() {
return true;
}
@Override
public void setIndices(int... indices) {
if (indices == null || indices.length != 1) {
throw new IllegalArgumentException("Invalid index");
}
this.index = indices[0];
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("DiscreteParameterSpace(");
int n = values.size();
for (int i = 0; i < n; i++) {
P value = values.get(i);
sb.append(ObjectUtils.valueToString(value));
sb.append((i == n - 1 ? ")" : ","));
}
return sb.toString();
}
}

View File

@ -0,0 +1,151 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.parameter.integer;
import lombok.NoArgsConstructor;
import org.apache.commons.math3.distribution.IntegerDistribution;
import org.apache.commons.math3.distribution.UniformIntegerDistribution;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import org.deeplearning4j.arbiter.optimize.distribution.DistributionUtils;
import org.deeplearning4j.arbiter.optimize.serde.jackson.IntegerDistributionDeserializer;
import org.deeplearning4j.arbiter.optimize.serde.jackson.IntegerDistributionSerializer;
import org.nd4j.shade.jackson.annotation.JsonCreator;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import org.nd4j.shade.jackson.databind.annotation.JsonSerialize;
import java.util.Collections;
import java.util.List;
import java.util.Map;
/**
* IntegerParameterSpace is a {@code ParameterSpace<Integer>}; i.e., defines an ordered space of integers between
* some minimum and maximum value
*
* @author Alex Black
*/
@JsonIgnoreProperties({"min", "max"})
@NoArgsConstructor
public class IntegerParameterSpace implements ParameterSpace<Integer> {
@JsonSerialize(using = IntegerDistributionSerializer.class)
@JsonDeserialize(using = IntegerDistributionDeserializer.class)
private IntegerDistribution distribution;
private int index = -1;
/**
* Create an IntegerParameterSpace with a uniform distribution between the specified min/max (inclusive)
*
* @param min Min value, inclusive
* @param max Max value, inclusive
*/
public IntegerParameterSpace(int min, int max) {
this(new UniformIntegerDistribution(min, max));
}
/**
* Crate an IntegerParametSpace from the given IntegerDistribution
*
* @param distribution Distribution to use
*/
@JsonCreator
public IntegerParameterSpace(@JsonProperty("distribution") IntegerDistribution distribution) {
this.distribution = distribution;
}
public int getMin() {
return distribution.getSupportLowerBound();
}
public int getMax() {
return distribution.getSupportUpperBound();
}
@Override
public Integer getValue(double[] input) {
if (index == -1) {
throw new IllegalStateException("Cannot get value: ParameterSpace index has not been set");
}
return distribution.inverseCumulativeProbability(input[index]);
}
@Override
public int numParameters() {
return 1;
}
@Override
public List<ParameterSpace> collectLeaves() {
return Collections.singletonList((ParameterSpace) this);
}
@Override
public Map<String, ParameterSpace> getNestedSpaces() {
return Collections.emptyMap();
}
@Override
public boolean isLeaf() {
return true;
}
@Override
public void setIndices(int... indices) {
if (indices == null || indices.length != 1)
throw new IllegalArgumentException("Invalid index");
this.index = indices[0];
}
@Override
public String toString() {
if (distribution instanceof UniformIntegerDistribution) {
return "IntegerParameterSpace(min=" + distribution.getSupportLowerBound() + ",max="
+ distribution.getSupportUpperBound() + ")";
} else {
return "IntegerParameterSpace(" + distribution + ")";
}
}
public boolean equals(Object o) {
if (o == this)
return true;
if (!(o instanceof IntegerParameterSpace))
return false;
final IntegerParameterSpace other = (IntegerParameterSpace) o;
if (!other.canEqual(this))
return false;
if (distribution == null ? other.distribution != null
: !DistributionUtils.distributionEquals(distribution, other.distribution))
return false;
if (this.index != other.index)
return false;
return true;
}
public int hashCode() {
final int PRIME = 59;
int result = 1;
result = result * PRIME + (distribution == null ? 43 : distribution.getClass().hashCode());
result = result * PRIME + this.index;
return result;
}
protected boolean canEqual(Object other) {
return other instanceof IntegerParameterSpace;
}
}

View File

@ -0,0 +1,69 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.parameter.math;
import org.deeplearning4j.arbiter.optimize.api.AbstractParameterSpace;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import java.util.List;
/**
* A simple parameter space that implements scalar mathematical operations on another parameter space. This allows you
* to do things like Y = X * 2, where X is a parameter space. For example, a layer size hyperparameter could be set
* using this to 2x the size of the previous layer
*
* @param <T> Type of the parameter space
* @author Alex Black
*/
public class MathOp<T extends Number> extends AbstractParameterSpace<T> {
private ParameterSpace<T> parameterSpace;
private Op op;
private T scalar;
public MathOp(ParameterSpace<T> parameterSpace, Op op, T scalar){
this.parameterSpace = parameterSpace;
this.op = op;
this.scalar = scalar;
}
@Override
public T getValue(double[] parameterValues) {
T u = parameterSpace.getValue(parameterValues);
return op.doOp(u, scalar);
}
@Override
public int numParameters() {
return parameterSpace.numParameters();
}
@Override
public List<ParameterSpace> collectLeaves() {
return parameterSpace.collectLeaves();
}
@Override
public boolean isLeaf() {
return false;
}
@Override
public void setIndices(int... indices) {
parameterSpace.setIndices(indices);
}
}

View File

@ -0,0 +1,76 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.parameter.math;
public enum Op {
ADD, SUB, MUL, DIV;
//Package private
<T extends Number> T doOp(T first, T second){
if(first instanceof Integer || first instanceof Long){
long result;
switch (this){
case ADD:
result = Long.valueOf(first.longValue() + second.longValue());
break;
case SUB:
result = Long.valueOf(first.longValue() - second.longValue());
break;
case MUL:
result = Long.valueOf(first.longValue() * second.longValue());
break;
case DIV:
result = Long.valueOf(first.longValue() / second.longValue());
break;
default:
throw new UnsupportedOperationException("Unknown op: " + this);
}
if(first instanceof Long){
return (T)Long.valueOf(result);
} else {
return (T)Integer.valueOf((int)result);
}
} else if(first instanceof Double || first instanceof Float){
double result;
switch (this){
case ADD:
result = Double.valueOf(first.doubleValue() + second.doubleValue());
break;
case SUB:
result = Double.valueOf(first.doubleValue() - second.doubleValue());
break;
case MUL:
result = Double.valueOf(first.doubleValue() * second.doubleValue());
break;
case DIV:
result = Double.valueOf(first.doubleValue() / second.doubleValue());
break;
default:
throw new UnsupportedOperationException("Unknown op: " + this);
}
if(first instanceof Double){
return (T)Double.valueOf(result);
} else {
return (T)Float.valueOf((float)result);
}
} else {
throw new UnsupportedOperationException("Not supported type: only Integer, Long, Double, Float supported" +
" here. Got type: " + first.getClass());
}
}
}

View File

@ -0,0 +1,79 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.parameter.math;
import org.deeplearning4j.arbiter.optimize.api.AbstractParameterSpace;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* A simple parameter space that implements pairwise mathematical operations on another parameter space. This allows you
* to do things like Z = X + Y, where X and Y are parameter spaces.
*
* @param <T> Type of the parameter space
* @author Alex Black
*/
public class PairMathOp<T extends Number> extends AbstractParameterSpace<T> {
private ParameterSpace<T> first;
private ParameterSpace<T> second;
private Op op;
public PairMathOp(ParameterSpace<T> first, ParameterSpace<T> second, Op op){
this.first = first;
this.second = second;
this.op = op;
}
@Override
public T getValue(double[] parameterValues) {
T f = first.getValue(parameterValues);
T s = second.getValue(parameterValues);
return op.doOp(f, s);
}
@Override
public int numParameters() {
return first.numParameters() + second.numParameters();
}
@Override
public List<ParameterSpace> collectLeaves() {
List<ParameterSpace> l = new ArrayList<>();
l.addAll(first.collectLeaves());
l.addAll(second.collectLeaves());
return l;
}
@Override
public boolean isLeaf() {
return false;
}
@Override
public void setIndices(int... indices) {
int n1 = first.numParameters();
int n2 = second.numParameters();
int[] s1 = Arrays.copyOfRange(indices, 0, n1);
int[] s2 = Arrays.copyOfRange(indices, n1, n1+n2);
first.setIndices(s1);
second.setIndices(s2);
}
}

