- add parameter alpha to elu and lrelu_bp (#213)
* - add parameter alpha to elu and lrelu_bp Signed-off-by: Yurii <yurii@skymind.io> * - forgot to correct header activations.h Signed-off-by: Yurii <yurii@skymind.io>master
parent
b71c993ded
commit
a35926c6e9
|
@ -116,7 +116,6 @@
|
|||
|
||||
|
||||
#define TRANSFORM_STRICT_OPS \
|
||||
(3, ELUDerivative), \
|
||||
(4, TanhDerivative), \
|
||||
(5, HardTanhDerivative), \
|
||||
(6, SigmoidDerivative), \
|
||||
|
@ -148,7 +147,6 @@
|
|||
(32, ATan), \
|
||||
(33, HardTanh), \
|
||||
(34, SoftSign), \
|
||||
(35, ELU), \
|
||||
(36, HardSigmoid), \
|
||||
(37, RationalTanh) ,\
|
||||
(38, RectifiedTanh) ,\
|
||||
|
@ -211,6 +209,8 @@
|
|||
(4, ReverseDivide),\
|
||||
(5, ReverseSubtract),\
|
||||
(6, MaxPairwise),\
|
||||
(7, ELU), \
|
||||
(8, ELUDerivative), \
|
||||
(13, MinPairwise),\
|
||||
(14, CopyPws),\
|
||||
(15, Mod),\
|
||||
|
|
|
@ -25,12 +25,14 @@
|
|||
#include <ops/declarable/helpers/legacy_helpers.h>
|
||||
namespace nd4j {
|
||||
namespace ops {
|
||||
CONFIGURABLE_OP_IMPL(elu, 1, 1, true, 0, 0) {
|
||||
CONFIGURABLE_OP_IMPL(elu, 1, 1, true, -2, 0) {
|
||||
|
||||
auto input = INPUT_VARIABLE(0);
|
||||
auto output = OUTPUT_VARIABLE(0);
|
||||
|
||||
input->applyTransform(nd4j::transform::ELU, output, nullptr);
|
||||
STORE_RESULT(output);
|
||||
const auto alpha = block.numT() > 0 ? T_ARG(0) : 1.f;
|
||||
|
||||
input->applyScalar(nd4j::scalar::ELU, alpha, output);
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
@ -41,14 +43,18 @@ namespace nd4j {
|
|||
->setAllowedOutputTypes(0, {ALL_FLOATS});
|
||||
}
|
||||
|
||||
CONFIGURABLE_OP_IMPL(elu_bp, 2, 1, true, 0, 0) {
|
||||
CONFIGURABLE_OP_IMPL(elu_bp, 2, 1, true, -2, 0) {
|
||||
|
||||
auto input = INPUT_VARIABLE(0);
|
||||
auto epsilon = INPUT_VARIABLE(1);
|
||||
|
||||
auto z = OUTPUT_VARIABLE(0);
|
||||
auto output = OUTPUT_VARIABLE(0);
|
||||
|
||||
const auto alpha = block.numT() > 0 ? T_ARG(0) : 1.f;
|
||||
|
||||
// input->applyPairwiseTransform(pairwise::ELUDerivativeE, epsilon, output);
|
||||
helpers::eluDerivative(block.launchContext(), input, epsilon, output, alpha);
|
||||
|
||||
//input->applyPairwiseTransform(pairwise::ELUDerivativeE, epsilon, z, nullptr);
|
||||
helpers::eluDerivative(block.launchContext(), input, epsilon, z);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