View File

@ -0,0 +1,383 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner;
import com.google.common.util.concurrent.ListenableFuture;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.exception.ExceptionUtils;
import org.deeplearning4j.arbiter.optimize.api.Candidate;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.deeplearning4j.arbiter.optimize.api.data.DataProvider;
import org.deeplearning4j.arbiter.optimize.api.data.DataSource;
import org.deeplearning4j.arbiter.optimize.api.saving.ResultReference;
import org.deeplearning4j.arbiter.optimize.api.score.ScoreFunction;
import org.deeplearning4j.arbiter.optimize.api.termination.TerminationCondition;
import org.deeplearning4j.arbiter.optimize.config.OptimizationConfiguration;
import org.deeplearning4j.arbiter.optimize.runner.listener.StatusListener;
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
/**
* BaseOptimization runner: responsible for scheduling tasks, saving results using the result saver, etc.
*
* @author Alex Black
*/
@Slf4j
public abstract class BaseOptimizationRunner implements IOptimizationRunner {
private static final int POLLING_FREQUENCY = 1;
private static final TimeUnit POLLING_FREQUENCY_UNIT = TimeUnit.SECONDS;
protected OptimizationConfiguration config;
protected Queue<Future<OptimizationResult>> queuedFutures = new ConcurrentLinkedQueue<>();
protected BlockingQueue<Future<OptimizationResult>> completedFutures = new LinkedBlockingQueue<>();
protected AtomicInteger totalCandidateCount = new AtomicInteger();
protected AtomicInteger numCandidatesCompleted = new AtomicInteger();
protected AtomicInteger numCandidatesFailed = new AtomicInteger();
protected Double bestScore = null;
protected Long bestScoreTime = null;
protected AtomicInteger bestScoreCandidateIndex = new AtomicInteger(-1);
protected List<ResultReference> allResults = new ArrayList<>();
protected Map<Integer, CandidateInfo> currentStatus = new ConcurrentHashMap<>(); //TODO: better design possible?
protected ExecutorService futureListenerExecutor;
protected List<StatusListener> statusListeners = new ArrayList<>();
protected BaseOptimizationRunner(OptimizationConfiguration config) {
this.config = config;
if (config.getTerminationConditions() == null || config.getTerminationConditions().size() == 0) {
throw new IllegalArgumentException("Cannot create BaseOptimizationRunner without TerminationConditions ("
+ "termination conditions are null or empty)");
}
}
protected void init() {
futureListenerExecutor = Executors.newFixedThreadPool(maxConcurrentTasks(), new ThreadFactory() {
private AtomicLong counter = new AtomicLong(0);
@Override
public Thread newThread(Runnable r) {
Thread t = Executors.defaultThreadFactory().newThread(r);
t.setDaemon(true);
t.setName("ArbiterOptimizationRunner-" + counter.getAndIncrement());
return t;
}
});
}
/**
*
*/
@Override
public void execute() {
log.info("{}: execution started", this.getClass().getSimpleName());
config.setExecutionStartTime(System.currentTimeMillis());
for (StatusListener listener : statusListeners) {
listener.onInitialization(this);
}
//Initialize termination conditions (start timers, etc)
for (TerminationCondition c : config.getTerminationConditions()) {
c.initialize(this);
}
//Queue initial tasks:
List<Future<OptimizationResult>> tempList = new ArrayList<>(100);
while (true) {
//Otherwise: add tasks if required
Future<OptimizationResult> future = null;
try {
future = completedFutures.poll(POLLING_FREQUENCY, POLLING_FREQUENCY_UNIT);
} catch (InterruptedException e) {
//No op?
}
if (future != null) {
tempList.add(future);
}
completedFutures.drainTo(tempList);
//Process results (if any)
for (Future<OptimizationResult> f : tempList) {
queuedFutures.remove(f);
processReturnedTask(f);
}
if (tempList.size() > 0) {
for (StatusListener sl : statusListeners) {
sl.onRunnerStatusChange(this);
}
}
tempList.clear();
//Check termination conditions:
if (terminate()) {
shutdown(true);
break;
}
//Add additional tasks
while (config.getCandidateGenerator().hasMoreCandidates() && queuedFutures.size() < maxConcurrentTasks()) {
Candidate candidate = config.getCandidateGenerator().getCandidate();
CandidateInfo status;
if (candidate.getException() != null) {
//Failed on generation...
status = processFailedCandidates(candidate);
} else {
long created = System.currentTimeMillis();
ListenableFuture<OptimizationResult> f;
if(config.getDataSource() != null){
f = execute(candidate, config.getDataSource(), config.getDataSourceProperties(), config.getScoreFunction());
} else {
f = execute(candidate, config.getDataProvider(), config.getScoreFunction());
}
f.addListener(new OnCompletionListener(f), futureListenerExecutor);
queuedFutures.add(f);
totalCandidateCount.getAndIncrement();
status = new CandidateInfo(candidate.getIndex(), CandidateStatus.Created, null,
created, null, null, candidate.getFlatParameters(), null);
currentStatus.put(candidate.getIndex(), status);
}
for (StatusListener listener : statusListeners) {
listener.onCandidateStatusChange(status, this, null);
}
}
}
//Process any final (completed) tasks:
completedFutures.drainTo(tempList);
for (Future<OptimizationResult> f : tempList) {
queuedFutures.remove(f);
processReturnedTask(f);
}
tempList.clear();
log.info("Optimization runner: execution complete");
for (StatusListener listener : statusListeners) {
listener.onShutdown(this);
}
}
private CandidateInfo processFailedCandidates(Candidate<?> candidate) {
//In case the candidate fails during the creation of the candidate
long time = System.currentTimeMillis();
String stackTrace = ExceptionUtils.getStackTrace(candidate.getException());
CandidateInfo newStatus = new CandidateInfo(candidate.getIndex(), CandidateStatus.Failed, null, time, time,
time, candidate.getFlatParameters(), stackTrace);
currentStatus.put(candidate.getIndex(), newStatus);
return newStatus;
}
/**
* Process returned task (either completed or failed
*/
private void processReturnedTask(Future<OptimizationResult> future) {
long currentTime = System.currentTimeMillis();
OptimizationResult result;
try {
result = future.get(100, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
throw new RuntimeException("Unexpected InterruptedException thrown for task", e);
} catch (ExecutionException e) {
//Note that most of the time, an OptimizationResult is returned even for an exception
//This is just to handle any that are missed there (or, by implementations that don't properly do this)
log.warn("Task failed", e);
numCandidatesFailed.getAndIncrement();
return;
} catch (TimeoutException e) {
throw new RuntimeException(e); //TODO
}
//Update internal status:
CandidateInfo status = currentStatus.get(result.getIndex());
CandidateInfo newStatus = new CandidateInfo(result.getIndex(), result.getCandidateInfo().getCandidateStatus(),
result.getScore(), status.getCreatedTime(), result.getCandidateInfo().getStartTime(),
currentTime, status.getFlatParams(), result.getCandidateInfo().getExceptionStackTrace());
currentStatus.put(result.getIndex(), newStatus);
//Listeners (on complete, etc) should be executed in underlying task
if (result.getCandidateInfo().getCandidateStatus() == CandidateStatus.Failed) {
log.info("Task {} failed during execution: {}", result.getIndex(), result.getCandidateInfo().getExceptionStackTrace());
numCandidatesFailed.getAndIncrement();
} else {
//Report completion to candidate generator
config.getCandidateGenerator().reportResults(result);
Double score = result.getScore();
log.info("Completed task {}, score = {}", result.getIndex(), result.getScore());
boolean minimize = config.getScoreFunction().minimize();
if (score != null && (bestScore == null
|| ((minimize && score < bestScore) || (!minimize && score > bestScore)))) {
if (bestScore == null) {
log.info("New best score: {} (first completed model)", score);
} else {
int idx = result.getIndex();
int lastBestIdx = bestScoreCandidateIndex.get();
log.info("New best score: {}, model {} (prev={}, model {})", score, idx, bestScore, lastBestIdx);
}
bestScore = score;
bestScoreTime = System.currentTimeMillis();
bestScoreCandidateIndex.set(result.getIndex());
}
numCandidatesCompleted.getAndIncrement();
//Model saving is done in the optimization tasks, to avoid CUDA threading issues
ResultReference resultReference = result.getResultReference();
if (resultReference != null)
allResults.add(resultReference);
}
}
@Override
public int numCandidatesTotal() {
return totalCandidateCount.get();
}
@Override
public int numCandidatesCompleted() {
return numCandidatesCompleted.get();
}
@Override
public int numCandidatesFailed() {
return numCandidatesFailed.get();
}
@Override
public int numCandidatesQueued() {
return queuedFutures.size();
}
@Override
public Double bestScore() {
return bestScore;
}
@Override
public Long bestScoreTime() {
return bestScoreTime;
}
@Override
public int bestScoreCandidateIndex() {
return bestScoreCandidateIndex.get();
}
@Override
public List<ResultReference> getResults() {
return new ArrayList<>(allResults);
}
@Override
public OptimizationConfiguration getConfiguration() {
return config;
}
@Override
public void addListeners(StatusListener... listeners) {
for (StatusListener l : listeners) {
if (!statusListeners.contains(l)) {
statusListeners.add(l);
}
}
}
@Override
public void removeListeners(StatusListener... listeners) {
for (StatusListener l : listeners) {
if (statusListeners.contains(l)) {
statusListeners.remove(l);
}
}
}
@Override
public void removeAllListeners() {
statusListeners.clear();
}
@Override
public List<CandidateInfo> getCandidateStatus() {
List<CandidateInfo> list = new ArrayList<>();
list.addAll(currentStatus.values());
return list;
}
private boolean terminate() {
for (TerminationCondition c : config.getTerminationConditions()) {
if (c.terminate(this)) {
log.info("BaseOptimizationRunner global termination condition hit: {}", c);
return true;
}
}
return false;
}
@AllArgsConstructor
@Data
private class FutureDetails {
private final Future<OptimizationResult> future;
private final long startTime;
private final int index;
}
@AllArgsConstructor
private class OnCompletionListener implements Runnable {
private Future<OptimizationResult> future;
@Override
public void run() {
completedFutures.add(future);
}
}
protected abstract int maxConcurrentTasks();
@Deprecated
protected abstract ListenableFuture<OptimizationResult> execute(Candidate candidate, DataProvider dataProvider,
ScoreFunction scoreFunction);
@Deprecated
protected abstract List<ListenableFuture<OptimizationResult>> execute(List<Candidate> candidates,
DataProvider dataProvider, ScoreFunction scoreFunction);
protected abstract ListenableFuture<OptimizationResult> execute(Candidate candidate, Class<? extends DataSource> dataSource,
Properties dataSourceProperties, ScoreFunction scoreFunction);
protected abstract List<ListenableFuture<OptimizationResult>> execute(List<Candidate> candidates, Class<? extends DataSource> dataSource,
Properties dataSourceProperties, ScoreFunction scoreFunction);
}

View File

@ -0,0 +1,41 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner;
import lombok.AllArgsConstructor;
import lombok.Data;
/**
* Simple helper class to store status of a candidate that is/has been/will be executed
*/
@AllArgsConstructor
@Data
public class CandidateInfo {
public CandidateInfo() {
//No arg constructor for Jackson
}
private int index;
private CandidateStatus candidateStatus;
private Double score;
private long createdTime;
private Long startTime;
private Long endTime;
private double[] flatParams; //Same as parameters in Candidate class
private String exceptionStackTrace;
}

View File

@ -0,0 +1,24 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner;
/**
* Status for candidates
*/
public enum CandidateStatus {
Created, Running, Complete, Failed, Cancelled
}

View File

@ -0,0 +1,67 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner;
import org.deeplearning4j.arbiter.optimize.api.saving.ResultReference;
import org.deeplearning4j.arbiter.optimize.config.OptimizationConfiguration;
import org.deeplearning4j.arbiter.optimize.runner.listener.StatusListener;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.util.List;
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public interface IOptimizationRunner {
void execute();
/** Total number of candidates: created (scheduled), completed and failed */
int numCandidatesTotal();
int numCandidatesCompleted();
int numCandidatesFailed();
/** Number of candidates running or queued */
int numCandidatesQueued();
/** Best score found so far */
Double bestScore();
/** Time that the best score was found at, or 0 if no jobs have completed successfully */
Long bestScoreTime();
/** Index of the best scoring candidate, or -1 if no candidate has scored yet*/
int bestScoreCandidateIndex();
List<ResultReference> getResults();
OptimizationConfiguration getConfiguration();
void addListeners(StatusListener... listeners);
void removeListeners(StatusListener... listeners);
void removeAllListeners();
List<CandidateInfo> getCandidateStatus();
/**
* @param awaitCompletion If true: await completion of currently scheduled tasks. If false: shutdown immediately,
* cancelling any currently executing tasks
*/
void shutdown(boolean awaitCompletion);
}