|
|
|
@ -25,15 +25,15 @@
|
|||
#include <ops/declarable/helpers/legacy_helpers.h>
|
||||
namespace nd4j {
|
||||
namespace ops {
|
||||
CONFIGURABLE_OP_IMPL(lrelu, 1, 1, true, 1, 0) {
|
||||
CONFIGURABLE_OP_IMPL(lrelu, 1, 1, true, -2, 0) {
|
||||
auto input = INPUT_VARIABLE(0);
|
||||
auto output = OUTPUT_VARIABLE(0);
|
||||
|
||||
float t = block.numT() > 0 ? T_ARG(0) : 0.0f;
|
||||
float alpha = block.numT() > 0 ? T_ARG(0) : 0.01f;
|
||||
|
||||
input->applyScalar(nd4j::scalar::LeakyRELU, t, output);
|
||||
input->applyScalar(nd4j::scalar::LeakyRELU, alpha, output);
|
||||
STORE_RESULT(output);
|
||||
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
|
@ -42,15 +42,17 @@ namespace nd4j {
|
|||
->setAllowedInputTypes(0, DataType::ANY)
|
||||
->setAllowedOutputTypes(0, {ALL_FLOATS});
|
||||
}
|
||||
|
||||
CONFIGURABLE_OP_IMPL(lrelu_bp, 2, 1, true, 0, 0) {
|
||||
|
||||
CONFIGURABLE_OP_IMPL(lrelu_bp, 2, 1, true, -2, 0) {
|
||||
auto input = INPUT_VARIABLE(0);
|
||||
auto epsilon = INPUT_VARIABLE(1);
|
||||
|
||||
auto z = OUTPUT_VARIABLE(0);
|
||||
|
||||
float alpha = block.numT() > 0 ? T_ARG(0) : 0.01f;
|
||||
|
||||
//input->applyPairwiseTransform(pairwise::LRELUDerivativeE, epsilon, z, nullptr);
|
||||
helpers::leakyReluDerivative(block.launchContext(), input, epsilon, z);
|
||||
helpers::leakyReluDerivative(block.launchContext(), input, epsilon, z, alpha);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
|
|
|
@ -82,8 +82,8 @@ namespace nd4j {
|
|||
* Math is: x < 0 ? alpha * x : x;
|
||||
*/
|
||||
#if NOT_EXCLUDED(OP_lrelu)
|
||||
DECLARE_CONFIGURABLE_OP(lrelu, 1, 1, true, 0, 0);
|
||||
DECLARE_CONFIGURABLE_OP(lrelu_bp, 2, 1, true, 0, 0);
|
||||
DECLARE_CONFIGURABLE_OP(lrelu, 1, 1, true, -2, 0);
|
||||
DECLARE_CONFIGURABLE_OP(lrelu_bp, 2, 1, true, -2, 0);
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
@ -91,8 +91,8 @@ namespace nd4j {
|
|||
* Math is: x >= 0 ? x : exp(x) - 1;
|
||||
*/
|
||||
#if NOT_EXCLUDED(OP_elu)
|
||||
DECLARE_CONFIGURABLE_OP(elu, 1, 1, true, 0, 0);
|
||||
DECLARE_CONFIGURABLE_OP(elu_bp, 2, 1, true, 0, 0);
|
||||
DECLARE_CONFIGURABLE_OP(elu, 1, 1, true, -2, 0);
|
||||
DECLARE_CONFIGURABLE_OP(elu_bp, 2, 1, true, -2, 0);
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
@ -157,7 +157,7 @@ namespace nd4j {
|
|||
/**
|
||||
* This is Concatenated RELU implementation.