View File

@ -0,0 +1,150 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner;
import com.google.common.util.concurrent.ListenableFuture;
import com.google.common.util.concurrent.ListeningExecutorService;
import com.google.common.util.concurrent.MoreExecutors;
import lombok.Setter;
import org.deeplearning4j.arbiter.optimize.api.*;
import org.deeplearning4j.arbiter.optimize.api.data.DataProvider;
import org.deeplearning4j.arbiter.optimize.api.data.DataSource;
import org.deeplearning4j.arbiter.optimize.api.score.ScoreFunction;
import org.deeplearning4j.arbiter.optimize.config.OptimizationConfiguration;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicLong;
/**
* LocalOptimizationRunner: execute hyperparameter optimization
* locally (on current machine, in current JVM).
*
* @author Alex Black
*/
public class LocalOptimizationRunner extends BaseOptimizationRunner {
public static final int DEFAULT_MAX_CONCURRENT_TASKS = 1;
private final int maxConcurrentTasks;
private TaskCreator taskCreator;
private ListeningExecutorService executor;
@Setter
private long shutdownMaxWaitMS = 2L * 24 * 60 * 60 * 1000;
public LocalOptimizationRunner(OptimizationConfiguration config){
this(config, null);
}
public LocalOptimizationRunner(OptimizationConfiguration config, TaskCreator taskCreator) {
this(DEFAULT_MAX_CONCURRENT_TASKS, config, taskCreator);
}
public LocalOptimizationRunner(int maxConcurrentTasks, OptimizationConfiguration config){
this(maxConcurrentTasks, config, null);
}
public LocalOptimizationRunner(int maxConcurrentTasks, OptimizationConfiguration config, TaskCreator taskCreator) {
super(config);
if (maxConcurrentTasks <= 0)
throw new IllegalArgumentException("maxConcurrentTasks must be > 0 (got: " + maxConcurrentTasks + ")");
this.maxConcurrentTasks = maxConcurrentTasks;
if(taskCreator == null){
Class<? extends ParameterSpace> psClass = config.getCandidateGenerator().getParameterSpace().getClass();
taskCreator = TaskCreatorProvider.defaultTaskCreatorFor(psClass);
if(taskCreator == null){
throw new IllegalStateException("No TaskCreator was provided and a default TaskCreator cannot be " +
"inferred for ParameterSpace class " + psClass.getName() + ". Please provide a TaskCreator " +
"via the LocalOptimizationRunner constructor");
}
}
this.taskCreator = taskCreator;
ExecutorService exec = Executors.newFixedThreadPool(maxConcurrentTasks, new ThreadFactory() {
private AtomicLong counter = new AtomicLong(0);
@Override
public Thread newThread(Runnable r) {
Thread t = Executors.defaultThreadFactory().newThread(r);
t.setDaemon(true);
t.setName("LocalCandidateExecutor-" + counter.getAndIncrement());
return t;
}
});
executor = MoreExecutors.listeningDecorator(exec);
init();
}
@Override
protected int maxConcurrentTasks() {
return maxConcurrentTasks;
}
@Override
protected ListenableFuture<OptimizationResult> execute(Candidate candidate, DataProvider dataProvider,
ScoreFunction scoreFunction) {
return execute(Collections.singletonList(candidate), dataProvider, scoreFunction).get(0);
}
@Override
protected List<ListenableFuture<OptimizationResult>> execute(List<Candidate> candidates, DataProvider dataProvider,
ScoreFunction scoreFunction) {
List<ListenableFuture<OptimizationResult>> list = new ArrayList<>(candidates.size());
for (Candidate candidate : candidates) {
Callable<OptimizationResult> task =
taskCreator.create(candidate, dataProvider, scoreFunction, statusListeners, this);
list.add(executor.submit(task));
}
return list;
}
@Override
protected ListenableFuture<OptimizationResult> execute(Candidate candidate, Class<? extends DataSource> dataSource, Properties dataSourceProperties, ScoreFunction scoreFunction) {
return execute(Collections.singletonList(candidate), dataSource, dataSourceProperties, scoreFunction).get(0);
}
@Override
protected List<ListenableFuture<OptimizationResult>> execute(List<Candidate> candidates, Class<? extends DataSource> dataSource, Properties dataSourceProperties, ScoreFunction scoreFunction) {
List<ListenableFuture<OptimizationResult>> list = new ArrayList<>(candidates.size());
for (Candidate candidate : candidates) {
Callable<OptimizationResult> task = taskCreator.create(candidate, dataSource, dataSourceProperties, scoreFunction, statusListeners, this);
list.add(executor.submit(task));
}
return list;
}
@Override
public void shutdown(boolean awaitTermination) {
if(awaitTermination){
try {
executor.shutdown();
executor.awaitTermination(shutdownMaxWaitMS, TimeUnit.MILLISECONDS);
} catch (InterruptedException e){
throw new RuntimeException(e);
}
} else {
executor.shutdownNow();
}
}
}

View File

@ -0,0 +1,54 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner.listener;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.deeplearning4j.arbiter.optimize.runner.CandidateInfo;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
/**
* BaseStatusListener: implements all methods of {@link StatusListener} as no-op.
* Users can extend this and override only the methods actually required
*
* @author Alex Black
*/
public abstract class BaseStatusListener implements StatusListener{
@Override
public void onInitialization(IOptimizationRunner runner) {
//No op
}
@Override
public void onShutdown(IOptimizationRunner runner) {
//No op
}
@Override
public void onRunnerStatusChange(IOptimizationRunner runner) {
//No op
}
@Override
public void onCandidateStatusChange(CandidateInfo candidateInfo, IOptimizationRunner runner, OptimizationResult result) {
//No op
}
@Override
public void onCandidateIteration(CandidateInfo candidateInfo, Object candidate, int iteration) {
//No op
}
}

View File

@ -0,0 +1,26 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner.listener;
/**
* Created by Alex on 20/07/2017.
*/
public enum StatusChangeType {
CandidateCompleted, CandidateFailed, CandidateNewScheduled, CandidateNewBestScore
}

View File

@ -0,0 +1,60 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner.listener;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.deeplearning4j.arbiter.optimize.runner.CandidateInfo;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
/**
* The status Listener interface is used to inspect/track the status of execution, both for individual candidates,
* and for the optimisation runner overall.
*
* @author Alex Black
*/
public interface StatusListener {
/** Called when optimization runner starts execution */
void onInitialization(IOptimizationRunner runner);
/** Called when optimization runner terminates */
void onShutdown(IOptimizationRunner runner);
/** Called when any of the summary stats change, for the optimization runner:
* number scheduled, number completed, number failed, best score, etc. */
void onRunnerStatusChange(IOptimizationRunner runner);
/**
* Called when the status of the candidate is change. For example created, completed, failed.
*
* @param candidateInfo Candidate information
* @param runner Optimisation runner calling this method
* @param result Optimisation result. Maybe null.
*/
void onCandidateStatusChange(CandidateInfo candidateInfo, IOptimizationRunner runner, OptimizationResult result);
/**
* This method may be called by tasks as they are executing. The intent of this method is to report partial results,
* such as different stages of learning, or scores/evaluations so far
*
* @param candidateInfo Candidate information
* @param candidate Current candidate value/configuration
* @param iteration Current iteration number
*/
void onCandidateIteration(CandidateInfo candidateInfo, Object candidate, int iteration);
}

View File

@ -0,0 +1,57 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.runner.listener.impl;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.arbiter.optimize.api.OptimizationResult;
import org.deeplearning4j.arbiter.optimize.runner.CandidateInfo;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
import org.deeplearning4j.arbiter.optimize.runner.listener.StatusListener;
/**
* Created by Alex on 20/07/2017.
*/
@Slf4j
public class LoggingStatusListener implements StatusListener {
@Override
public void onInitialization(IOptimizationRunner runner) {
log.info("Optimization runner: initialized");
}
@Override
public void onShutdown(IOptimizationRunner runner) {
log.info("Optimization runner: shut down");
}
@Override
public void onRunnerStatusChange(IOptimizationRunner runner) {
log.info("Optimization runner: status change");
}
@Override
public void onCandidateStatusChange(CandidateInfo candidateInfo, IOptimizationRunner runner,
OptimizationResult result) {
log.info("Candidate status change: {}", candidateInfo);
}
@Override
public void onCandidateIteration(CandidateInfo candidateInfo, Object candidate, int iteration) {
log.info("Candidate iteration #{} - {}", iteration, candidate);
}
}

View File

@ -0,0 +1,46 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.serde.jackson;
import org.nd4j.shade.jackson.core.JsonParser;
import org.nd4j.shade.jackson.databind.DeserializationContext;
import org.nd4j.shade.jackson.databind.JsonDeserializer;
import org.nd4j.shade.jackson.databind.JsonNode;
import org.nd4j.shade.jackson.databind.ObjectMapper;
import java.io.IOException;
/**
* Created by Alex on 15/02/2017.
*/
public class GenericDeserializer extends JsonDeserializer<Object> {
@Override
public Object deserialize(JsonParser p, DeserializationContext ctxt) throws IOException {
JsonNode node = p.getCodec().readTree(p);
String className = node.get("@class").asText();
Class<?> c;
try {
c = Class.forName(className);
} catch (Exception e) {
throw new RuntimeException(e);
}
JsonNode valueNode = node.get("value");
Object o = new ObjectMapper().treeToValue(valueNode, c);
return o;
}
}

View File

@ -0,0 +1,38 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.serde.jackson;
import org.nd4j.shade.jackson.core.JsonGenerator;
import org.nd4j.shade.jackson.core.JsonProcessingException;
import org.nd4j.shade.jackson.databind.JsonSerializer;
import org.nd4j.shade.jackson.databind.SerializerProvider;
import java.io.IOException;
/**
* Created by Alex on 15/02/2017.
*/
public class GenericSerializer extends JsonSerializer<Object> {
@Override
public void serialize(Object o, JsonGenerator j, SerializerProvider serializerProvider)
throws IOException, JsonProcessingException {
j.writeStartObject();
j.writeStringField("@class", o.getClass().getName());
j.writeObjectField("value", o);
j.writeEndObject();
}
}

View File

@ -0,0 +1,59 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.serde.jackson;
import org.apache.commons.math3.distribution.*;
import org.nd4j.shade.jackson.core.JsonParser;
import org.nd4j.shade.jackson.databind.DeserializationContext;
import org.nd4j.shade.jackson.databind.JsonDeserializer;
import org.nd4j.shade.jackson.databind.JsonNode;
import java.io.IOException;
/**
* Custom Jackson deserializer for integer distributions
*
* @author Alex Black
*/
public class IntegerDistributionDeserializer extends JsonDeserializer<IntegerDistribution> {
@Override
public IntegerDistribution deserialize(JsonParser p, DeserializationContext ctxt) throws IOException {
JsonNode node = p.getCodec().readTree(p);
String simpleName = node.get("distribution").asText();
switch (simpleName) {
case "BinomialDistribution":
return new BinomialDistribution(node.get("trials").asInt(), node.get("p").asDouble());
case "GeometricDistribution":
return new GeometricDistribution(node.get("p").asDouble());
case "HypergeometricDistribution":
return new HypergeometricDistribution(node.get("populationSize").asInt(),
node.get("numberOfSuccesses").asInt(), node.get("sampleSize").asInt());
case "PascalDistribution":
return new PascalDistribution(node.get("r").asInt(), node.get("p").asDouble());
case "PoissonDistribution":
return new PoissonDistribution(node.get("p").asDouble());
case "UniformIntegerDistribution":
return new UniformIntegerDistribution(node.get("lower").asInt(), node.get("upper").asInt());
case "ZipfDistribution":
return new ZipfDistribution(node.get("numElements").asInt(), node.get("exponent").asDouble());
default:
throw new RuntimeException("Unknown or not supported distribution: " + simpleName);
}
}
}

View File

@ -0,0 +1,74 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.serde.jackson;
import org.apache.commons.math3.distribution.*;
import org.nd4j.shade.jackson.core.JsonGenerator;
import org.nd4j.shade.jackson.databind.JsonSerializer;
import org.nd4j.shade.jackson.databind.SerializerProvider;
import java.io.IOException;
/**
* Custom Jackson serializer for integer distributions
*
* @author Alex Black
*/
public class IntegerDistributionSerializer extends JsonSerializer<IntegerDistribution> {
@Override
public void serialize(IntegerDistribution d, JsonGenerator j, SerializerProvider serializerProvider)
throws IOException {
Class<?> c = d.getClass();
String s = c.getSimpleName();
j.writeStartObject();
j.writeStringField("distribution", s);
if (c == BinomialDistribution.class) {
BinomialDistribution bd = (BinomialDistribution) d;
j.writeNumberField("trials", bd.getNumberOfTrials());
j.writeNumberField("p", bd.getProbabilityOfSuccess());
} else if (c == GeometricDistribution.class) {
GeometricDistribution gd = (GeometricDistribution) d;
j.writeNumberField("p", gd.getProbabilityOfSuccess());
} else if (c == HypergeometricDistribution.class) {
HypergeometricDistribution hd = (HypergeometricDistribution) d;
j.writeNumberField("populationSize", hd.getPopulationSize());
j.writeNumberField("numberOfSuccesses", hd.getNumberOfSuccesses());
j.writeNumberField("sampleSize", hd.getSampleSize());
} else if (c == PascalDistribution.class) {
PascalDistribution pd = (PascalDistribution) d;
j.writeNumberField("r", pd.getNumberOfSuccesses());
j.writeNumberField("p", pd.getProbabilityOfSuccess());
} else if (c == PoissonDistribution.class) {
PoissonDistribution pd = (PoissonDistribution) d;
j.writeNumberField("p", pd.getMean());
} else if (c == UniformIntegerDistribution.class) {
UniformIntegerDistribution ud = (UniformIntegerDistribution) d;
j.writeNumberField("lower", ud.getSupportLowerBound());
j.writeNumberField("upper", ud.getSupportUpperBound());
} else if (c == ZipfDistribution.class) {
ZipfDistribution zd = (ZipfDistribution) d;
j.writeNumberField("numElements", zd.getNumberOfElements());
j.writeNumberField("exponent", zd.getExponent());
} else {
throw new UnsupportedOperationException("Unknown or not supported IntegerDistribution: " + c);
}
j.writeEndObject();
}
}

View File

@ -0,0 +1,74 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.serde.jackson;
import org.nd4j.shade.jackson.annotation.JsonAutoDetect;
import org.nd4j.shade.jackson.annotation.PropertyAccessor;
import org.nd4j.shade.jackson.databind.DeserializationFeature;
import org.nd4j.shade.jackson.databind.ObjectMapper;
import org.nd4j.shade.jackson.databind.SerializationFeature;
import org.nd4j.shade.jackson.dataformat.yaml.YAMLFactory;
import org.nd4j.shade.jackson.datatype.joda.JodaModule;
import java.util.Collections;
import java.util.Map;
/**
* Created by Alex on 16/11/2016.
*/
public class JsonMapper {
private static ObjectMapper mapper;
private static ObjectMapper yamlMapper;
static {
mapper = new ObjectMapper();
mapper.registerModule(new JodaModule());
mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
mapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false);
mapper.enable(SerializationFeature.INDENT_OUTPUT);
mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.NONE);
mapper.setVisibility(PropertyAccessor.FIELD, JsonAutoDetect.Visibility.ANY);
yamlMapper = new ObjectMapper(new YAMLFactory());
mapper.registerModule(new JodaModule());
mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
mapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false);
mapper.enable(SerializationFeature.INDENT_OUTPUT);
mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.NONE);
mapper.setVisibility(PropertyAccessor.FIELD, JsonAutoDetect.Visibility.ANY);
}
private JsonMapper() {}
/**
* Return the yaml mapper
* @return
*/
public static ObjectMapper getYamlMapper() {
return yamlMapper;
}
/**
* Return a json mapper
* @return
*/
public static ObjectMapper getMapper() {
return mapper;
}
}

View File

@ -0,0 +1,78 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.serde.jackson;
import org.apache.commons.math3.distribution.*;
import org.deeplearning4j.arbiter.optimize.distribution.LogUniformDistribution;
import org.nd4j.shade.jackson.core.JsonParser;
import org.nd4j.shade.jackson.core.JsonProcessingException;
import org.nd4j.shade.jackson.databind.DeserializationContext;
import org.nd4j.shade.jackson.databind.JsonDeserializer;
import org.nd4j.shade.jackson.databind.JsonNode;
import java.io.IOException;
/**
* Created by Alex on 14/02/2017.
*/
public class RealDistributionDeserializer extends JsonDeserializer<RealDistribution> {
@Override
public RealDistribution deserialize(JsonParser p, DeserializationContext ctxt)
throws IOException, JsonProcessingException {
JsonNode node = p.getCodec().readTree(p);
String simpleName = node.get("distribution").asText();
switch (simpleName) {
case "BetaDistribution":
return new BetaDistribution(node.get("alpha").asDouble(), node.get("beta").asDouble());
case "CauchyDistribution":
return new CauchyDistribution(node.get("median").asDouble(), node.get("scale").asDouble());
case "ChiSquaredDistribution":
return new ChiSquaredDistribution(node.get("dof").asDouble());
case "ExponentialDistribution":
return new ExponentialDistribution(node.get("mean").asDouble());
case "FDistribution":
return new FDistribution(node.get("numeratorDof").asDouble(), node.get("denominatorDof").asDouble());
case "GammaDistribution":
return new GammaDistribution(node.get("shape").asDouble(), node.get("scale").asDouble());
case "LevyDistribution":
return new LevyDistribution(node.get("mu").asDouble(), node.get("c").asDouble());
case "LogNormalDistribution":
return new LogNormalDistribution(node.get("scale").asDouble(), node.get("shape").asDouble());
case "NormalDistribution":
return new NormalDistribution(node.get("mean").asDouble(), node.get("stdev").asDouble());
case "ParetoDistribution":
return new ParetoDistribution(node.get("scale").asDouble(), node.get("shape").asDouble());
case "TDistribution":
return new TDistribution(node.get("dof").asDouble());
case "TriangularDistribution":
return new TriangularDistribution(node.get("a").asDouble(), node.get("b").asDouble(),
node.get("c").asDouble());
case "UniformRealDistribution":
return new UniformRealDistribution(node.get("lower").asDouble(), node.get("upper").asDouble());
case "WeibullDistribution":
return new WeibullDistribution(node.get("alpha").asDouble(), node.get("beta").asDouble());
case "LogUniformDistribution":
return new LogUniformDistribution(node.get("min").asDouble(), node.get("max").asDouble());
default:
throw new RuntimeException("Unknown or not supported distribution: " + simpleName);
}
}
}