|
||||
* What happens inside: RELU(Concat((x, -x, {-1})))
|
||||
*
|
||||
*
|
||||
* PLEASE NOTE: Concatenation will double amount of features available in input
|
||||
*/
|
||||
#if NOT_EXCLUDED(OP_crelu)
|
||||
|
|
|
@ -81,29 +81,35 @@ namespace helpers {
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
static void leakyReluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
||||
auto functor = LAMBDA_TT(x, y){
|
||||
return x >= (T)0.f? y : T(0.f);
|
||||
static void leakyReluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output, const float alpha) {
|
||||
|
||||
const T alphaT = static_cast<T>(alpha);
|
||||
|
||||
auto functor = LAMBDA_TT(x, y, alphaT) {
|
||||
return x < 0 ? alphaT * y : y;
|
||||
};
|
||||
|
||||
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
||||
}
|
||||
|
||||
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
||||
BUILD_SINGLE_SELECTOR(theFirst->dataType(), leakyReluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
||||
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput, const float alpha) {
|
||||
BUILD_SINGLE_SELECTOR(theFirst->dataType(), leakyReluDerivative_, (theFirst, theSecond, theOutput, alpha), FLOAT_TYPES);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void eluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
||||
auto functor = LAMBDA_TT(x, y){
|
||||
return y * nd4j::math::nd4j_eluderivative<T,T>(x);
|
||||
static void eluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output, const float alpha) {
|
||||
|
||||
const T alphaT = static_cast<T>(alpha);
|
||||
|
||||
auto functor = LAMBDA_TT(x, y, alphaT){
|
||||
return y * nd4j::math::nd4j_eluderivative<T,T>(x, alphaT);
|
||||
};
|
||||
|
||||
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
||||
}
|
||||
|
||||
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
||||
BUILD_SINGLE_SELECTOR(theFirst->dataType(), eluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
||||
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput, const float alpha) {
|
||||
BUILD_SINGLE_SELECTOR(theFirst->dataType(), eluDerivative_, (theFirst, theSecond, theOutput, alpha), FLOAT_TYPES);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -66,29 +66,35 @@ namespace nd4j {
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
linkage void leakyReluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
||||
auto functor = LAMBDA_TT(x, y){
|
||||
return x >= (T)0.f? y : T(0.f);
|
||||
linkage void leakyReluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output, const float alpha) {
|
||||
|
||||
const T alphaT = static_cast<T>(alpha);
|
||||
|
||||
auto functor = LAMBDA_TT(x, y, alphaT) {
|
||||
return x < 0 ? alphaT * y : y;
|
||||
};
|
||||
|
||||
input->applyPairwiseLambda(epsilon, functor, output);
|
||||
}
|
||||
|
||||
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
||||
BUILD_SINGLE_SELECTOR(theFirst->dataType(), leakyReluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
||||
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput, const float alpha) {
|
||||
BUILD_SINGLE_SELECTOR(theFirst->dataType(), leakyReluDerivative_, (theFirst, theSecond, theOutput, alpha), FLOAT_TYPES);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
linkage void eluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
||||
auto functor = LAMBDA_TT(x, y){
|
||||