View File

@ -0,0 +1,107 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.serde.jackson;
import org.apache.commons.math3.distribution.*;
import org.deeplearning4j.arbiter.optimize.distribution.LogUniformDistribution;
import org.nd4j.shade.jackson.core.JsonGenerator;
import org.nd4j.shade.jackson.databind.JsonSerializer;
import org.nd4j.shade.jackson.databind.SerializerProvider;
import java.io.IOException;
/**
* Custom JSON serializer for Apache commons RealDistribution instances.
* The custom serializer is set up to use the built-in c
*/
public class RealDistributionSerializer extends JsonSerializer<RealDistribution> {
@Override
public void serialize(RealDistribution d, JsonGenerator j, SerializerProvider serializerProvider)
throws IOException {
Class<?> c = d.getClass();
String s = c.getSimpleName();
j.writeStartObject();
j.writeStringField("distribution", s);
if (c == BetaDistribution.class) {
BetaDistribution bd = (BetaDistribution) d;
j.writeNumberField("alpha", bd.getAlpha());
j.writeNumberField("beta", bd.getBeta());
} else if (c == CauchyDistribution.class) {
CauchyDistribution cd = (CauchyDistribution) d;
j.writeNumberField("median", cd.getMedian());
j.writeNumberField("scale", cd.getScale());
} else if (c == ChiSquaredDistribution.class) {
ChiSquaredDistribution cd = (ChiSquaredDistribution) d;
j.writeNumberField("dof", cd.getDegreesOfFreedom());
} else if (c == ExponentialDistribution.class) {
ExponentialDistribution ed = (ExponentialDistribution) d;
j.writeNumberField("mean", ed.getMean());
} else if (c == FDistribution.class) {
FDistribution fd = (FDistribution) d;
j.writeNumberField("numeratorDof", fd.getNumeratorDegreesOfFreedom());
j.writeNumberField("denominatorDof", fd.getDenominatorDegreesOfFreedom());
} else if (c == GammaDistribution.class) {
GammaDistribution gd = (GammaDistribution) d;
j.writeNumberField("shape", gd.getShape());
j.writeNumberField("scale", gd.getScale());
} else if (c == LevyDistribution.class) {
LevyDistribution ld = (LevyDistribution) d;
j.writeNumberField("mu", ld.getLocation());
j.writeNumberField("c", ld.getScale());
} else if (c == LogNormalDistribution.class) {
LogNormalDistribution ln = (LogNormalDistribution) d;
j.writeNumberField("scale", ln.getScale());
j.writeNumberField("shape", ln.getShape());
} else if (c == NormalDistribution.class) {
NormalDistribution nd = (NormalDistribution) d;
j.writeNumberField("mean", nd.getMean());
j.writeNumberField("stdev", nd.getStandardDeviation());
} else if (c == ParetoDistribution.class) {
ParetoDistribution pd = (ParetoDistribution) d;
j.writeNumberField("scale", pd.getScale());
j.writeNumberField("shape", pd.getShape());
} else if (c == TDistribution.class) {
TDistribution td = (TDistribution) d;
j.writeNumberField("dof", td.getDegreesOfFreedom());
} else if (c == TriangularDistribution.class) {
TriangularDistribution td = (TriangularDistribution) d;
j.writeNumberField("a", td.getSupportLowerBound());
j.writeNumberField("b", td.getMode());
j.writeNumberField("c", td.getSupportUpperBound());
} else if (c == UniformRealDistribution.class) {
UniformRealDistribution u = (UniformRealDistribution) d;
j.writeNumberField("lower", u.getSupportLowerBound());
j.writeNumberField("upper", u.getSupportUpperBound());
} else if (c == WeibullDistribution.class) {
WeibullDistribution wb = (WeibullDistribution) d;
j.writeNumberField("alpha", wb.getShape());
j.writeNumberField("beta", wb.getScale());
} else if (c == LogUniformDistribution.class){
LogUniformDistribution lud = (LogUniformDistribution) d;
j.writeNumberField("min", lud.getMin());
j.writeNumberField("max", lud.getMax());
} else {
throw new UnsupportedOperationException("Unknown or not supported RealDistribution: " + d.getClass());
}
j.writeEndObject();
}
}

View File

@ -0,0 +1,51 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize.serde.jackson;
import org.nd4j.shade.jackson.annotation.JsonAutoDetect;
import org.nd4j.shade.jackson.annotation.PropertyAccessor;
import org.nd4j.shade.jackson.databind.DeserializationFeature;
import org.nd4j.shade.jackson.databind.ObjectMapper;
import org.nd4j.shade.jackson.databind.SerializationFeature;
import org.nd4j.shade.jackson.dataformat.yaml.YAMLFactory;
import org.nd4j.shade.jackson.datatype.joda.JodaModule;
/**
* Created by Alex on 16/11/2016.
*/
public class YamlMapper {
private static final ObjectMapper mapper;
static {
mapper = new ObjectMapper(new YAMLFactory());
mapper.registerModule(new JodaModule());
mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
mapper.configure(SerializationFeature.FAIL_ON_EMPTY_BEANS, false);
mapper.enable(SerializationFeature.INDENT_OUTPUT);
mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.NONE);
mapper.setVisibility(PropertyAccessor.FIELD, JsonAutoDetect.Visibility.ANY);
}
private YamlMapper() {}
public static ObjectMapper getMapper() {
return mapper;
}
}

View File

@ -0,0 +1,234 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.util;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.*;
import java.net.MalformedURLException;
import java.net.URI;
import java.net.URISyntaxException;
import java.net.URL;
import java.util.zip.ZipEntry;
import java.util.zip.ZipFile;
/**
* Simple utility class used to get access to files at the classpath, or packed into jar.
* Based on Spring ClassPathResource implementation + jar internals access implemented.
*
*
* @author raver119@gmail.com
*/
public class ClassPathResource {
private String resourceName;
private static Logger log = LoggerFactory.getLogger(ClassPathResource.class);
/**
* Builds new ClassPathResource object
*
* @param resourceName String name of resource, to be retrieved
*/
public ClassPathResource(String resourceName) {
if (resourceName == null)
throw new IllegalStateException("Resource name can't be null");
this.resourceName = resourceName;
}
/**
* Returns URL of the requested resource
*
* @return URL of the resource, if it's available in current Jar
*/
private URL getUrl() {
ClassLoader loader = null;
try {
loader = Thread.currentThread().getContextClassLoader();
} catch (Exception e) {
// do nothing
}
if (loader == null) {
loader = ClassPathResource.class.getClassLoader();
}
URL url = loader.getResource(this.resourceName);
if (url == null) {
// try to check for mis-used starting slash
// TODO: see TODO below
if (this.resourceName.startsWith("/")) {
url = loader.getResource(this.resourceName.replaceFirst("[\\\\/]", ""));
if (url != null)
return url;
} else {
// try to add slash, to make clear it's not an issue
// TODO: change this mechanic to actual path purifier
url = loader.getResource("/" + this.resourceName);
if (url != null)
return url;
}
throw new IllegalStateException("Resource '" + this.resourceName + "' cannot be found.");
}
return url;
}
/**
* Returns requested ClassPathResource as File object
*
* Please note: if this method called from compiled jar, temporary file will be created to provide File access
*
* @return File requested at constructor call
* @throws FileNotFoundException
*/
public File getFile() throws FileNotFoundException {
URL url = this.getUrl();
if (isJarURL(url)) {
/*
This is actually request for file, that's packed into jar. Probably the current one, but that doesn't matters.
*/
try {
url = extractActualUrl(url);
File file = File.createTempFile("canova_temp", "file");
file.deleteOnExit();
ZipFile zipFile = new ZipFile(url.getFile());
ZipEntry entry = zipFile.getEntry(this.resourceName);
if (entry == null) {
if (this.resourceName.startsWith("/")) {
entry = zipFile.getEntry(this.resourceName.replaceFirst("/", ""));
if (entry == null) {
throw new FileNotFoundException("Resource " + this.resourceName + " not found");
}
} else
throw new FileNotFoundException("Resource " + this.resourceName + " not found");
}
long size = entry.getSize();
InputStream stream = zipFile.getInputStream(entry);
FileOutputStream outputStream = new FileOutputStream(file);
byte[] array = new byte[1024];
int rd = 0;
long bytesRead = 0;
do {
rd = stream.read(array);
outputStream.write(array, 0, rd);
bytesRead += rd;
} while (bytesRead < size);
outputStream.flush();
outputStream.close();
stream.close();
zipFile.close();
return file;
} catch (Exception e) {
throw new RuntimeException(e);
}
} else {
/*
It's something in the actual underlying filesystem, so we can just go for it
*/
try {
URI uri = new URI(url.toString().replaceAll(" ", "%20"));
return new File(uri.getSchemeSpecificPart());
} catch (URISyntaxException e) {
return new File(url.getFile());
}
}
}
/**
* Checks, if proposed URL is packed into archive.
*
* @param url URL to be checked
* @return True, if URL is archive entry, False otherwise
*/
private boolean isJarURL(URL url) {
String protocol = url.getProtocol();
return "jar".equals(protocol) || "zip".equals(protocol) || "wsjar".equals(protocol)
|| "code-source".equals(protocol) && url.getPath().contains("!/");
}
/**
* Extracts parent Jar URL from original ClassPath entry URL.
*
* @param jarUrl Original URL of the resource
* @return URL of the Jar file, containing requested resource
* @throws MalformedURLException
*/
private URL extractActualUrl(URL jarUrl) throws MalformedURLException {
String urlFile = jarUrl.getFile();
int separatorIndex = urlFile.indexOf("!/");
if (separatorIndex != -1) {
String jarFile = urlFile.substring(0, separatorIndex);
try {
return new URL(jarFile);
} catch (MalformedURLException var5) {
if (!jarFile.startsWith("/")) {
jarFile = "/" + jarFile;
}
return new URL("file:" + jarFile);
}
} else {
return jarUrl;
}
}
/**
* Returns requested ClassPathResource as InputStream object
*
* @return File requested at constructor call
* @throws FileNotFoundException
*/
public InputStream getInputStream() throws FileNotFoundException {
URL url = this.getUrl();
if (isJarURL(url)) {
try {
url = extractActualUrl(url);
ZipFile zipFile = new ZipFile(url.getFile());
ZipEntry entry = zipFile.getEntry(this.resourceName);
if (entry == null) {
if (this.resourceName.startsWith("/")) {
entry = zipFile.getEntry(this.resourceName.replaceFirst("/", ""));
if (entry == null) {
throw new FileNotFoundException("Resource " + this.resourceName + " not found");
}
} else
throw new FileNotFoundException("Resource " + this.resourceName + " not found");
}
InputStream stream = zipFile.getInputStream(entry);
return stream;
} catch (Exception e) {
throw new RuntimeException(e);
}
} else {
File srcFile = this.getFile();
return new FileInputStream(srcFile);
}
}
}

View File

@ -0,0 +1,49 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.util;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
public class CollectionUtils {
/**
* Count the number of unique values in a collection
*/
public static int countUnique(Collection<?> collection) {
HashSet<Object> set = new HashSet<>(collection);
return set.size();
}
/**
* Returns a list containing only unique values in a collection
*/
public static <T> List<T> getUnique(Collection<T> collection) {
HashSet<T> set = new HashSet<>();
List<T> out = new ArrayList<>();
for (T t : collection) {
if (!set.contains(t)) {
out.add(t);
set.add(t);
}
}
return out;
}
}

View File

@ -0,0 +1,73 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.util;
import org.deeplearning4j.arbiter.optimize.api.ParameterSpace;
import java.util.ArrayList;
import java.util.List;
/**
* Created by Alex on 29/06/2017.
*/
public class LeafUtils {
private LeafUtils() {}
/**
* Returns a list of unique objects, not using the .equals() method, but rather using ==
*
* @param allLeaves Leaf values to process
* @return A list of unique parameter space values
*/
public static List<ParameterSpace> getUniqueObjects(List<ParameterSpace> allLeaves) {
List<ParameterSpace> unique = new ArrayList<>();
for (ParameterSpace p : allLeaves) {
//This isn't especially efficient, but small number of parameters in general means it's fine
boolean found = false;
for (ParameterSpace q : unique) {
if (p == q) {
found = true;
}
}
if (!found) {
unique.add(p);
}
}
return unique;
}
/**
* Count the number of unique parameters in the specified leaf nodes
*
* @param allLeaves Leaf values to count the parameters fore
* @return Number of parameters for all unique objects
*/
public static int countUniqueParameters(List<ParameterSpace> allLeaves) {
List<ParameterSpace> unique = getUniqueObjects(allLeaves);
int count = 0;
for (ParameterSpace ps : unique) {
if (!ps.isLeaf()) {
throw new IllegalStateException("Method should only be used with leaf nodes");
}
count += ps.numParameters();
}
return count;
}
}

View File

@ -0,0 +1,61 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.util;
import java.util.Arrays;
/**
* @author Alex Black
*/
public class ObjectUtils {
private ObjectUtils() {}
/**
* Get the string representation of the object. Arrays, including primitive arrays, are printed using
* Arrays.toString(...) methods.
*
* @param v Value to convert to a string
* @return String representation
*/
public static String valueToString(Object v) {
if (v.getClass().isArray()) {
if (v.getClass().getComponentType().isPrimitive()) {
Class<?> c = v.getClass().getComponentType();
if (c == int.class) {
return Arrays.toString((int[]) v);
} else if (c == double.class) {
return Arrays.toString((double[]) v);
} else if (c == float.class) {
return Arrays.toString((float[]) v);
} else if (c == long.class) {
return Arrays.toString((long[]) v);
} else if (c == byte.class) {
return Arrays.toString((byte[]) v);
} else if (c == short.class) {
return Arrays.toString((short[]) v);
} else {
return v.toString();
}
} else {
return Arrays.toString((Object[]) v);
}
} else {
return v.toString();
}
}
}

View File

@ -0,0 +1,47 @@
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.util;
import org.slf4j.Logger;
import java.awt.*;
import java.net.URI;
/**
* Various utilities for webpages and dealing with browsers
*/
public class WebUtils {
public static void tryOpenBrowser(String path, Logger log) {
try {
WebUtils.openBrowser(new URI(path));
} catch (Exception e) {
log.error("Could not open browser", e);
System.out.println("Browser could not be launched automatically.\nUI path: " + path);
}
}
public static void openBrowser(URI uri) throws Exception {
if (Desktop.isDesktopSupported()) {
Desktop.getDesktop().browse(uri);
} else {
throw new UnsupportedOperationException(
"Cannot open browser on this platform: Desktop.isDesktopSupported() == false");
}
}
}

View File

@ -0,0 +1,156 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize;
import lombok.AllArgsConstructor;
import lombok.Data;
import org.deeplearning4j.arbiter.optimize.api.*;
import org.deeplearning4j.arbiter.optimize.api.data.DataProvider;
import org.deeplearning4j.arbiter.optimize.api.data.DataSource;
import org.deeplearning4j.arbiter.optimize.api.score.ScoreFunction;
import org.deeplearning4j.arbiter.optimize.parameter.continuous.ContinuousParameterSpace;
import org.deeplearning4j.arbiter.optimize.runner.CandidateInfo;
import org.deeplearning4j.arbiter.optimize.runner.CandidateStatus;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
import org.deeplearning4j.arbiter.optimize.runner.listener.StatusListener;
import java.io.Serializable;
import java.util.*;
import java.util.concurrent.Callable;
public class BraninFunction {
public static class BraninSpace extends AbstractParameterSpace<BraninConfig> {
private int[] indices;
private ParameterSpace<Double> first = new ContinuousParameterSpace(-5, 10);
private ParameterSpace<Double> second = new ContinuousParameterSpace(0, 15);
@Override
public BraninConfig getValue(double[] parameterValues) {
double f = first.getValue(parameterValues);
double s = second.getValue(parameterValues);
return new BraninConfig(f, s); //-5 to +10 and 0 to 15
}
@Override
public int numParameters() {
return 2;
}
@Override
public List<ParameterSpace> collectLeaves() {
List<ParameterSpace> list = new ArrayList<>();
list.addAll(first.collectLeaves());
list.addAll(second.collectLeaves());
return list;
}
@Override
public boolean isLeaf() {
return false;
}
@Override
public void setIndices(int... indices) {
throw new UnsupportedOperationException();
}
}
@AllArgsConstructor
@Data
public static class BraninConfig implements Serializable {
private double x1;
private double x2;
}
public static class BraninScoreFunction implements ScoreFunction {
private static final double a = 1.0;
private static final double b = 5.1 / (4.0 * Math.PI * Math.PI);
private static final double c = 5.0 / Math.PI;
private static final double r = 6.0;
private static final double s = 10.0;
private static final double t = 1.0 / (8.0 * Math.PI);
@Override
public double score(Object m, DataProvider data, Map<String, Object> dataParameters) {
BraninConfig model = (BraninConfig) m;
double x1 = model.getX1();
double x2 = model.getX2();
return a * Math.pow(x2 - b * x1 * x1 + c * x1 - r, 2.0) + s * (1 - t) * Math.cos(x1) + s;
}
@Override
public double score(Object model, Class<? extends DataSource> dataSource, Properties dataSourceProperties) {
throw new UnsupportedOperationException();
}
@Override
public boolean minimize() {
return true;
}
@Override
public List<Class<?>> getSupportedModelTypes() {
return Collections.<Class<?>>singletonList(BraninConfig.class);
}
@Override
public List<Class<?>> getSupportedDataTypes() {
return Collections.<Class<?>>singletonList(Object.class);
}
}
public static class BraninTaskCreator implements TaskCreator {
@Override
public Callable<OptimizationResult> create(final Candidate c, DataProvider dataProvider,
final ScoreFunction scoreFunction, final List<StatusListener> statusListeners,
IOptimizationRunner runner) {
return new Callable<OptimizationResult>() {
@Override
public OptimizationResult call() throws Exception {
BraninConfig candidate = (BraninConfig) c.getValue();
double score = scoreFunction.score(candidate, null, (Map) null);
System.out.println(candidate.getX1() + "\t" + candidate.getX2() + "\t" + score);
Thread.sleep(20);
if (statusListeners != null) {
for (StatusListener sl : statusListeners) {
sl.onCandidateIteration(null, null, 0);
}
}
CandidateInfo ci = new CandidateInfo(-1, CandidateStatus.Complete, score,
System.currentTimeMillis(), null, null, null, null);
return new OptimizationResult(c, score, c.getIndex(), null, ci, null);
}
};
}
@Override
public Callable<OptimizationResult> create(Candidate candidate, Class<? extends DataSource> dataSource,
Properties dataSourceProperties, ScoreFunction scoreFunction,
List<StatusListener> statusListeners, IOptimizationRunner runner) {
throw new UnsupportedOperationException();
}
}
}

View File

@ -0,0 +1,117 @@
/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.arbiter.optimize;
import org.deeplearning4j.arbiter.optimize.api.CandidateGenerator;
import org.deeplearning4j.arbiter.optimize.api.score.ScoreFunction;
import org.deeplearning4j.arbiter.optimize.api.termination.MaxCandidatesCondition;
import org.deeplearning4j.arbiter.optimize.api.termination.TerminationCondition;
import org.deeplearning4j.arbiter.optimize.config.OptimizationConfiguration;
import org.deeplearning4j.arbiter.optimize.generator.GeneticSearchCandidateGenerator;
import org.deeplearning4j.arbiter.optimize.generator.genetic.exceptions.GeneticGenerationException;
import org.deeplearning4j.arbiter.optimize.generator.genetic.selection.SelectionOperator;
import org.deeplearning4j.arbiter.optimize.runner.CandidateInfo;
import org.deeplearning4j.arbiter.optimize.runner.CandidateStatus;
import org.deeplearning4j.arbiter.optimize.runner.IOptimizationRunner;
import org.deeplearning4j.arbiter.optimize.runner.LocalOptimizationRunner;
import org.deeplearning4j.arbiter.optimize.runner.listener.impl.LoggingStatusListener;
import org.junit.Assert;
import org.junit.Test;
public class TestGeneticSearch {
public class TestSelectionOperator extends SelectionOperator {
@Override
public double[] buildNextGenes() {
throw new GeneticGenerationException("Forced exception to test exception handling.");
}
}
public class TestTerminationCondition implements TerminationCondition {
public boolean hasAFailedCandidate = false;
public int evalCount = 0;
@Override
public void initialize(IOptimizationRunner optimizationRunner) {}
@Override
public boolean terminate(IOptimizationRunner optimizationRunner) {
if (++evalCount == 50) {
// Generator did not handle GeneticGenerationException
return true;
}
for (CandidateInfo candidateInfo : optimizationRunner.getCandidateStatus()) {
if (candidateInfo.getCandidateStatus() == CandidateStatus.Failed) {
hasAFailedCandidate = true;
return true;
}
}
return false;
}
}
@Test
public void GeneticSearchCandidateGenerator_getCandidate_ShouldGenerateCandidates() throws Exception {
ScoreFunction scoreFunction = new BraninFunction.BraninScoreFunction();
//Define configuration:
CandidateGenerator candidateGenerator =
new GeneticSearchCandidateGenerator.Builder(new BraninFunction.BraninSpace(), scoreFunction)
.build();
TestTerminationCondition testTerminationCondition = new TestTerminationCondition();
OptimizationConfiguration configuration = new OptimizationConfiguration.Builder()
.candidateGenerator(candidateGenerator).scoreFunction(scoreFunction)
.terminationConditions(new MaxCandidatesCondition(50), testTerminationCondition).build();
IOptimizationRunner runner = new LocalOptimizationRunner(configuration, new BraninFunction.BraninTaskCreator());
runner.addListeners(new LoggingStatusListener());
runner.execute();
Assert.assertFalse(testTerminationCondition.hasAFailedCandidate);
}
@Test
public void GeneticSearchCandidateGenerator_getCandidate_GeneticExceptionShouldMarkCandidateAsFailed() {
ScoreFunction scoreFunction = new BraninFunction.BraninScoreFunction();
//Define configuration:
CandidateGenerator candidateGenerator =
new GeneticSearchCandidateGenerator.Builder(new BraninFunction.BraninSpace(), scoreFunction)
.selectionOperator(new TestSelectionOperator()).build();
TestTerminationCondition testTerminationCondition = new TestTerminationCondition();
OptimizationConfiguration configuration = new OptimizationConfiguration.Builder()
.candidateGenerator(candidateGenerator).scoreFunction(scoreFunction)
.terminationConditions(testTerminationCondition).build();
IOptimizationRunner runner = new LocalOptimizationRunner(configuration, new BraninFunction.BraninTaskCreator());
runner.addListeners(new LoggingStatusListener());
runner.execute();
Assert.assertTrue(testTerminationCondition.hasAFailedCandidate);
}
}

Some files were not shown because too many files have changed in this diff Show More