return y * nd4j::math::nd4j_eluderivative<T,T>(x);
|
||||
linkage void eluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output, const float alpha) {
|
||||
|
||||
const T alphaT = static_cast<T>(alpha);
|
||||
|
||||
auto functor = LAMBDA_TT(x, y, alphaT){
|
||||
return y * nd4j::math::nd4j_eluderivative<T,T>(x, alphaT);
|
||||
};
|
||||
|
||||
input->applyPairwiseLambda(epsilon, functor, output);
|
||||
}
|
||||
|
||||
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
||||
BUILD_SINGLE_SELECTOR(theFirst->dataType(), eluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
||||
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput, const float alpha) {
|
||||
BUILD_SINGLE_SELECTOR(theFirst->dataType(), eluDerivative_, (theFirst, theSecond, theOutput, alpha), FLOAT_TYPES);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -46,8 +46,8 @@ namespace helpers {
|
|||
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond);
|
||||
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
||||
void relu6Derivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
||||
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
||||
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
||||
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput, const float alpha);
|
||||
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput, const float alpha);
|
||||
void seluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
||||
void cubeDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
||||
void reduceNorm1(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput);
|
||||
|
|
|
@ -2271,26 +2271,26 @@ namespace simdOps {
|
|||
}
|
||||
};
|
||||
|
||||
template <typename X>
|
||||
template <typename X, typename Y, typename Z>
|
||||
class ELU {
|
||||
public:
|
||||
no_op_exec_special_same
|
||||
no_op_exec_special_same_cuda
|
||||
|
||||
op_def static X op(X d1, X *params) {
|
||||
return nd4j::math::nd4j_elu<X,X>(d1);
|
||||
op_def static Z op(X d1, Y d2, Z *params) {
|
||||
return nd4j::math::nd4j_elu<X,Z>(d1, static_cast<X>(d2));
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename X>
|
||||
template <typename X, typename Y, typename Z>
|
||||
class ELUDerivative {
|
||||
public:
|
||||
no_op_exec_special_same
|
||||
no_op_exec_special_same_cuda
|
||||
|
||||
op_def static X op(X d1, X *params) {
|
||||
return nd4j::math::nd4j_eluderivative<X,X>(d1);
|
||||
op_def static Z op(X d1, Y d2, Z *params) {
|
||||
return nd4j::math::nd4j_eluderivative<X,Z>(d1, static_cast<X>(d2));
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -3716,7 +3716,7 @@ namespace simdOps {
|
|||
return reduction;
|
||||
}
|
||||
|
||||
op_def static Z op(X d1, X d2, Z *extraParamsRef) {
|
||||
op_def static Z op(X d1, X d2, Z *extraParamsRef) {
|
||||
double eps = nd4j::math::nd4j_abs<double>(extraParamsRef[2]);
|
||||
return static_cast<Z>(!nd4j::math::nd4j_eq<X>(d1, d2, eps));
|
||||
}
|
||||
|
@ -4540,4 +4540,4 @@ namespace simdOps {
|
|||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
|
|
@ -130,13 +130,12 @@ namespace nd4j {
|
|||
}
|
||||
|
||||
template<typename T, typename Z>
|
||||
math_def inline Z nd4j_elu(T val) {
|
||||
if (val >= (T) 0.f) return val;
|
||||
else return nd4j_exp<T, Z>(val) - (Z) 1.0f;
|
||||
//return val >= 0.0 ? val : (nd4j_exp<T>(val) - 1.0);
|
||||
math_def inline Z nd4j_elu(T val, T alpha) {
|
||||
if (val >= (T) 0.f)
|
||||
return val;
|
||||
return static_cast<Z>(alpha) * (nd4j_exp<T, Z>(val) - static_cast<Z>(1.0f));
|
||||
}
|
||||
|
||||
|
||||
template<typename T, typename Z>
|
||||
math_def inline Z nd4j_leakyrelu(T val,T alpha) {
|
||||
if (val < (T) 0.0f)
|
||||
|
@ -145,13 +144,14 @@ namespace nd4j {
|
|||
return val;
|
||||
}
|
||||
|
||||
|
||||
template<typename T, typename Z>
|
||||
math_def inline Z nd4j_eluderivative(T val) {
|
||||
if (val >= (T) 0.0f) return (Z) 1.0f;
|
||||
else return nd4j_exp<T, Z>(val);
|
||||
math_def inline Z nd4j_eluderivative(T val, T alpha) {
|
||||
if (val >= static_cast<T>(0.0f))
|
||||
return static_cast<Z>(1.0f);
|
||||
return static_cast<Z>(alpha) * nd4j_exp<T, Z>(val);
|
||||
//return val >= 0.0 ? 1.0 : nd4j_exp(val);
|
||||
}
|
||||
|
||||
template<typename T, typename Z>
|
||||
math_def inline Z nd4j_sin(T val);
|
||||
|
||||
|
@ -283,7 +283,7 @@ namespace nd4j {
|
|||
#ifdef NATIVE_HALFS
|
||||
if (value < (float16) 0.f) {
|
||||
return float16(__hneg(value.data));
|
||||
} else
|
||||
} else
|
||||
return value;
|
||||
#else
|
||||
return (float16) fabsf((float) value);
|
||||
|
|
|
@ -2794,53 +2794,42 @@ TEST_F(DeclarableOpsTests3, svd_test11) {
|
|||
TEST_F(DeclarableOpsTests3, elu_test1) {
|
||||
|
||||
auto x = NDArrayFactory::create<double>('c', {3,3}, {0.1, .2, .3, -.4,-.5,-.6, .7, .8, .9});
|
||||
// auto expS = NDArrayFactory::create<double>('c', {3});
|
||||
// auto expU = NDArrayFactory::create<double>('c', {3,3});
|
||||
auto exp = NDArrayFactory::create<double>('c', {3,3}, {.1, .2, .3, -0.32968, -0.393469, -0.451188, .7, .8, .9});
|
||||
auto exp = NDArrayFactory::create<double>('c', {3,3}, {.1, .2, .3, 0.5*-0.32968, 0.5*-0.393469, 0.5*-0.451188, .7, .8, .9});
|
||||
|
||||
nd4j::ops::elu op;
|
||||
auto results = op.execute({&x}, {}, {});
|
||||
auto results = op.execute({&x}, {0.5}, {});
|
||||
|
||||
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
||||
|
||||
auto s = results->at(0);
|
||||
// auto u = results->at(1);
|
||||
// auto v = results->at(2);
|
||||
// s->printIndexedBuffer("ELU");
|
||||
ASSERT_TRUE(exp.equalsTo(s));
|
||||
|
||||
delete results;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
TEST_F(DeclarableOpsTests3, elu_test2) {
|
||||
TEST_F(DeclarableOpsTests3, elu_bp_test1) {
|
||||
|
||||
auto x = NDArrayFactory::create<double>('c', {3, 3}, {0.1, .2, .3, -.4, -.5, -.6, .7, .8, .9});
|
||||
auto eps = NDArrayFactory::create<double>('c', {3,3});
|
||||
eps.assign(2.);
|
||||
// auto expU = NDArrayFactory::create<double>('c', {3,3});
|
||||
auto exp = NDArrayFactory::create<double>('c', {3, 3}, {2, 2, 2, 1.34064, 1.213061, 1.097623, 2, 2, 2});
|
||||
auto x = NDArrayFactory::create<double>('c', {3, 3}, {0.1, .2, .3, -.4, -.5, -.6, .7, .8, .9});
|
||||
auto eps = NDArrayFactory::create<double>('c', {3,3});
|
||||
eps.assign(2.);
|
||||
auto exp = NDArrayFactory::create<double>('c', {3, 3}, {2, 2, 2, 0.5*1.34064, 0.5*1.213061, 0.5*1.097623, 2, 2, 2});
|
||||
|
||||
nd4j::ops::elu_bp op;
|
||||
auto results = op.execute({ &x, &eps }, {}, {});
|
||||
nd4j::ops::elu_bp op;
|
||||
auto results = op.execute({ &x, &eps }, {0.5}, {});
|
||||
|
||||
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
||||
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
||||
|
||||
auto s = results->at(0);
|
||||
// auto u = results->at(1);
|
||||
// auto v = results->at(2);
|
||||
// s->printIndexedBuffer("ELU_BP");
|
||||
ASSERT_TRUE(exp.equalsTo(s));
|
||||
auto s = results->at(0);
|
||||
ASSERT_TRUE(exp.equalsTo(s));
|
||||
|
||||
delete results;
|
||||
delete results;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
TEST_F(DeclarableOpsTests3, lrelu_test1) {
|
||||
|
||||
auto x = NDArrayFactory::create<double>('c', {3,3}, {1, 2, 3, -4,-5,-6, 7, 8, 9});
|
||||
// auto expS = NDArrayFactory::create<double>('c', {3});
|
||||
// auto expU = NDArrayFactory::create<double>('c', {3,3});
|
||||
auto exp = NDArrayFactory::create<double>('c', {3,3}, {1, 2, 3, -0.8, -1., -1.2, 7, 8, 9});
|
||||
|
||||
nd4j::ops::lrelu op;
|
||||
|
@ -2849,20 +2838,16 @@ TEST_F(DeclarableOpsTests3, lrelu_test1) {
|
|||
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
||||
|
||||
auto s = results->at(0);
|
||||
// auto u = results->at(1);
|
||||
// auto v = results->at(2);
|
||||
// s->printIndexedBuffer("LRELU");
|
||||
ASSERT_TRUE(exp.equalsTo(s));
|
||||
|
||||
delete results;
|
||||
}
|
||||
|
||||
TEST_F(DeclarableOpsTests3, lrelu_test2) {
|
||||
TEST_F(DeclarableOpsTests3, lrelu_bp_test1) {
|
||||
|
||||
auto x = NDArrayFactory::create<double>('c', {3,3}, {1, 2, 3, -4,-5,-6, 7, 8, 9});
|
||||
// auto expS = NDArrayFactory::create<double>('c', {3});
|
||||
auto eps = NDArrayFactory::create<double>('c', {3,3}, {2,2,2,2,2,2,2, 2,2});
|
||||
auto exp = NDArrayFactory::create<double>('c', {3,3}, {2, 2, 2, 0, 0, 0, 2, 2, 2});
|
||||
auto exp = NDArrayFactory::create<double>('c', {3,3}, {2, 2, 2, 0.4, 0.4, 0.4, 2, 2, 2});
|
||||
|
||||
nd4j::ops::lrelu_bp op;
|
||||
auto results = op.execute({&x, &eps}, {0.2}, {});
|
||||
|
@ -2870,9 +2855,6 @@ TEST_F(DeclarableOpsTests3, lrelu_test2) {
|
|||
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
||||
|
||||
auto s = results->at(0);
|
||||
// auto u = results->at(1);
|
||||
// auto v = results->at(2);
|
||||
// s->printIndexedBuffer("LRELU_BP");
|
||||
ASSERT_TRUE(exp.equalsTo(s));
|
||||
|
||||
delete results;
|
||||
|
@ -2882,8 +2864,6 @@ TEST_F(DeclarableOpsTests3, lrelu_test2) {
|
|||
TEST_F(DeclarableOpsTests3, selu_test1) {
|
||||
|
||||
auto x = NDArrayFactory::create<double>('c', {3,3}, {1, 2, 3, -4,-5,-6, 7, 8, 9});
|
||||
// auto expS = NDArrayFactory::create<double>('c', {3});
|
||||
// auto expU = NDArrayFactory::create<double>('c', {3,3});
|
||||
auto exp = NDArrayFactory::create<double>('c', {3,3}, {1.050701, 2.101402, 3.152103, -1.725899, -1.746253, -1.753742, 7.354907, 8.405608, 9.456309});
|
||||
|
||||
nd4j::ops::selu op;
|
||||
|
@ -2892,7 +2872,6 @@ TEST_F(DeclarableOpsTests3, selu_test1) {
|
|||
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
||||
|
||||
auto s = results->at(0);
|
||||
// s->printIndexedBuffer("SELU");
|
||||
ASSERT_TRUE(exp.equalsTo(s));
|
||||
|
||||
delete results;
|
||||
|
|
|
@ -2761,7 +2761,7 @@ TEST_F(DeclarableOpsTests5, ELU_1) {
|
|||
auto exp = NDArrayFactory::create<double>('c', {2, 2, 2}, { -0.63212055, 2. , 1.5, -0.753403, 1., 2., 2., 1.});
|
||||
auto res = NDArrayFactory::create<double>('c', {2, 2, 2});
|
||||
|
||||
input.applyTransform(transform::ELU, &res);
|
||||
input.applyScalar(nd4j::scalar::ELU, 1.f, &res);
|
||||
|
||||
ASSERT_TRUE(res.equalsTo(&exp));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue